1
|
Haller SL, Park C, Bruneau RC, Megawati D, Zhang C, Vipat S, Peng C, Senkevich TG, Brennan G, Tazi L, Rothenburg S. Host species-specific activity of the poxvirus PKR inhibitors E3 and K3 mediate host range function. J Virol 2024; 98:e0133124. [PMID: 39480085 PMCID: PMC11575334 DOI: 10.1128/jvi.01331-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024] Open
Abstract
The antiviral protein kinase R (PKR) is activated by viral double-stranded RNA and phosphorylates translation initiation factor eIF2α, thereby inhibiting translation and virus replication. Most poxviruses contain two PKR inhibitors, called E3 and K3 in vaccinia virus (VACV), which are determinants of viral host range. The prevailing model for E3 function is that it inhibits PKR through the non-specific sequestration of double-stranded (ds) RNA. Our data revealed that Syrian hamster PKR was resistant to E3, which is at odds with the sequestration model. However, Syrian hamster PKR was still sensitive to K3 inhibition. In contrast, Armenian hamster PKR showed opposite sensitivities, being sensitive to E3 and resistant to K3 inhibition. Mutational analyses of hamster PKRs showed that sensitivity to E3 inhibition was largely determined by the region linking the dsRNA-binding domains and the kinase domain of PKR, whereas two amino acid residues in the kinase domain (helix αG) determined sensitivity to K3. The expression of PKRs in congenic cells showed that Syrian hamster PKR containing the two Armenian hamster PKR residues in helix αG was resistant to wild-type VACV infection and that cells expressing either hamster PKR recapitulated the phenotypes observed in species-derived cell lines. The observed resistance of Syrian hamster PKR to E3 explains its host range function and challenges the paradigm that dsRNA-binding PKR inhibitors mainly act by the sequestration of dsRNA.IMPORTANCEThe molecular mechanisms that govern the host range of viruses are incompletely understood. We show that the host range functions of E3 and K3, two host range factors from vaccinia virus, are a result of species-specific interactions with the antiviral protein kinase R (PKR) and that PKR from closely related species displayed dramatic differences in their sensitivities to these viral inhibitors. The current model for E3-mediated PKR inhibition is that E3 non-specifically sequesters double-stranded (ds) RNA to prevent PKR activation. This model does not predict species-specific sensitivity to E3; therefore, our data suggest that the current model is incomplete and that dsRNA sequestration is not the primary mechanism for E3 activity.
Collapse
Affiliation(s)
- Sherry L Haller
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Chorong Park
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Ryan C Bruneau
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Dewi Megawati
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Chi Zhang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Sameera Vipat
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Chen Peng
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Tatiana G Senkevich
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Greg Brennan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Loubna Tazi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Stefan Rothenburg
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
2
|
Zhang Y, Zhang S. CRISPR perfect adaptation for robust control of cellular immune and apoptotic responses. Nucleic Acids Res 2024; 52:10005-10016. [PMID: 39087566 PMCID: PMC11381330 DOI: 10.1093/nar/gkae665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/26/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
A central challenge in the quest for precise gene regulation within mammalian cells is the development of regulatory networks that can achieve perfect adaptation-where outputs consistently return to a set baseline post-stimulus. Here, we present such a system that leverages the CRISPR activation (CRISPRa) and anti-CRISPR proteins as two antithetic elements to establish perfect adaptation in mammalian cells and dynamically regulate gene expression. We demonstrate that this system can maintain stable expression levels of target genes in the face of external perturbations, thus providing a robust platform for biological applications. The versatility of our system is further showcased through its integration with endogenous regulatory mechanisms in T cells, such as the NF-κB-mediated immune response, and its ability to program apoptosis responses for precise spatial and temporal control of cellular growth and death. This study not only advances our understanding of gene regulation in mammalian cells but also opens new avenues for therapeutic intervention, particularly in diseases characterized by dysregulated gene expression.
Collapse
Affiliation(s)
- Yichi Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Shuyi Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Megawati D, Stroup JN, Park C, Clarkson T, Tazi L, Brennan G, Rothenburg S. Tanapox Virus and Yaba Monkey Tumor Virus K3 Orthologs Inhibit Primate Protein Kinase R in a Species-Specific Fashion. Viruses 2024; 16:1095. [PMID: 39066257 PMCID: PMC11281682 DOI: 10.3390/v16071095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Yaba monkey tumor virus (YMTV) and Tanapox virus (TPV) are members of the Yatapoxvirus genus and can infect humans and other primates. Despite the threat posed by yatapoxviruses, the factors determining their host range are poorly understood. In this study, we analyzed the ability of YMTV and TPV orthologs of vaccinia virus K3 (called 012 in YMTV and TPV), which share 75% amino acid identity with one another, to inhibit PKR from 15 different primate species. We first used a luciferase-based reporter, and found that YMTV and TPV K3 orthologs inhibited PKR in a species-specific manner and showed distinct PKR inhibition profiles. TPV 012 inhibited PKR from 11 primates, including humans, substantially better than YMTV 012. In contrast, both K3 orthologs inhibited the other four primate PKRs comparably well. Using YMTV 012 and TPV 012 hybrids, we mapped the region responsible for the differential PKR inhibition to the C- terminus of the K3 orthologs. Next, we generated chimeric vaccinia virus strains to investigate whether TPV K3 and YMTV K3 orthologs could rescue the replication of a vaccinia virus strain that lacks PKR inhibitors K3L and E3L. Virus replication in primate-derived cells generally correlated with the patterns observed in the luciferase-based assay. Together, these observations demonstrate that yatapoxvirus K3 orthologs have distinct PKR inhibition profiles and inhibit PKR in a species-specific manner, which may contribute to the differential susceptibility of primate species to yatapoxvirus infections.
Collapse
Affiliation(s)
- Dewi Megawati
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA; (D.M.); (J.N.S.); (C.P.); (L.T.)
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar 80239, Bali, Indonesia
| | - Jeannine N. Stroup
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA; (D.M.); (J.N.S.); (C.P.); (L.T.)
| | - Chorong Park
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA; (D.M.); (J.N.S.); (C.P.); (L.T.)
| | - Taylor Clarkson
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA; (D.M.); (J.N.S.); (C.P.); (L.T.)
| | - Loubna Tazi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA; (D.M.); (J.N.S.); (C.P.); (L.T.)
| | - Greg Brennan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA; (D.M.); (J.N.S.); (C.P.); (L.T.)
| | - Stefan Rothenburg
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA; (D.M.); (J.N.S.); (C.P.); (L.T.)
| |
Collapse
|
4
|
Buccheri V, Pasulka J, Malik R, Loubalova Z, Taborska E, Horvat F, Roos Kulmann MI, Jenickova I, Prochazka J, Sedlacek R, Svoboda P. Functional canonical RNAi in mice expressing a truncated Dicer isoform and long dsRNA. EMBO Rep 2024; 25:2896-2913. [PMID: 38769420 PMCID: PMC11239679 DOI: 10.1038/s44319-024-00148-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
Canonical RNA interference (RNAi) is sequence-specific mRNA degradation guided by small interfering RNAs (siRNAs) made by RNase III Dicer from long double-stranded RNA (dsRNA). RNAi roles include gene regulation, antiviral immunity or defense against transposable elements. In mammals, RNAi is constrained by Dicer's adaptation to produce another small RNA class-microRNAs. However, a truncated Dicer isoform (ΔHEL1) supporting RNAi exists in mouse oocytes. A homozygous mutation to express only the truncated ΔHEL1 variant causes dysregulation of microRNAs and perinatal lethality in mice. Here, we report the phenotype and canonical RNAi activity in DicerΔHEL1/wt mice, which are viable, show minimal miRNome changes, but their endogenous siRNA levels are an order of magnitude higher. We show that siRNA production in vivo is limited by available dsRNA, but not by Protein kinase R, a dsRNA sensor of innate immunity. dsRNA expression from a transgene yields sufficient siRNA levels to induce efficient RNAi in heart and muscle. DicerΔHEL1/wt mice with enhanced canonical RNAi offer a platform for examining potential and limits of mammalian RNAi in vivo.
Collapse
Grants
- 20-03950X Czech Science Foundation
- 647403 EC | European Research Council (ERC)
- LO1419 Ministry of Education, Youth, and Sports of the Czech Republic
- LM2018126 Ministry of Education, Youth, and Sports of the Czech Republic
- LM2023036 Ministry of Education, Youth, and Sports of the Czech Republic
- LM2023050 Ministry of Education, Youth, and Sports of the Czech Republic
- 90254 Ministry of Education, Youth, and Sports of the Czech Republic
- 90255 Ministry of Education, Youth, and Sports of the Czech Republic
- PhD fellowship Charles University
- RVO 68378050 Czech Academy of Sciences
Collapse
Affiliation(s)
- Valeria Buccheri
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, 4, Czech Republic
| | - Josef Pasulka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, 4, Czech Republic
| | - Radek Malik
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, 4, Czech Republic
| | - Zuzana Loubalova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, 4, Czech Republic
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eliska Taborska
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, 4, Czech Republic
| | - Filip Horvat
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, 4, Czech Republic
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Marcos Iuri Roos Kulmann
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, 4, Czech Republic
| | - Irena Jenickova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Petr Svoboda
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, 4, Czech Republic.
| |
Collapse
|
5
|
Bhattacharjee P, Wang D, Anderson D, Buckler JN, de Geus E, Yan F, Polekhina G, Schittenhelm R, Creek DJ, Harris LD, Sadler AJ. The immune response to RNA suppresses nucleic acid synthesis by limiting ribose 5-phosphate. EMBO J 2024; 43:2636-2660. [PMID: 38778156 PMCID: PMC11217295 DOI: 10.1038/s44318-024-00100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 05/25/2024] Open
Abstract
During infection viruses hijack host cell metabolism to promote their replication. Here, analysis of metabolite alterations in macrophages exposed to poly I:C recognises that the antiviral effector Protein Kinase RNA-activated (PKR) suppresses glucose breakdown within the pentose phosphate pathway (PPP). This pathway runs parallel to central glycolysis and is critical to producing NADPH and pentose precursors for nucleotides. Changes in metabolite levels between wild-type and PKR-ablated macrophages show that PKR controls the generation of ribose 5-phosphate, in a manner distinct from its established function in gene expression but dependent on its kinase activity. PKR phosphorylates and inhibits the Ribose 5-Phosphate Isomerase A (RPIA), thereby preventing interconversion of ribulose- to ribose 5-phosphate. This activity preserves redox control but decreases production of ribose 5-phosphate for nucleotide biosynthesis. Accordingly, the PKR-mediated immune response to RNA suppresses nucleic acid production. In line, pharmacological targeting of the PPP during infection decreases the replication of the Herpes simplex virus. These results identify an immune response-mediated control of host cell metabolism and suggest targeting the RPIA as a potential innovative antiviral treatment.
Collapse
Affiliation(s)
- Pushpak Bhattacharjee
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Die Wang
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Joshua N Buckler
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Eveline de Geus
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Feng Yan
- Australian Centre for Blood Diseases, Department of Clinical Hematology, Monash University, Clayton, VIC, 3004, Australia
| | - Galina Polekhina
- Department of Epidemiology & Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Ralf Schittenhelm
- Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Lawrence D Harris
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Anthony J Sadler
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
6
|
Haller SL, Park C, Bruneau RC, Megawati D, Zhang C, Vipat S, Peng C, Senkevich TG, Brennan G, Tazi L, Rothenburg S. Molecular basis for the host range function of the poxvirus PKR inhibitor E3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594589. [PMID: 38798513 PMCID: PMC11118487 DOI: 10.1101/2024.05.16.594589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The antiviral protein kinase R (PKR) is activated by viral double-stranded RNA and phosphorylates translation initiation factor eIF2α, thereby inhibiting translation and virus replication. Most poxviruses contain two PKR inhibitors, called E3 and K3 in vaccinia virus (VACV), which are determinants of viral host range. The prevailing model for E3 function is that it inhibits PKR through the non-specific sequestration of double-stranded (ds) RNA. Our data revealed that Syrian hamster PKR was resistant to E3, which is at odds with the sequestration model. However, Syrian hamster PKR was still sensitive to K3 inhibition. In contrast, Armenian hamster PKR showed opposite sensitivities, being sensitive to E3 and resistant to K3 inhibition. Mutational analyses of hamster PKRs showed that sensitivity to E3 inhibition was largely determined by the region linking the dsRNA-binding domains and the kinase domain of PKR, whereas two amino acid residues in the kinase domain (helix αG) determined sensitivity to K3. Expression of PKRs in congenic cells showed that Syrian hamster PKR containing the two Armenian hamster PKR residues in helix-αG was resistant to wild type VACV infection, and that cells expressing either hamster PKR recapitulated the phenotypes observed in species-derived cell lines. The observed resistance of Syrian hamster PKR to E3 explains its host range function and challenges the paradigm that dsRNA-binding PKR inhibitors mainly act by the sequestration of dsRNA. Significance The molecular mechanisms that govern the host range of viruses are incompletely understood. A small number of poxvirus genes have been identified that influence the host range of poxviruses. We show that the host range functions of E3 and K3, two host range factors from vaccinia virus, are a result of species-specific interactions with the antiviral protein kinase R (PKR) and that PKR from closely related species displayed dramatic differences in their sensitivities to these viral inhibitors. While there is a substantial body of work demonstrating host-specific interactions with K3, the current model for E3-mediated PKR inhibition is that E3 non-specifically sequesters dsRNA to prevent PKR activation. This model does not predict species-specific sensitivity to E3; therefore, our data suggest that the current model is incomplete, and that dsRNA sequestration is not the primary mechanism for E3 activity.
Collapse
|
7
|
Sheng X, Yang Y, Zhu M, Zhou L, Zhu F, Zhu Y, Dong S, Kong H, Wang H, Jiang J, Wan M, Feng M, Deng Q, Xu Y, You Q, Hu R. Non-proteolytic ubiquitination of HBx controls HBV replication. Virol Sin 2024; 39:338-342. [PMID: 38307415 PMCID: PMC11074638 DOI: 10.1016/j.virs.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024] Open
Abstract
•The expression level of TRIM21 in patients is negatively correlated with the replication and integration of HBV. •TRIM21 was found to trigger non-proteolytic ubiquitination of X protein of HBV. •This study proposes that the PRYSPRY and RING domains in TRIM21 dimer can form a docking conformation for HBx binding. •TRIM21-mediated HBx ubiquitination disrupts the DDB1 recruitment to HBx and stabilize Smc6.
Collapse
Affiliation(s)
- Xiangpeng Sheng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Yi Yang
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Min Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Linlin Zhou
- Department of Pathogenic Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Fang Zhu
- School of Medicine, Guizhou University, Guiyang 550025, China
| | - Yuanfei Zhu
- Key Laboratory of Medical Molecular Virology (MOE & MOH), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Siying Dong
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Kong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Honghua Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ji Jiang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Mingyue Wan
- Department of Hospital Infection Management, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mingyang Feng
- Department of Hospital Infection Management, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiang Deng
- Key Laboratory of Medical Molecular Virology (MOE & MOH), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yumin Xu
- Department of Hospital Infection Management, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Qing You
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
8
|
Anastassov S, Filo M, Chang CH, Khammash M. A cybergenetic framework for engineering intein-mediated integral feedback control systems. Nat Commun 2023; 14:1337. [PMID: 36906662 PMCID: PMC10008564 DOI: 10.1038/s41467-023-36863-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/21/2023] [Indexed: 03/13/2023] Open
Abstract
The ability of biological systems to tightly regulate targeted variables, despite external and internal disturbances, is known as Robust Perfect Adaptation (RPA). Achieved frequently through biomolecular integral feedback controllers at the cellular level, RPA has important implications for biotechnology and its various applications. In this study, we identify inteins as a versatile class of genetic components suitable for implementing these controllers and present a systematic approach for their design. We develop a theoretical foundation for screening intein-based RPA-achieving controllers and a simplified approach for modeling them. We then genetically engineer and test intein-based controllers using commonly used transcription factors in mammalian cells and demonstrate their exceptional adaptation properties over a wide dynamic range. The small size, flexibility, and applicability of inteins across life forms allow us to create a diversity of genetic RPA-achieving integral feedback control systems that can be used in various applications, including metabolic engineering and cell-based therapy.
Collapse
Affiliation(s)
- Stanislav Anastassov
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Maurice Filo
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Ching-Hsiang Chang
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland.
| |
Collapse
|
9
|
Crocodilepox Virus Protein 157 Is an Independently Evolved Inhibitor of Protein Kinase R. Viruses 2022; 14:v14071564. [PMID: 35891544 PMCID: PMC9318007 DOI: 10.3390/v14071564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 02/05/2023] Open
Abstract
Crocodilepox virus (CRV) belongs to the Poxviridae family and mainly infects hatchling and juvenile Nile crocodiles. Most poxviruses encode inhibitors of the host antiviral protein kinase R (PKR), which is activated by viral double-stranded (ds) RNA formed during virus replication, resulting in the phosphorylation of eIF2α and the subsequent shutdown of general mRNA translation. Because CRV lacks orthologs of known poxviral PKR inhibitors, we experimentally characterized one candidate (CRV157), which contains a predicted dsRNA-binding domain. Bioinformatic analyses indicated that CRV157 evolved independently from other poxvirus PKR inhibitors. CRV157 bound to dsRNA, co-localized with PKR in the cytosol, and inhibited PKR from various species. To analyze whether CRV157 could inhibit PKR in the context of a poxvirus infection, we constructed recombinant vaccinia virus strains that contain either CRV157, or a mutant CRV157 deficient in dsRNA binding in a strain that lacks PKR inhibitors. The presence of wild-type CRV157 rescued vaccinia virus replication, while the CRV157 mutant did not. The ability of CRV157 to inhibit PKR correlated with virus replication and eIF2α phosphorylation. The independent evolution of CRV157 demonstrates that poxvirus PKR inhibitors evolved from a diverse set of ancestral genes in an example of convergent evolution.
Collapse
|
10
|
A genetic mammalian proportional-integral feedback control circuit for robust and precise gene regulation. Proc Natl Acad Sci U S A 2022; 119:e2122132119. [PMID: 35687671 PMCID: PMC9214505 DOI: 10.1073/pnas.2122132119] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To survive in the harsh environments they inhabit, cells have evolved sophisticated regulatory mechanisms that can maintain a steady internal milieu or homeostasis. This robustness, however, does not generally translate to engineered genetic circuits, such as the ones studied by synthetic biology. Here, we introduce an implementation of a minimal and universal gene regulatory motif that produces robust perfect adaptation for mammalian cells, and we improve on it by enhancing the precision of its regulation. The processes that keep a cell alive are constantly challenged by unpredictable changes in its environment. Cells manage to counteract these changes by employing sophisticated regulatory strategies that maintain a steady internal milieu. Recently, the antithetic integral feedback motif has been demonstrated to be a minimal and universal biological regulatory strategy that can guarantee robust perfect adaptation for noisy gene regulatory networks in Escherichia coli. Here, we present a realization of the antithetic integral feedback motif in a synthetic gene circuit in mammalian cells. We show that the motif robustly maintains the expression of a synthetic transcription factor at tunable levels even when it is perturbed by increased degradation or its interaction network structure is perturbed by a negative feedback loop with an RNA-binding protein. We further demonstrate an improved regulatory strategy by augmenting the antithetic integral motif with additional negative feedback to realize antithetic proportional–integral control. We show that this motif produces robust perfect adaptation while also reducing the variance of the regulated synthetic transcription factor. We demonstrate that the integral and proportional–integral feedback motifs can mitigate the impact of gene expression burden, and we computationally explore their use in cell therapy. We believe that the engineering of precise and robust perfect adaptation will enable substantial advances in industrial biotechnology and cell-based therapeutics.
Collapse
|
11
|
Maladaptation after a virus host switch leads to increased activation of the pro-inflammatory NF-κB pathway. Proc Natl Acad Sci U S A 2022; 119:e2115354119. [PMID: 35549551 PMCID: PMC9171774 DOI: 10.1073/pnas.2115354119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Myxoma virus (MYXV) is benign in the natural brush rabbit host but causes a fatal disease in European rabbits. Here, we demonstrate that MYXV M156 inhibited brush rabbit protein kinase R (bPKR) more efficiently than European rabbit PKR (ePKR). Because ePKR was not completely inhibited by M156, there was a depletion of short–half-life proteins like the nuclear factor kappa B (NF-κB) inhibitor IκBα, concomitant NF-κB activation and NF-κB target protein expression in ePKR-expressing cells. NF-κB pathway activation was blocked by either hypoactive or hyperactive M156 mutants. This demonstrates that maladaptation of viral immune antagonists can result in substantially different immune responses in aberrant hosts. These different host responses may contribute to altered viral dissemination and may influence viral pathogenesis. Myxoma virus (MYXV) causes localized cutaneous fibromas in its natural hosts, tapeti and brush rabbits; however, in the European rabbit, MYXV causes the lethal disease myxomatosis. Currently, the molecular mechanisms underlying this increased virulence after cross-species transmission are poorly understood. In this study, we investigated the interaction between MYXV M156 and the host protein kinase R (PKR) to determine their crosstalk with the proinflammatory nuclear factor kappa B (NF-κB) pathway. Our results demonstrated that MYXV M156 inhibits brush rabbit PKR (bPKR) more strongly than European rabbit PKR (ePKR). This moderate ePKR inhibition could be improved by hyperactive M156 mutants. We hypothesized that the moderate inhibition of ePKR by M156 might incompletely suppress the signal transduction pathways modulated by PKR, such as the NF-κB pathway. Therefore, we analyzed NF-κB pathway activation with a luciferase-based promoter assay. The moderate inhibition of ePKR resulted in significantly higher NF-κB–dependent reporter activity than complete inhibition of bPKR. We also found a stronger induction of the NF-κB target genes TNFα and IL-6 in ePKR-expressing cells than in bPKR-expressing cells in response to M156 in both transfection and infections assays. Furthermore, a hyperactive M156 mutant did not cause ePKR-dependent NF-κB activation. These observations indicate that M156 is maladapted for ePKR inhibition, only incompletely blocking translation in these hosts, resulting in preferential depletion of short–half-life proteins, such as the NF-κB inhibitor IκBα. We speculate that this functional activation of NF-κB induced by the intermediate inhibition of ePKR by M156 may contribute to the increased virulence of MYXV in European rabbits.
Collapse
|
12
|
Rabouw HH, Visser LJ, Passchier TC, Langereis MA, Liu F, Giansanti P, van Vliet ALW, Dekker JG, van der Grein SG, Saucedo JG, Anand AA, Trellet ME, Bonvin AMJJ, Walter P, Heck AJR, de Groot RJ, van Kuppeveld FJM. Inhibition of the integrated stress response by viral proteins that block p-eIF2-eIF2B association. Nat Microbiol 2020; 5:1361-1373. [PMID: 32690955 DOI: 10.1038/s41564-020-0759-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/22/2020] [Indexed: 11/09/2022]
Abstract
Eukaryotic cells, when exposed to environmental or internal stress, activate the integrated stress response (ISR) to restore homeostasis and promote cell survival. Specific stress stimuli prompt dedicated stress kinases to phosphorylate eukaryotic initiation factor 2 (eIF2). Phosphorylated eIF2 (p-eIF2) in turn sequesters the eIF2-specific guanine exchange factor eIF2B to block eIF2 recycling, thereby halting translation initiation and reducing global protein synthesis. To circumvent stress-induced translational shutdown, viruses encode ISR antagonists. Those identified so far prevent or reverse eIF2 phosphorylation. We now describe two viral proteins-one from a coronavirus and the other from a picornavirus-that have independently acquired the ability to counteract the ISR at its very core by acting as a competitive inhibitor of p-eIF2-eIF2B interaction. This allows continued formation of the eIF2-GTP-Met-tRNAi ternary complex and unabated global translation at high p-eIF2 levels that would otherwise cause translational arrest. We conclude that eIF2 and p-eIF2 differ in their interaction with eIF2B to such effect that p-eIF2-eIF2B association can be selectively inhibited.
Collapse
Affiliation(s)
- Huib H Rabouw
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Linda J Visser
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Tim C Passchier
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Martijn A Langereis
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Fan Liu
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.,Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Piero Giansanti
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.,Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Arno L W van Vliet
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - José G Dekker
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Susanne G van der Grein
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jesús G Saucedo
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Aditya A Anand
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Mikael E Trellet
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Peter Walter
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Raoul J de Groot
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Frank J M van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
13
|
Neumayr C, Pagani M, Stark A, Arnold CD. STARR-seq and UMI-STARR-seq: Assessing Enhancer Activities for Genome-Wide-, High-, and Low-Complexity Candidate Libraries. ACTA ACUST UNITED AC 2020; 128:e105. [PMID: 31503413 PMCID: PMC9286403 DOI: 10.1002/cpmb.105] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The identification of transcriptional enhancers and the quantitative assessment of enhancer activities is essential to understanding how regulatory information for gene expression is encoded in animal and human genomes. Further, it is key to understanding how sequence variants affect enhancer function. STARR‐seq enables the direct and quantitative assessment of enhancer activity for millions of candidate sequences of arbitrary length and origin in parallel, allowing the screening of entire genomes and the establishment of genome‐wide enhancer activity maps. In STARR‐seq, the candidate sequences are cloned downstream of the core promoter into a reporter gene's transcription unit (i.e., the 3′ UTR). Candidates that function as active enhancers lead to the transcription of reporter mRNAs that harbor the candidates’ sequences. This direct coupling of enhancer sequence and enhancer activity in cis enables the straightforward and efficient cloning of complex candidate libraries and the assessment of enhancer activities of millions of candidates in parallel by quantifying the reporter mRNAs by deep sequencing. This article describes how to create focused and genome‐wide human STARR‐seq libraries and how to perform STARR‐seq screens in mammalian cells, and also describes a novel STARR‐seq variant (UMI‐STARR‐seq) that allows the accurate counting of reporter mRNAs for STARR‐seq libraries of low complexity. © 2019 The Authors. Basic Protocol 1: STARR‐seq plasmid library cloning Basic Protocol 2: Mammalian STARR‐seq screening protocol Alternate Protocol: UMI‐STARR‐seq screening protocol—unique molecular identifier integration Support Protocol: Transfection of human cells using the MaxCyte STX scalable transfection system
Collapse
Affiliation(s)
- Christoph Neumayr
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Michaela Pagani
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.,Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Cosmas D Arnold
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
14
|
Lungu-Mitea S, Lundqvist J. Potentials and pitfalls of transient in vitro reporter bioassays: interference by vector geometry and cytotoxicity in recombinant zebrafish cell lines. Arch Toxicol 2020; 94:2769-2784. [PMID: 32447522 PMCID: PMC7395025 DOI: 10.1007/s00204-020-02783-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/07/2020] [Indexed: 12/03/2022]
Abstract
The water framework directive re-evaluation proposes the integration of effect-based tools, increasing the need for alternative methods. Especially within aquatic toxicology, coverage of specific toxicity pathways is scarce, and most applications are based on mammalian or bacterial models, not reflecting realistic exposure scenarios. The use of transient reporter gene assays in cells from organisms of interest could be a quick and inexpensive solution. However, interference with cellular homeostasis may impact the system beyond the function of the manipulated gene and thus lead to non-specific results. We describe how varying vector geometry and different regulatory gene elements on plasmids used for transfection in zebrafish hepatocytes and embryonic fibroblasts may lead up to a tenfold difference in potency. Cells were transiently co-transfected with an Nrf2-responsive Firefly luciferase reporter plasmid and eight different Renilla luciferase normalization plasmids. Transfected cells were exposed to two different regimes (0.1–100 µM and 7.8–250 µM) of the oxidative stress-inducing compounds, sulforaphane, tertbutylhydroquinone, and metazachlor. Nrf2 activity was measured in dual-luciferase assays. In parallel, cytotoxicity was assessed for different endpoints (energy metabolism, protein amount, membrane stability, and cell proliferation) in non-transfected cells and cells co-transfected with constructs of increasing size, to be used for normalization. Transfected cells were more susceptible to cytotoxicity in a vector size-dependent manner. Conclusively, we report that vector geometries (size, backbones, gene-regulatory units), cell line (tissue origin), applied transfection methods, and signal normalization may alter the sensitivity of reporter bioassays in a synergistic manner. Further, we propose that thorough bioassay design is needed to ensure reliability and regulatory acceptance.
Collapse
Affiliation(s)
- Sebastian Lungu-Mitea
- Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden.
| | - Johan Lundqvist
- Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden
| |
Collapse
|
15
|
Demeter T, Vaskovicova M, Malik R, Horvat F, Pasulka J, Svobodova E, Flemr M, Svoboda P. Main constraints for RNAi induced by expressed long dsRNA in mouse cells. Life Sci Alliance 2019; 2:2/1/e201800289. [PMID: 30808654 PMCID: PMC6391682 DOI: 10.26508/lsa.201800289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022] Open
Abstract
A systematic survey of dsRNA expression in mouse fibroblasts and embryonic stem cells shows main constraints for RNAi. RNAi activity depends on the initial Dicer cleavage of dsRNA, having implications for the evolution of mammalian RNAi functions. RNAi is the sequence-specific mRNA degradation guided by siRNAs produced from long dsRNA by RNase Dicer. Proteins executing RNAi are present in mammalian cells but rather sustain the microRNA pathway. Aiming for a systematic analysis of mammalian RNAi, we report here that the main bottleneck for RNAi efficiency is the production of functional siRNAs, which integrates Dicer activity, dsRNA structure, and siRNA targeting efficiency. Unexpectedly, increased expression of Dicer cofactors TARBP2 or PACT reduces RNAi but not microRNA function. Elimination of protein kinase R, a key dsRNA sensor in the interferon response, had minimal positive effects on RNAi activity in fibroblasts. Without high Dicer activity, RNAi can still occur when the initial Dicer cleavage of the substrate yields an efficient siRNA. Efficient mammalian RNAi may use substrates with some features of microRNA precursors, merging both pathways even more than previously suggested. Although optimized endogenous Dicer substrates mimicking miRNA features could evolve for endogenous regulations, the same principles would make antiviral RNAi inefficient as viruses would adapt to avoid efficacy.
Collapse
Affiliation(s)
- Tomas Demeter
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Michaela Vaskovicova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Radek Malik
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Filip Horvat
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.,Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Josef Pasulka
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Eliska Svobodova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Matyas Flemr
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
16
|
Muerdter F, Boryń ŁM, Woodfin AR, Neumayr C, Rath M, Zabidi MA, Pagani M, Haberle V, Kazmar T, Catarino RR, Schernhuber K, Arnold CD, Stark A. Resolving systematic errors in widely used enhancer activity assays in human cells. Nat Methods 2018; 15:141-149. [PMID: 29256496 PMCID: PMC5793997 DOI: 10.1038/nmeth.4534] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022]
Abstract
The identification of transcriptional enhancers in the human genome is a prime goal in biology. Enhancers are typically predicted via chromatin marks, yet their function is primarily assessed with plasmid-based reporter assays. Here, we show that such assays are rendered unreliable by two previously reported phenomena relating to plasmid transfection into human cells: (i) the bacterial plasmid origin of replication (ORI) functions as a conflicting core promoter and (ii) a type I interferon (IFN-I) response is activated. These cause confounding false positives and negatives in luciferase assays and STARR-seq screens. We overcome both problems by employing the ORI as core promoter and by inhibiting two IFN-I-inducing kinases, enabling genome-wide STARR-seq screens in human cells. In HeLa-S3 cells, we uncover strong enhancers, IFN-I-induced enhancers, and enhancers endogenously silenced at the chromatin level. Our findings apply to all episomal enhancer activity assays in mammalian cells and are key to the characterization of human enhancers.
Collapse
Affiliation(s)
- Felix Muerdter
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Łukasz M Boryń
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Ashley R Woodfin
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Christoph Neumayr
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Martina Rath
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Muhammad A Zabidi
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Michaela Pagani
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Vanja Haberle
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Tomáš Kazmar
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Rui R Catarino
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Katharina Schernhuber
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Cosmas D Arnold
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
- Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
17
|
Stepanenko AA, Heng HH. Transient and stable vector transfection: Pitfalls, off-target effects, artifacts. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:91-103. [DOI: 10.1016/j.mrrev.2017.05.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 05/09/2017] [Accepted: 05/13/2017] [Indexed: 12/15/2022]
|
18
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
19
|
Design, simplified cloning, and in-silico analysis of multisite small interfering RNA-targeting cassettes. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2016; 5:31-43. [PMID: 27844018 PMCID: PMC5019331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple gene silencing is being required to target and tangle metabolic pathways in eukaryotes and researchers have to develop a subtle method for construction of RNA interference (RNAi) cassettes. Although, several vectors have been developed due to different screening and cloning strategies but still some potential limitations remain to be dissolved. Here, we worked out a simple cloning strategy to develop multisite small interfering RNA (siRNA) cassette from different genes by two cloning steps. In this method, effective siRNA sites in the target messenger RNAs (mRNAs) were determined using in silico analysis and consecutively arranged to reduce length of inverted repeats. Here, we used one-step (polymerase chain reaction) PCR by designed long primer sets covering the selected siRNA sites. Rapid screening, cost-effective and shorten procedure are advantages of this method compare to PCR classic cloning. Validity of constructs was confirmed by optimal centroid secondary structures with high stability in plants.
Collapse
|