1
|
Zhu W, Qin L, Xu Y, Lu H, Wu Q, Li W, Zhang C, Li X. Three Molecular Modification Strategies to Improve the Thermostability of Xylanase XynA from Streptomyces rameus L2001. Foods 2023; 12:foods12040879. [PMID: 36832954 PMCID: PMC9957083 DOI: 10.3390/foods12040879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Glycoside hydrolase family 11 (GH11) xylanases are the preferred candidates for the production of functional oligosaccharides. However, the low thermostability of natural GH11 xylanases limits their industrial applications. In this study, we investigated the following three strategies to modify the thermostability of xylanase XynA from Streptomyces rameus L2001 mutation to reduce surface entropy, intramolecular disulfide bond construction, and molecular cyclization. Changes in the thermostability of XynA mutants were analyzed using molecular simulations. All mutants showed improved thermostability and catalytic efficiency compared with XynA, except for molecular cyclization. The residual activities of high-entropy amino acid-replacement mutants Q24A and K104A increased from 18.70% to more than 41.23% when kept at 65 °C for 30 min. The catalytic efficiencies of Q24A and K143A increased to 129.99 and 92.26 mL/s/mg, respectively, compared with XynA (62.97 mL/s/mg) when using beechwood xylan as the substrate. The mutant enzyme with disulfide bonds formed between Val3 and Thr30 increased the t1/260 °C by 13.33-fold and the catalytic efficiency by 1.80-fold compared with the wild-type XynA. The high thermostabilities and hydrolytic activities of XynA mutants will be useful for enzymatic production of functional xylo-oligosaccharides.
Collapse
Affiliation(s)
- Weijia Zhu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Liqin Qin
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Youqiang Xu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hongyun Lu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qiuhua Wu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Weiwei Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Chengnan Zhang
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xiuting Li
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Correspondence:
| |
Collapse
|
2
|
Zhang N, Jiang Y, Sun YJ, Jiang JC, Tong YJ. Breeding of a thermostable xylanase-producing strain of Myceliophthora thermophila by atmospheric room temperature plasma (ARTP) mutagenesis. Front Bioeng Biotechnol 2023; 10:1095323. [PMID: 36686237 PMCID: PMC9849395 DOI: 10.3389/fbioe.2022.1095323] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction: Hemicellulose is an important component in lignocellulose materials, which is second only to cellulose, accounting for 15%-35% of the dry weight of plants. In the current situation of energy shortage, making full use of lignocellulose materials to produce fuel ethanol has become an important way to solve the energy problem. Xylanase plays a crucial role in the utilization of hemicellulose. It is a necessary means to reduce the cost of hemicellulose utilization by improving the activity of xylanase. Moreover, most naturally xylanases are mesophilic enzymes, which limits their industrial application. Methods:In this study, Myceliophthora thermophila was used to produce xylanases and a thermostable mutant M 2103 was obtained by atmospheric room temperature plasma (ARTP) mutagenesis. The research work started with exploring the effects of ARTP mutagenesis on the antioxidase system [superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), polyphenol oxidase (PPO), and antioxidant capacity (AOC)] of M. thermophile, and found that superoxide dismutase activity increased by 221.13%, and polyphenol oxidase activity increased by 486.04% as compared with the original strain when the implantation time was 300 s. So as to determine the conditions for subsequent mutagenesis. Results and Discussion:For the mutant M 2103, the reaction temperature for xylanase production remained stable in the range of 70°C-85°C. Its optimum temperature was 75°C, which was 15°C higher than that of the original strain. And its xylanase activity increased by 21.71% as compared with the original strain. M 2103 displayed a significantly higher relative xylanase activity than the original strain in the acidic (pH 4.0-7.0) range, and the xylanase activity was relatively stable in the pH range of 6.0-8.5. These results provide an alternative biocatalyst for the production of xylooligosaccharide, and a potential usage of ARTP in the mutagenesis of thermostable mutant.
Collapse
Affiliation(s)
- Ning Zhang
- Key Lab of Biomass Energy and Material, Key Lab of Chemical Engineering of Forest Products, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, National Forestry and Grassland Administration, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Nanjing, Jiangsu, China,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Yue Jiang
- Key Lab of Biomass Energy and Material, Key Lab of Chemical Engineering of Forest Products, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, National Forestry and Grassland Administration, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Nanjing, Jiangsu, China,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Yun-Juan Sun
- Key Lab of Biomass Energy and Material, Key Lab of Chemical Engineering of Forest Products, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, National Forestry and Grassland Administration, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Nanjing, Jiangsu, China,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China,*Correspondence: Yun-Juan Sun, ; Jian-Chun Jiang,
| | - Jian-Chun Jiang
- Key Lab of Biomass Energy and Material, Key Lab of Chemical Engineering of Forest Products, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, National Forestry and Grassland Administration, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Nanjing, Jiangsu, China,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China,*Correspondence: Yun-Juan Sun, ; Jian-Chun Jiang,
| | - Ya-Juan Tong
- Key Lab of Biomass Energy and Material, Key Lab of Chemical Engineering of Forest Products, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, National Forestry and Grassland Administration, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Nanjing, Jiangsu, China,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
3
|
Effects of Site-Directed Mutations on the Communicability between Local Segments and Binding Pocket Distortion of Engineered GH11 Xylanases Visualized through Network Topology Analysis. Catalysts 2022. [DOI: 10.3390/catal12101165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mutations occurred within the binding pocket of enzymes directly modified the interaction network between an enzyme and its substrate. However, some mutations affecting the catalytic efficiency occurred far from the binding pocket and the explanation regarding mechanisms underlying the transmission of the mechanical signal from the mutated site to the binding pocket was lacking. In this study, network topology analysis was used to characterize and visualize the changes of interaction networks caused by site-directed mutations on a GH11 xylanase from our previous study. For each structure, coordinates from molecular dynamics (MD) trajectory were obtained to create networks of representative atoms from all protein and xylooligosaccharide substrate residues, in which edges were defined between pairs of residues within a cutoff distance. Then, communicability matrices were extracted from the network to provide information on the mechanical signal transmission from the number of possible paths between any residue pairs or local protein segments. The analysis of subgraph centrality and communicability clearly showed that site-direct mutagenesis at non-reducing or reducing ends caused binding pocket distortion close to the opposite ends and created denser interaction networks. However, site-direct mutagenesis at both ends cancelled the binding pocket distortion, while enhancing the thermostability. Therefore, the network topology analysis tool on the atomistic simulations of engineered proteins could play some roles in protein design for the minimization to the correction of binding pocket tilting, which could affect the functionality and efficacy of enzymes.
Collapse
|
4
|
Gu X, Zhao L, Tan J, Zhang Q, Fu L, Li J. Characterization of a novel β-agarase from Antarctic macroalgae-associated bacteria metagenomic library and anti-inflammatory activity of the enzymatic hydrolysates. Front Microbiol 2022; 13:972272. [PMID: 36118221 PMCID: PMC9478344 DOI: 10.3389/fmicb.2022.972272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
An agarase gene (aga1904) that codes a protein with 640 amino acids was obtained from the metagenomic library of macroalgae-associated bacteria collected from King George Island, Antarctica. Gene aga1904 was expressed in Escherichia coli BL21 (DE3) and recombinant Aga1904 was purified by His Bind Purification kit. The optimal temperature and pH for the activity of Aga1904 were 50°C and 6.0, respectively. Fe3+ and Cu2+ significantly inhibited the activity of Aga1904. The Vmax and Km values of recombinant Aga1904 were 108.70 mg/ml min and 6.51 mg/ml, respectively. The degradation products of Aga1904 against agarose substrate were mainly neoagarobiose, neoagarotetraose, and neoagarohexaose analyzed by thin layer chromatography. The cellular immunoassay of enzymatic hydrolysates was subsequently carried out, and the results showed that agaro-oligosaccharides dominated by neoagarobiose significantly inhibited key pro-inflammatory markers including, nitric oxide (NO), interleukins 6 (IL-6), and tumor necrosis factor α (TNF-α). This work provides a promising candidate for development recombinant industrial enzyme to prepare agaro-oligosaccharides, and paved up a new path for the exploitation of natural anti-inflammatory agent in the future.
Collapse
Affiliation(s)
- Xiaoqian Gu
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Luying Zhao
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Jiaojiao Tan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Qian Zhang
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Liping Fu
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Jiang Li
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- *Correspondence: Jiang Li,
| |
Collapse
|
5
|
Chen H, Ma L, Dai H, Fu Y, Wang H, Zhang Y. Advances in Rational Protein Engineering toward Functional Architectures and Their Applications in Food Science. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4522-4533. [PMID: 35353517 DOI: 10.1021/acs.jafc.2c00232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein biomolecules including enzymes, cagelike proteins, and specific peptides have been continuously exploited as functional biomaterials applied in catalysis, nutrient delivery, and food preservation in food-related areas. However, natural proteins usually function well in physiological conditions, not industrial conditions, or may possess undesirable physical and chemical properties. Currently, rational protein design as a valuable technology has attracted extensive attention for the rational engineering or fabrication of ideal protein biomaterials with novel properties and functionality. This article starts with the underlying knowledge of protein folding and assembly and is followed by the introduction of the principles and strategies for rational protein design. Basic strategies for rational protein engineering involving experienced protein tailoring, computational prediction, computation redesign, and de novo protein design are summarized. Then, we focus on the recent progress of rational protein engineering or design in the application of food science, and a comprehensive summary ranging from enzyme manufacturing to cagelike protein nanocarriers engineering and antimicrobial peptides preparation is given. Overall, this review highlights the importance of rational protein engineering in food biomaterial preparation which could be beneficial for food science.
Collapse
Affiliation(s)
- Hai Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Dullah S, Hazarika DJ, Parveen A, Kakoti M, Borgohain T, Gautom T, Bhattacharyya A, Barooah M, Boro RC. Fungal interactions induce changes in hyphal morphology and enzyme production. Mycology 2021; 12:279-295. [PMID: 34900382 PMCID: PMC8654418 DOI: 10.1080/21501203.2021.1932627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In nature, species interacts/competes with one other within their surrounding for food and space and the type of interactions are unique to each species. The interacting partners secrete different metabolites, which may have high importance in human welfare. Fungal-fungal interactions are complex mechanisms that need better understanding. Here, 14 fungal isolates were facilitated in 105 possible combinations to interact on potato dextrose agar. Morphologically, no changes were observed when the same fungal isolates were allowed to interact within them. However, 10 interactions between different fungal isolates showed mutual replacement with each fungus; capturing territory from the other. Contrastingly, 35 interactions resulted into complete replacement as one of the fungi was inhibited by rapid growth of the other fungus. In 46 interactions, formation of barrage was observed leading to deadlock type of interaction wherein both fungi have restricted growth. To study in details about the barrage formation, two fungal interactions were taken (i) T. coccinea vs. L. lactinea and (ii) T. coccinea vs. T. versicolor. Microscopic changes in the hyphal growth during interaction were observed. There was significant increase in the enzymatic activities including cellulase, xylanase and chitinase during in-vitro fungal-fungal interaction, suggesting the importance of such interactions for commercial enzyme production.
Collapse
Affiliation(s)
- Samim Dullah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Dibya Jyoti Hazarika
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Assma Parveen
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Merilin Kakoti
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Tanushree Borgohain
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Trishnamoni Gautom
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India.,Royal School of Bio-Sciences, Royal Global University, Guwahati, India
| | - Ashok Bhattacharyya
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Robin Chandra Boro
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| |
Collapse
|
7
|
Bhat SK, Purushothaman K, Kini KR, Gopala Rao Appu Rao AR. Design of mutants of GH11 xylanase from Bacillus pumilus for enhanced stability by amino acid substitutions in the N-terminal region: an in silico analysis. J Biomol Struct Dyn 2021; 40:7666-7679. [PMID: 33749523 DOI: 10.1080/07391102.2021.1899988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
GH11 xylanases are versatile small-molecular-weight single-polypeptide chain monofunctional enzymes. This family of glycoside hydrolases has important applications in food, feed and chemical industries. We designed mutants for improved thermal stability with substitutions in the first six residues of the N-terminal region and evaluated the stability in silico. The first six residues RTITNN of native xylanase have been mutated accordingly to introduce β structure, increase hydrophobic clusters and enhance conformational rigidity in the molecule. To design stable mutants, the approach consisted of constructing root mean square fluctuation (RMSF) plots of both mesophilic and thermophilic xylanases to check the localized backbone displacement maxima, identify the hydrophobic interaction cluster in and around the peaks of interest, construct mutants by substituting appropriate residues based on beta propensity, hydrophobicity, side chain occupancy and conformational rigidity. This resulted in the decreased number of possible substitutions from 19 to 6 residues. Introduction of conformational rigidity by substitution of asparagine residues at 5th and 6th residue position with proline and valine enhanced the stability. Deletion of N-terminal region increased the stability probably by reducing entropic factors. The structure and stability of GH11 xylanase and resultant mutants were analyzed by root mean square deviation, RMSF, radius of gyration and solvent accessible surface area analysis. The stability of the mutants followed the order N-del > Y1P5 >Y1V5 > ATRLM. The contribution of N-terminal end to overall stability of the molecule is significant because of the proximity of the C-terminal end to the N-terminal end which reinforces long-range interactions. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - K Ramachandra Kini
- Department of Studies in Biotechnology, University of Mysore, Manasagangothri, Mysuru, Karnataka, India
| | | |
Collapse
|
8
|
Effects of the outer-cleft aromatic ring deletion on the resistivity of a GH11 xylanase to the lignin-like monolignol aggregates. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Xiong K, Hou J, Jiang Y, Li X, Teng C, Li Q, Fan G, Yang R, Zhang C. Mutagenesis of N-terminal residues confer thermostability on a Penicillium janthinellum MA21601 xylanase. BMC Biotechnol 2019; 19:51. [PMID: 31345213 PMCID: PMC6659274 DOI: 10.1186/s12896-019-0541-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A mesophilic xylanase PjxA from Penicillium janthinellum MA21601 has high specific activity under acidic condition and holds great potential for applications in the animal feed industry. To enhance the thermostability of xylanase PjxA, two mutation strategies in the N-terminal region were examined and then integrated into the xylanase to further improvement. The recombinant xylanase PTxA-DB (The meaning of DB is disulfide-bridge.) was constructed by replacement of five residues in the mutated region in TfxA (T10Y, N11H, N12D, Y15F, N30 L), combined with an additional disulfide bridge in the N-terminal region. RESULTS The Tm value of mutant PTxA-DB was improved from 21.3 °C to 76.6 °C, and its half-life was found to be 53.6 min at 60 °C, 107-fold higher than the wild type strain. The location of the disulfide bridge (T2C-T29C) was between the irregular loop and the β-strand A2, accounting for most of the improvement in thermostability of PjxA. Further analysis indicated T2C, T29C, N30 L and Y15F lead to increase N-terminal hydrophobicity. Moreover, the specific activity and substrate affinity of PTxA-DB were also enhanced under the acidic pH values. CONCLUSIONS These results indicated PTxA-DB could be a prospective additive to industrial animal feeds.
Collapse
Affiliation(s)
- Ke Xiong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No 11 Fucheng Street, Haidian District, Beijing, 100084, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, No 11 Fucheng Street, Haidian District, Beijing, 100084, China.,Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, No 11 Fucheng Street, Haidian District, Beijing, 100084, China
| | - Jie Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No 11 Fucheng Street, Haidian District, Beijing, 100084, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, No 11 Fucheng Street, Haidian District, Beijing, 100084, China
| | - Yuefeng Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No 11 Fucheng Street, Haidian District, Beijing, 100084, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, No 11 Fucheng Street, Haidian District, Beijing, 100084, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No 11 Fucheng Street, Haidian District, Beijing, 100084, China. .,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, No 11 Fucheng Street, Haidian District, Beijing, 100084, China. .,Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, No 11 Fucheng Street, Haidian District, Beijing, 100084, China.
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No 11 Fucheng Street, Haidian District, Beijing, 100084, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, No 11 Fucheng Street, Haidian District, Beijing, 100084, China
| | - Qin Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No 11 Fucheng Street, Haidian District, Beijing, 100084, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, No 11 Fucheng Street, Haidian District, Beijing, 100084, China
| | - Guangsen Fan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No 11 Fucheng Street, Haidian District, Beijing, 100084, China.,School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Ran Yang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, No 11 Fucheng Street, Haidian District, Beijing, 100084, China.,Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, No 11 Fucheng Street, Haidian District, Beijing, 100084, China.,School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Chengnan Zhang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, No 11 Fucheng Street, Haidian District, Beijing, 100084, China.,Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, No 11 Fucheng Street, Haidian District, Beijing, 100084, China.,School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
10
|
Engineering improved thermostability of the GH11 xylanase from Neocallimastix patriciarum via computational library design. Appl Microbiol Biotechnol 2018; 102:3675-3685. [DOI: 10.1007/s00253-018-8872-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/26/2022]
|
11
|
Thermostability improvement of a Talaromyces leycettanus xylanase by rational protein engineering. Sci Rep 2017; 7:15287. [PMID: 29127292 PMCID: PMC5681632 DOI: 10.1038/s41598-017-12659-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/18/2017] [Indexed: 11/19/2022] Open
Abstract
Thermophilic xylanases with high catalytic efficiency are of great interest in the biofuel, food and feed industries. This study identified a GH11 xylanase gene, Tlxyn11B, in Talaromyces leycettanus JCM12802. Recombinant TlXyn11B produced in Pichia pastoris is distinguished by high specific activity (8259 ± 32 U/mg with beechwood xylan as substrate) and excellent pH stability (from 1.0 to 10.5). The beechwood xylan hydrolysates consisted mainly of xylobiose, xylotriose and xylotetraose, thus TlXyn11B could be used for the production of prebiotic xylooligosaccharide. By using the structure-based rational approach, the N-terminal sequence of TlXyn11B was modified for thermostability improvement. Mutants S3F and S3F/D35V/I/Q/M had elevated Tm values of 60.01 to 67.84 °C, with S3F/D35I the greatest. Homology modeling and molecular dynamics (MD) simulation analysis revealed that the substituted F3 and I35 formed a sandwich structure with S45 and T47, which may enhance the overall structure rigidity with lowered RMSD values. This study verifies the efficiency of rational approach in thermostability improvement and provides a xylanase candidate of GH11 with great commercialization potential.
Collapse
|
12
|
Site-directed mutagenesis of GH10 xylanase A from Penicillium canescens for determining factors affecting the enzyme thermostability. Int J Biol Macromol 2017. [DOI: 10.1016/j.ijbiomac.2017.06.079] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Xu X, Liu MQ, Huo WK, Dai XJ. Obtaining a mutant of Bacillus amyloliquefaciens xylanase A with improved catalytic activity by directed evolution. Enzyme Microb Technol 2016; 86:59-66. [DOI: 10.1016/j.enzmictec.2016.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/03/2016] [Accepted: 02/07/2016] [Indexed: 12/29/2022]
|
14
|
Kumar V, Marín-Navarro J, Shukla P. Thermostable microbial xylanases for pulp and paper industries: trends, applications and further perspectives. World J Microbiol Biotechnol 2016; 32:34. [PMID: 26754672 DOI: 10.1007/s11274-015-2005-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
Abstract
Xylanases are enzymes with biotechnological relevance in a number of fields, including food, feed, biofuel, and textile industries. Their most significant application is in the paper and pulp industry, where they are used as a biobleaching agent, showing clear economic and environmental advantages over chemical alternatives. Since this process requires high temperatures and alkali media, the identification of thermostable and alkali stable xylanases represents a major biotechnological goal in this field. Moreover, thermostability is a desirable property for many other applications of xylanases. The review makes an overview of xylanase producing microorganisms and their current implementation in paper biobleaching. Future perspectives are analyzed focusing in the efforts carried out to generate thermostable enzymes by means of modern biotechnological tools, including metagenomic analysis, enzyme molecular engineering and nanotechnology. Furthermore, structural and mutagenesis studies have revealed critical sites for stability of xylanases from glycoside hydrolase families GH10 and GH11, which constitute the main classes of these enzymes. The overall conclusions of these works are summarized here and provide relevant information about putative weak spots within xylanase structures to be targeted in future protein engineering approaches.
Collapse
Affiliation(s)
- Vishal Kumar
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Julia Marín-Navarro
- Instituto de Agroquímica y Tecnología de Alimentos, C.S.I.C., Av. Catedrático Agustín Escardino, 7, E6980, Paterna, Valencia, Spain
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
15
|
Fungal Biotechnology for Industrial Enzyme Production: Focus on (Hemi)cellulase Production Strategies, Advances and Challenges. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Enhancement of the thermostability of Streptomyces kathirae SC-1 tyrosinase by rational design and empirical mutation. Enzyme Microb Technol 2015; 77:54-60. [DOI: 10.1016/j.enzmictec.2015.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/20/2015] [Accepted: 06/08/2015] [Indexed: 11/17/2022]
|
17
|
Effect of Temperature on Xylanase II from Trichoderma reesei QM 9414: A Calorimetric, Catalytic, and Conformational Study. Enzyme Res 2014; 2014:708676. [PMID: 25276420 PMCID: PMC4170777 DOI: 10.1155/2014/708676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 11/17/2022] Open
Abstract
The secondary structure of xylanase II from Trichoderma reesei is lost in an apparent irreversible cooperative process as temperature is increased with a midpoint transition of 58.8 ± 0.1°C. The shift of the spectral centre of mass above 50°C is also apparently cooperative with midpoint transition of 56.3 ± 0.2°C, but the existence of two isofluorescent points in the fluorescence emission spectra suggests a non-two-state process. Further corroboration comes from differential scanning calorimetry experiments. At protein concentrations ≤0.56 mg·mL−1 the calorimetric transition is reversible and the data were fitted to a non-two-state model and deconvoluted into six transitions, whereas at concentrations greater than 0.56 mg·mL−1 the calorimetric transition is irreversible with an exothermic contribution to the thermogram. The apparent Tm increased linearly with the scan rate according to first order inactivation kinetics. The effect of additives on the calorimetric transition of xylanase is dependent on their nature. The addition of sorbitol transforms reversible transitions into irreversible transitions while stabilizing the protein as the apparent Tm increases linearly with sorbitol concentration. d-Glucono-1,5-lactone, a noncompetitive inhibitor in xylanase kinetics, and soluble xylan change irreversible processes into reversible processes at high protein concentration.
Collapse
|