1
|
Aqeel A, Akram A, Ali M, Iqbal M, Aslam M, Rukhma, Shah FI. Mechanistic insights into impaired β-oxidation and its role in mitochondrial dysfunction: A comprehensive review. Diabetes Res Clin Pract 2025; 223:112129. [PMID: 40132731 DOI: 10.1016/j.diabres.2025.112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/16/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Mitochondria, also known as the powerhouse of cells, have an important role in cellular metabolism and energy production. However, during Mitochondrial Dysfunction (MD), it is known to generate reactive oxidative species and induce cellular apoptosis. A number of research findings have linked MD to various diseases, highlighting its critical role in maintaining health and contributing to disease development. In this regard, recent research has revealed that disruptions in lipid metabolism, especially in fatty acid oxidation, are significant contributors to MD. However, the precise mechanisms by which these defects lead to disease remain poorly understood. This review explores how disruptions in lipid metabolism are responsible for triggering oxidative stress, inflammation, and cellular damage, leading to impaired mitochondrial function. By examining specific fatty acid oxidation disorders, such as carnitine palmitoyltransferase deficiency, medium-chain acyl-CoA dehydrogenase deficiency, and very long-chain acyl-CoA dehydrogenase deficiency, this review aims to uncover the underlying molecular pathways connecting lipid metabolism to mitochondrial dysfunction. Furthermore, MD is a common underlying mechanism in a wide array of diseases, including neurodegenerative disorders and metabolic syndromes. Understanding the mechanisms behind mitochondrial malfunction may aid in the development of tailored therapies to restore mitochondrial health and treat intricate health conditions.
Collapse
Affiliation(s)
- Amna Aqeel
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University Lahore, Pakistan; University Institute of Medical Lab Technology, the University of Lahore, Pakistan.
| | - Areeba Akram
- Department of Biotechnology, Lahore College for Women University, Pakistan
| | - Minahil Ali
- Department of Biotechnology, Lahore College for Women University, Pakistan
| | - Maryam Iqbal
- Department of Biotechnology, Lahore College for Women University, Pakistan
| | - Mehral Aslam
- Department of Nutrition and Health Promotion, University of Home Economics Lahore, Pakistan
| | - Rukhma
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University Lahore, Pakistan
| | - Fatima Iftikhar Shah
- University Institute of Medical Lab Technology, the University of Lahore, Pakistan
| |
Collapse
|
2
|
Wan C, Yang H, Chen Y, Li Y, Cao Y, Zhang H, Duan X, Ge J, Tao J, Wang Q, Dang P, Feng B, Gao J. Insights into starch synthesis and amino acid composition of common buckwheat in response to phosphate fertilizer management strategies. Int J Biol Macromol 2024; 275:133587. [PMID: 38960252 DOI: 10.1016/j.ijbiomac.2024.133587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
To investigate the response and the regulatory mechanism of common buckwheat starch, amylose, and amylopectin biosynthesis to P management strategies, field experiments were conducted in 2021 and 2022 using three phosphorus (P) levels. Results revealed that the application of 75 kg hm-2 phosphate fertilizer significantly enhanced amylopectin and total starch content in common buckwheat, leading to improved grain weight and starch yield, and decreased starch granule size. The number of upregulated differentially expressed proteins induced by phosphate fertilizer increased with the application rate, with 56 proteins identified as shared differential proteins between different P levels, primarily associated with carbohydrate and amino acid metabolism. Phosphate fertilizer inhibited amylose synthesis by downregulating granule-bound starch synthase protein expression and promoted amylopectin accumulation by upregulating 1,4-alpha-glucan branching enzyme and starch synthase proteins expression. Additionally, Phosphate fertilizer primarily promoted the accumulation of hydrophobic and essential amino acids. These findings elucidate the mechanism of P-induced starch accumulation and offer insights into phosphate fertilizer management and high-quality cultivation of common buckwheat.
Collapse
Affiliation(s)
- Chenxi Wan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China.
| | - Hao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Youxiu Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Yaxin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Yuchen Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Haokuan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Xuyang Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Jiahao Ge
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Jincai Tao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Qi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Pengfei Dang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China.
| | - Jinfeng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
3
|
Barroso M, Gertzen M, Puchwein-Schwepcke AF, Preisler H, Sturm A, Reiss DD, Danecka MK, Muntau AC, Gersting SW. Glutaryl-CoA Dehydrogenase Misfolding in Glutaric Acidemia Type 1. Int J Mol Sci 2023; 24:13158. [PMID: 37685964 PMCID: PMC10487539 DOI: 10.3390/ijms241713158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Glutaric acidemia type 1 (GA1) is a neurotoxic metabolic disorder due to glutaryl-CoA dehydrogenase (GCDH) deficiency. The high number of missense variants associated with the disease and their impact on GCDH activity suggest that disturbed protein conformation can affect the biochemical phenotype. We aimed to elucidate the molecular basis of protein loss of function in GA1 by performing a parallel analysis in a large panel of GCDH missense variants using different biochemical and biophysical methodologies. Thirteen GCDH variants were investigated in regard to protein stability, hydrophobicity, oligomerization, aggregation, and activity. An altered oligomerization, loss of protein stability and solubility, as well as an augmented susceptibility to aggregation were observed. GA1 variants led to a loss of enzymatic activity, particularly when present at the N-terminal domain. The reduced cellular activity was associated with loss of tetramerization. Our results also suggest a correlation between variant sequence location and cellular protein stability (p < 0.05), with a more pronounced loss of protein observed with variant proximity to the N-terminus. The broad panel of variant-mediated conformational changes of the GCDH protein supports the classification of GA1 as a protein-misfolding disorder. This work supports research toward new therapeutic strategies that target this molecular disease phenotype.
Collapse
Affiliation(s)
- Madalena Barroso
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (M.K.D.); (A.C.M.)
| | - Marcus Gertzen
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; (M.G.); (A.F.P.-S.); (H.P.); (A.S.); (D.D.R.)
- Psychiatry and Psychotherapy, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany
| | - Alexandra F. Puchwein-Schwepcke
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; (M.G.); (A.F.P.-S.); (H.P.); (A.S.); (D.D.R.)
- Department of Pediatric Neurology and Developmental Medicine, University of Basel Children’s Hospital, 4056 Basel, Switzerland
| | - Heike Preisler
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; (M.G.); (A.F.P.-S.); (H.P.); (A.S.); (D.D.R.)
| | - Andreas Sturm
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; (M.G.); (A.F.P.-S.); (H.P.); (A.S.); (D.D.R.)
| | - Dunja D. Reiss
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; (M.G.); (A.F.P.-S.); (H.P.); (A.S.); (D.D.R.)
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 81377 Munich, Germany
| | - Marta K. Danecka
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (M.K.D.); (A.C.M.)
| | - Ania C. Muntau
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (M.K.D.); (A.C.M.)
- University Children’s Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Søren W. Gersting
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (M.K.D.); (A.C.M.)
| |
Collapse
|
4
|
A dimer-monomer switch controls CHIP-dependent substrate ubiquitylation and processing. Mol Cell 2022; 82:3239-3254.e11. [PMID: 36027913 DOI: 10.1016/j.molcel.2022.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 02/09/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
Abstract
The high substrate selectivity of the ubiquitin/proteasome system is mediated by a large group of E3 ubiquitin ligases. The ubiquitin ligase CHIP regulates the degradation of chaperone-controlled and chaperone-independent proteins. To understand how CHIP mediates substrate selection and processing, we performed a structure-function analysis of CHIP and addressed its physiological role in Caenorhabditis elegans and human cells. The conserved function of CHIP in chaperone-assisted degradation requires dimer formation to mediate proteotoxic stress resistance and to prevent protein aggregation. The CHIP monomer, however, promotes the turnover of the membrane-bound insulin receptor and longevity. The dimer-monomer transition is regulated by CHIP autoubiquitylation and chaperone binding, which provides a feedback loop that controls CHIP activity in response to cellular stress. Because CHIP also binds other E3 ligases, such as Parkin, the molecular switch mechanism described here could be a general concept for the regulation of substrate selectivity and ubiquitylation by combining different E3s.
Collapse
|
5
|
Leandro J, Dodatko T, Aten J, Nemeria NS, Zhang X, Jordan F, Hendrickson RC, Sanchez R, Yu C, DeVita RJ, Houten SM. DHTKD1 and OGDH display substrate overlap in cultured cells and form a hybrid 2-oxo acid dehydrogenase complex in vivo. Hum Mol Genet 2021; 29:1168-1179. [PMID: 32160276 DOI: 10.1093/hmg/ddaa037] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 11/14/2022] Open
Abstract
Glutaric aciduria type 1 (GA1) is an inborn error of lysine degradation characterized by a specific encephalopathy that is caused by toxic accumulation of lysine degradation intermediates. Substrate reduction through inhibition of DHTKD1, an enzyme upstream of the defective glutaryl-CoA dehydrogenase, has been investigated as a potential therapy, but revealed the existence of an alternative enzymatic source of glutaryl-CoA. Here, we show that loss of DHTKD1 in glutaryl-CoA dehydrogenase-deficient HEK-293 cells leads to a 2-fold decrease in the established GA1 clinical biomarker glutarylcarnitine and demonstrate that oxoglutarate dehydrogenase (OGDH) is responsible for this remaining glutarylcarnitine production. We furthermore show that DHTKD1 interacts with OGDH, dihydrolipoyl succinyltransferase and dihydrolipoamide dehydrogenase to form a hybrid 2-oxoglutaric and 2-oxoadipic acid dehydrogenase complex. In summary, 2-oxoadipic acid is a substrate for DHTKD1, but also for OGDH in a cell model system. The classical 2-oxoglutaric dehydrogenase complex can exist as a previously undiscovered hybrid containing DHTKD1 displaying improved kinetics towards 2-oxoadipic acid.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jan Aten
- Department of Pathology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, 1105 AZ The Netherlands
| | - Natalia S Nemeria
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Xu Zhang
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Ronald C Hendrickson
- Microchemistry and Proteomics Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Roberto Sanchez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Mount Sinai Genomics, Inc., Stamford, CT 06902, USA
| | - Robert J DeVita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
6
|
Nemeria NS, Zhang X, Leandro J, Zhou J, Yang L, Houten SM, Jordan F. Toward an Understanding of the Structural and Mechanistic Aspects of Protein-Protein Interactions in 2-Oxoacid Dehydrogenase Complexes. Life (Basel) 2021; 11:407. [PMID: 33946784 PMCID: PMC8146983 DOI: 10.3390/life11050407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
The 2-oxoglutarate dehydrogenase complex (OGDHc) is a key enzyme in the tricarboxylic acid (TCA) cycle and represents one of the major regulators of mitochondrial metabolism through NADH and reactive oxygen species levels. The OGDHc impacts cell metabolic and cell signaling pathways through the coupling of 2-oxoglutarate metabolism to gene transcription related to tumor cell proliferation and aging. DHTKD1 is a gene encoding 2-oxoadipate dehydrogenase (E1a), which functions in the L-lysine degradation pathway. The potentially damaging variants in DHTKD1 have been associated to the (neuro) pathogenesis of several diseases. Evidence was obtained for the formation of a hybrid complex between the OGDHc and E1a, suggesting a potential cross talk between the two metabolic pathways and raising fundamental questions about their assembly. Here we reviewed the recent findings and advances in understanding of protein-protein interactions in OGDHc and 2-oxoadipate dehydrogenase complex (OADHc), an understanding that will create a scaffold to help design approaches to mitigate the effects of diseases associated with dysfunction of the TCA cycle or lysine degradation. A combination of biochemical, biophysical and structural approaches such as chemical cross-linking MS and cryo-EM appears particularly promising to provide vital information for the assembly of 2-oxoacid dehydrogenase complexes, their function and regulation.
Collapse
Affiliation(s)
- Natalia S. Nemeria
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Xu Zhang
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Joao Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.L.); (S.M.H.)
| | - Jieyu Zhou
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Luying Yang
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Sander M. Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.L.); (S.M.H.)
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| |
Collapse
|
7
|
Buffet A, Zhang J, Rebel H, Corssmit EPM, Jansen JC, Hensen EF, Bovée JVMG, Morini A, Gimenez-Roqueplo AP, Hes FJ, Devilee P, Favier J, Bayley JP. Germline DLST Variants Promote Epigenetic Modifications in Pheochromocytoma-Paraganglioma. J Clin Endocrinol Metab 2021; 106:459-471. [PMID: 33180916 DOI: 10.1210/clinem/dgaa819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Indexed: 02/02/2023]
Abstract
CONTEXT Pheochromocytomas and paragangliomas (PPGLs) are neuroendocrine tumors in which altered central metabolism appears to be a major driver of tumorigenesis, and many PPGL genes encode proteins involved in the tricarboxylic acid (TCA) cycle. OBJECTIVE/DESIGN While about 40% of PPGL cases carry a variant in a known gene, many cases remain unexplained. In patients with unexplained PPGL showing clear evidence of a familial burden or multiple tumors, we aimed to identify causative factors using genetic analysis of patient DNA and functional analyses of identified DNA variants in patient tumor material and engineered cell lines. PATIENTS AND SETTING Patients with a likely familial cancer burden of pheochromocytomas and/or paragangliomas and under investigation in a clinical genetic and clinical research setting in university hospitals. RESULTS While investigating unexplained PPGL cases, we identified a novel variant, c.1151C>T, p.(Pro384Leu), in exon 14 of the gene encoding dihydrolipoamide S-succinyltransferase (DLST), a component of the multi-enzyme complex 2-oxoglutarate dehydrogenase. Targeted sequence analysis of further unexplained cases identified a patient carrying a tumor with compound heterozygous variants in DLST, consisting of a germline variant, c.1121G>A, p.(Gly374Glu), together with a somatic missense variant identified in tumor DNA, c.1147A>G, p.(Thr383Ala), both located in exon 14. Using a range of in silico and functional assays we show that these variants are predicted to be pathogenic, profoundly impact enzyme activity, and result in DNA hypermethylation. CONCLUSIONS The identification and functional analysis of these DLST variants further validates DLST as an additional PPGL gene involved in the TCA cycle.
Collapse
Affiliation(s)
- Alexandre Buffet
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015 Paris, France
- Genetic department, Adrenal Referral Center, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Juan Zhang
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Heggert Rebel
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Eleonora P M Corssmit
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Jeroen C Jansen
- Department of Otorhinolaryngology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Erik F Hensen
- Department of Otorhinolaryngology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Aurélien Morini
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Département d'anatomo-pathologie, F-75015 Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015 Paris, France
- Genetic department, Adrenal Referral Center, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Frederik J Hes
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
- Department of Pathology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Judith Favier
- Genetic department, Adrenal Referral Center, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Jean-Pierre Bayley
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
8
|
Schmiesing J, Storch S, Dörfler AC, Schweizer M, Makrypidi-Fraune G, Thelen M, Sylvester M, Gieselmann V, Meyer-Schwesinger C, Koch-Nolte F, Tidow H, Mühlhausen C, Waheed A, Sly WS, Braulke T. Disease-Linked Glutarylation Impairs Function and Interactions of Mitochondrial Proteins and Contributes to Mitochondrial Heterogeneity. Cell Rep 2019; 24:2946-2956. [PMID: 30208319 DOI: 10.1016/j.celrep.2018.08.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/20/2018] [Accepted: 08/06/2018] [Indexed: 01/13/2023] Open
Abstract
Lysine glutarylation (Kglu) of mitochondrial proteins is associated with glutaryl-CoA dehydrogenase (GCDH) deficiency, which impairs lysine/tryptophan degradation and causes destruction of striatal neurons during catabolic crisis with subsequent movement disability. By investigating the role of Kglu modifications in this disease, we compared the brain and liver glutarylomes of Gcdh-deficient mice. In the brain, we identified 73 Kglu sites on 37 mitochondrial proteins involved in various metabolic degradation pathways. Ultrastructural immunogold studies indicated that glutarylated proteins are heterogeneously distributed in mitochondria, which are exclusively localized in glial cells. In liver cells, all mitochondria contain Kglu-modified proteins. Glutarylation reduces the catalytic activities of the most abundant glutamate dehydrogenase (GDH) and the brain-specific carbonic anhydrase 5b and interferes with GDH-protein interactions. We propose that Kglu contributes to the functional heterogeneity of mitochondria and may metabolically adapt glial cells to the activity and metabolic demands of neighboring GCDH-deficient neurons.
Collapse
Affiliation(s)
- Jessica Schmiesing
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stephan Storch
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ann-Cathrin Dörfler
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michaela Schweizer
- Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Georgia Makrypidi-Fraune
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Melanie Thelen
- Institute of Biochemistry and Molecular Biology, University of Bonn, 53115 Bonn, Germany
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology, University of Bonn, 53115 Bonn, Germany
| | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular Biology, University of Bonn, 53115 Bonn, Germany
| | - Catherine Meyer-Schwesinger
- Department of Internal Medicine III, Nephrology and Rheumatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Henning Tidow
- The Hamburg Center for Ultrafast Imaging & Department Chemistry, University Hamburg, 20146 Hamburg, Germany
| | - Chris Mühlhausen
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Abdul Waheed
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - William S Sly
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Thomas Braulke
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
9
|
Rotelli MD, Bolling AM, Killion AW, Weinberg AJ, Dixon MJ, Calvi BR. An RNAi Screen for Genes Required for Growth of Drosophila Wing Tissue. G3 (BETHESDA, MD.) 2019; 9:3087-3100. [PMID: 31387856 PMCID: PMC6778782 DOI: 10.1534/g3.119.400581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/31/2019] [Indexed: 12/23/2022]
Abstract
Cell division and tissue growth must be coordinated with development. Defects in these processes are the basis for a number of diseases, including developmental malformations and cancer. We have conducted an unbiased RNAi screen for genes that are required for growth in the Drosophila wing, using GAL4-inducible short hairpin RNA (shRNA) fly strains made by the Drosophila RNAi Screening Center. shRNA expression down the center of the larval wing disc using dpp-GAL4, and the central region of the adult wing was then scored for tissue growth and wing hair morphology. Out of 4,753 shRNA crosses that survived to adulthood, 18 had impaired wing growth. FlyBase and the new Alliance of Genome Resources knowledgebases were used to determine the known or predicted functions of these genes and the association of their human orthologs with disease. The function of eight of the genes identified has not been previously defined in Drosophila The genes identified included those with known or predicted functions in cell cycle, chromosome segregation, morphogenesis, metabolism, steroid processing, transcription, and translation. All but one of the genes are similar to those in humans, and many are associated with disease. Knockdown of lin-52, a subunit of the Myb-MuvB transcription factor, or βNACtes6, a gene involved in protein folding and trafficking, resulted in a switch from cell proliferation to an endoreplication growth program through which wing tissue grew by an increase in cell size (hypertrophy). It is anticipated that further analysis of the genes that we have identified will reveal new mechanisms that regulate tissue growth during development.
Collapse
Affiliation(s)
- Michael D Rotelli
- Department of Biology, Indiana University, Bloomington, IN 47405 and
| | - Anna M Bolling
- Department of Biology, Indiana University, Bloomington, IN 47405 and
| | - Andrew W Killion
- Department of Biology, Indiana University, Bloomington, IN 47405 and
| | | | - Michael J Dixon
- Department of Biology, Indiana University, Bloomington, IN 47405 and
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405 and
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN 46202
| |
Collapse
|
10
|
Shadmehri AA, Fattahi N, Pourreza MR, Koohiyan M, Zarifi S, Darbouy M, Sharifi R, Tavakkoly Bazzaz J, Tabatabaiefar MA. Molecular genetic study of glutaric aciduria, type I: Identification of a novel mutation. J Cell Biochem 2018; 120:3367-3372. [PMID: 30203563 DOI: 10.1002/jcb.27607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 08/07/2018] [Indexed: 11/11/2022]
Abstract
Glutaric acidemia type I (GA-1) is an inborn error of metabolism due to deficiency of glutaryl-CoA dehydrogenase (GCDH), which catalyzes the conversion of glutaryl-CoA to crotonyl-CoA. GA-1 occurs in about 1 in 100 000 infants worldwide. The GCDH gene is on human chromosome 19p13.2, spans about 7 kb and comprises 11 exons and 10 introns. Tandem mass spectrometry (MS/MS) was used for clinical diagnosis in a proband from Iran with GA-1. Sanger sequencing was performed using primers specific for coding exons and exon-intron flanking regions of the GCDH gene in the proband. Cosegregation analysis and in silico assessment were performed to confirm the pathogenicity of the candidate variant. A novel homozygous missense variant c.1147C > A (p.Arg383Ser) in exon 11 of GCDH was identified. Examination of variant through in silico software tools determines its deleterious effect on protein in terms of function and stability. The variant cosegregates with the disease in family. In this study, the clinical and molecular aspects of GA-1 were investigated, which showed one novel mutation in the GCDH gene in an Iranian patient. The variant is categorized as pathogenic according to the the guideline of the American College of Medical Genetics and Genomics (ACMG) for variant interpretation. This mutation c.1147C > A (p.Arg383Ser) may also be prevalent among Iranian populations.
Collapse
Affiliation(s)
- Azam Ahmadi Shadmehri
- Department of Molecular Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran.,Department of Molecular Genetics, Science and Research Branch, Islamic Azad University, Fars, Iran
| | - Najmeh Fattahi
- Cilinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Reza Pourreza
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahboobeh Koohiyan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shahnaz Zarifi
- Social Welfare Organization of South Khorasan Province, Birjand, Iran
| | - Mojtaba Darbouy
- Department of Molecular Genetics, Science and Research Branch, Islamic Azad University, Fars, Iran
| | - Reza Sharifi
- Biomedical Sciences Division, Human Genetics Research Centre, St George's University of London, London, UK
| | - Javad Tavakkoly Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Nemeria NS, Gerfen G, Nareddy PR, Yang L, Zhang X, Szostak M, Jordan F. The mitochondrial 2-oxoadipate and 2-oxoglutarate dehydrogenase complexes share their E2 and E3 components for their function and both generate reactive oxygen species. Free Radic Biol Med 2018; 115:136-145. [PMID: 29191460 DOI: 10.1016/j.freeradbiomed.2017.11.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/22/2022]
Abstract
Herein are reported unique properties of the novel human thiamin diphosphate (ThDP)-dependent enzyme 2-oxoadipate dehydrogenase (hE1a), known as dehydrogenase E1 and transketolase domain-containing protein 1 that is encoded by the DHTKD1 gene. It is involved in the oxidative decarboxylation of 2-oxoadipate (OA) to glutaryl-CoA on the final degradative pathway of L-lysine and is critical for mitochondrial metabolism. Functionally active recombinant hE1a has been produced according to both kinetic and spectroscopic criteria in our toolbox leading to the following conclusions: (i) The hE1a has recruited the dihydrolipoyl succinyltransferase (hE2o) and the dihydrolipoyl dehydrogenase (hE3) components of the tricarboxylic acid cycle 2-oxoglutarate dehydrogenase complex (OGDHc) for its activity. (ii) 2-Oxoglutarate (OG) and 2-oxoadipate (OA) could be oxidized by hE1a, however, hE1a displays an approximately 49-fold preference in catalytic efficiency for OA over OG, indicating that hE1a is specific to the 2-oxoadipate dehydrogenase complex. (iii) The hE1a forms the ThDP-enamine radical from OA according to electron paramagnetic resonance detection in the oxidative half reaction, and could produce superoxide and H2O2 from decarboxylation of OA in the forward physiological direction, as also seen with the 2-oxoglutarate dehydrogenase hE1o component. (iv) Once assembled to complex with the same hE2o and hE3 components, the hE1o and hE1a display strikingly different regulation: both succinyl-CoA and glutaryl-CoA significantly reduced the hE1o activity, but not the activity of hE1a.
Collapse
Affiliation(s)
- Natalia S Nemeria
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA.
| | - Gary Gerfen
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461-2304, USA
| | | | - Luying Yang
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA
| | - Xu Zhang
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA
| | - Michal Szostak
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA
| | - Frank Jordan
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA.
| |
Collapse
|
12
|
Schmiesing J, Lohmöller B, Schweizer M, Tidow H, Gersting SW, Muntau AC, Braulke T, Mühlhausen C. Disease-causing mutations affecting surface residues of mitochondrial glutaryl-CoA dehydrogenase impair stability, heteromeric complex formation and mitochondria architecture. Hum Mol Genet 2017; 26:538-551. [PMID: 28062662 DOI: 10.1093/hmg/ddw411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/28/2016] [Indexed: 01/22/2023] Open
Abstract
The neurometabolic disorder glutaric aciduria type 1 (GA1) is caused by mutations in the GCDH gene encoding the mitochondrial matrix protein glutaryl-CoA dehydrogenase (GCDH), which forms homo- and heteromeric complexes. Twenty percent of all pathogenic mutations affect single amino acid residues on the surface of GCDH resulting in a severe clinical phenotype. We report here on heterologous expression studies of 18 missense mutations identified in GA1 patients affecting surface amino acids. Western blot and pulse chase experiments revealed that the stability of half of the GCDH mutants was significantly reduced. In silico analyses showed that none of the mutations impaired the 3D structure of GCDH. Immunofluorescence co-localisation studies in HeLa cells demonstrated that all GCDH mutants were correctly translocated into mitochondria. Surprisingly, the expression of p.Arg88Cys GCDH as well as further substitutions by alanine, lysine, or methionine but not histidine or leucine resulted in the disruption of mitochondrial architecture forming longitudinal structures composed of stacks of cristae and partial loss of the outer mitochondrial membrane. The expression of mitochondrial fusion or fission proteins was not affected in these cells. Bioluminescence resonance energy transfer analyses revealed that all GCDH mutants exhibit an increased binding affinity to electron transfer flavoprotein beta, whereas only p.Tyr155His GCDH showed a reduced interaction with dihydrolipoamide succinyl transferase. Our data underscore the impact of GCDH protein interactions mediated by amino acid residues on the surface of GCDH required for proper enzymatic activity.
Collapse
Affiliation(s)
- Jessica Schmiesing
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Lohmöller
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henning Tidow
- The Hamburg Centre for Ultrafast Imaging & Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Søren W Gersting
- Department of Molecular Pediatrics, Dr. von Hauner Childrens Hospital, Ludwig-Maximilians-University, Munich, Germany and
| | - Ania C Muntau
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Braulke
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chris Mühlhausen
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
Nemeria NS, Gerfen G, Guevara E, Nareddy PR, Szostak M, Jordan F. The human Krebs cycle 2-oxoglutarate dehydrogenase complex creates an additional source of superoxide/hydrogen peroxide from 2-oxoadipate as alternative substrate. Free Radic Biol Med 2017; 108:644-654. [PMID: 28435050 DOI: 10.1016/j.freeradbiomed.2017.04.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/14/2017] [Accepted: 04/15/2017] [Indexed: 12/19/2022]
Abstract
Recently, we reported that the human 2-oxoglutarate dehydrogenase (hE1o) component of the 2-oxoglutarate dehydrogenase complex (OGDHc) could produce the reactive oxygen species superoxide and hydrogen peroxide (detected by chemical means) from its substrate 2-oxoglutarate (OG), most likely concurrently with one-electron oxidation by dioxygen of the thiamin diphosphate (ThDP)-derived enamine intermediate to a C2α-centered radical (detected by Electron Paramagnetic Resonance) [Nemeria et al., 2014 [17]; Ambrus et al. 2015 [18]]. We here report that hE1o can also utilize the next higher homologue of OG, 2-oxoadipate (OA) as a substrate according to multiple criteria in our toolbox: (i) Both E1o-specific and overall complex activities (NADH production) were detected using OA as a substrate; (ii) Two post-decarboxylation intermediates were formed by hE1o from OA, the ThDP-enamine and the C2α-hydroxyalkyl-ThDP, with nearly identical rates for OG and OA; (iii) Both OG and OA could reductively acylate lipoyl domain created from dihydrolipoyl succinyltransferase (E2o); (iv) Both OG and OA gave α-ketol carboligaton products with glyoxylate, but with opposite chirality; a finding that could be of utility in chiral synthesis; (v) Dioxygen could oxidize the ThDP-derived enamine from both OG and OA, leading to ThDP-enamine radical and generation of superoxide and H2O2. While the observed oxidation-reduction with dioxygen is only a side reaction of the predominant physiological product glutaryl-CoA, the efficiency of superoxide/ H2O2 production was 7-times larger from OA than from OG, making the reaction of OGDHc with OA one of the important superoxide/ H2O2 producers among 2-oxo acid dehydrogenase complexes in mitochondria.
Collapse
Affiliation(s)
- Natalia S Nemeria
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA.
| | - Gary Gerfen
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461-2304, USA.
| | - Elena Guevara
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA
| | | | - Michal Szostak
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA
| | - Frank Jordan
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA.
| |
Collapse
|
14
|
Wang Q, Yang YL. [Complex heterogeneity phenotypes and genotypes of glutaric aciduria type 1]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:460-465. [PMID: 27165598 PMCID: PMC7390359 DOI: 10.7499/j.issn.1008-8830.2016.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
Glutaric aciduria type 1 is a rare autosomal recessive disorder. GCDH gene mutations cause glutaryl-CoA dehydrogenase deficiency and accumulation of glutaric acid and 3-hydroxyglutaric acid, resulting in damage of striatum and other brain nucleus and neurodegeneration. Patients with glutaric aciduria type 1 present with complex heterogeneous phenotypes and genotypes. The symptoms are extremely variable. The ages of the clinical onset of the patients range from the fetus period to adulthood. The patients with mild glutaric aciduria type 1 are almost asymptomatic before onset, however, severe glutaric aciduria type 1 may cause death or disability due to acute encephalopathy. Acute metabolic crisis in patients with underlying glutaric aciduria type 1 is often triggered by febrile illnesses, trauma, hunger, high-protein foods and vaccination during a vulnerable period of brain development in infancy or early childhood. The early-onset patients usually have a poor prognosis. Urinary organic acids analysis, blood acylcarnitines analysis and GCDH study are important for the diagnosis of this disorder. Neonatal screening is essential for the early diagnosis and the improvement of prognosis.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China.
| | | |
Collapse
|
15
|
Zhang Y, Li H, Ma R, Mei L, Wei X, Liang D, Wu L. Clinical and molecular investigation in Chinese patients with glutaric aciduria type I. Clin Chim Acta 2015; 453:75-9. [PMID: 26656312 DOI: 10.1016/j.cca.2015.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/22/2015] [Accepted: 12/03/2015] [Indexed: 11/28/2022]
Abstract
Glutaric aciduria type I (GA-I) is a rare autosomal recessive metabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase (GCDH), leading to an abnormal metabolism of lysine, hydroxylysine and tryptophan. It results in accumulations of glutaric acid, 3-hydroxyglutaric acid and glutaconic acid. Clinical features include the sudden onset of encephalopathy, hypotonia and macrocephaly usually before age 18months. Here we report five cases of GA-I confirmed with mutation analysis. GCDH gene mutations were identified in all five probands with GA-I. Three of them had compound heterozygous mutations and two had homozygous mutations. Mutations of two alleles (c.334G>T and IVS11-11A>G) were novel and both of them were confirmed to be splice site mutations by reverse transcription PCR.
Collapse
Affiliation(s)
- Yanghui Zhang
- State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Haoxian Li
- State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China; Hunan Jiahui Genetics Hospital, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Ruiyu Ma
- State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Libin Mei
- State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Xianda Wei
- State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Desheng Liang
- State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China; Hunan Jiahui Genetics Hospital, 110 Xiangya Road, Changsha, Hunan 410078, China.
| | - Lingqian Wu
- State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China; Hunan Jiahui Genetics Hospital, 110 Xiangya Road, Changsha, Hunan 410078, China.
| |
Collapse
|
16
|
Gupta N, Singh PK, Kumar M, Shastri S, Gulati S, Kumar A, Agarwala A, Kapoor S, Nair M, Sapra S, Dubey S, Singh A, Kaur P, Kabra M. Glutaric Acidemia Type 1-Clinico-Molecular Profile and Novel Mutations in GCDH Gene in Indian Patients. JIMD Rep 2015; 21:45-55. [PMID: 25762492 PMCID: PMC4470956 DOI: 10.1007/8904_2014_377] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 02/05/2023] Open
Abstract
Glutaric acidemia I (GA I, #231670) is one of the treatable, autosomal recessively inherited metabolic disorders. Macrocephaly, acute encephalitis-like crises, dystonia and characteristic frontotemporal atrophy are the hallmarks of this disease. In this communication, we present the clinical, biochemical and molecular profile of seventeen GA I patients from 15 unrelated families from India and report seven novel mutations in GCDH gene (c.281G>A (p.Arg94Gln), c.401A>G (p.Asp134Gly), c.662T>C (p.Leu221Pro), c.881G>C (p.Arg294Pro), c.1173dupG (p.Asn392Glufs*5), c.1238A>G (p.Tyr413Cys) and c.1241A>C (p.Glu414Ala)). Out of these, c.662T>C (p.Leu221Pro) in exon 8 and c.281G>A (p.Arg94Gln) allele in exon 4 were low excretor alleles, whereas c.1241A>C (p.Glu414Ala), c.1173dupG and c.1207C>T (p.His403Tyr) in exon 11 were high excretor alleles. We conclude that c.1204C>T (p.Arg402Trp) is probably the most common mutant allele. Exons 11 and 8 are the hot spot regions of GCDH gene in Indian patients with GA I. An early diagnosis and timely intervention can improve the underlying prognosis. Molecular confirmation is helpful in providing genetic counselling and prenatal diagnosis in subsequent pregnancy.
Collapse
Affiliation(s)
- Neerja Gupta
- />Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Pawan Kumar Singh
- />Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Manoj Kumar
- />Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Shivaram Shastri
- />Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Sheffali Gulati
- />Division of Neurology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Atin Kumar
- />Department of Radiology, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Anuja Agarwala
- />Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Seema Kapoor
- />Maulana Azad Medical College, New Delhi, India
| | | | - Savita Sapra
- />Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Sudhisha Dubey
- />Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Ankur Singh
- />Maulana Azad Medical College, New Delhi, India
| | - Punit Kaur
- />Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Madhulika Kabra
- />Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029 India
| |
Collapse
|
17
|
Koster KL, Sturm M, Herebian D, Smits SHJ, Spiekerkoetter U. Functional studies of 18 heterologously expressed medium-chain acyl-CoA dehydrogenase (MCAD) variants. J Inherit Metab Dis 2014; 37:917-28. [PMID: 24966162 DOI: 10.1007/s10545-014-9732-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 05/22/2014] [Accepted: 06/02/2014] [Indexed: 12/30/2022]
Abstract
Medium-chain acyl-coenzyme-A dehydrogenase (MCAD) catalyzes the first step of mitochondrial beta-oxidation for medium-chain acyl-CoAs. Mutations in the ACADM gene cause MCAD deficiency presenting with life-threatening symptoms during catabolism. Since fatty-acid-oxidation disorders are part of newborn screening (NBS), many novel mutations with unknown clinical relevance have been identified in asymptomatic newborns. Eighteen of these mutations were separately cloned into the human ACADM gene, heterologously overexpressed in Escherichia coli and functionally characterized by using different substrates, molecular chaperones, and measured at different temperatures. In addition, they were mapped to the three-dimensional MCAD structure, and cross-link experiments were performed. This study identified variants that only moderately affect the MCAD protein in vitro, such as Y42H, E18K, and R6H, in contrast to the remaining 15 mutants. These three mutants display residual octanoyl-CoA oxidation activities in the range of 22 % to 47 %, are as temperature sensitive as the wild type, and reach 100 % activity with molecular chaperone co-overexpression. Projection into the three-dimensional protein structure gave some indication as to possible reasons for decreased enzyme activities. Additionally, six of the eight novel mutations, functionally characterized for the first time, showed severely reduced residual activities < 5 % despite high expression levels. These studies are of relevance because they classify novel mutants in vitro on the basis of their corresponding functional effects. This basic knowledge should be taken into consideration for individual management after NBS.
Collapse
Affiliation(s)
- Kira-Lee Koster
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Moorenstr.5, 40225, Duesseldorf, Germany
| | | | | | | | | |
Collapse
|