1
|
Nakkazi A, Forster D, Whitfield GA, Dyer DP, Dickie BR. A systematic review of normal tissue neurovascular unit damage following brain irradiation-Factors affecting damage severity and timing of effects. Neurooncol Adv 2024; 6:vdae098. [PMID: 39239570 PMCID: PMC11375288 DOI: 10.1093/noajnl/vdae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Background Radiotherapy is key in the treatment of primary and secondary brain tumors. However, normal tissue is inevitably irradiated, causing toxicity and contributing to cognitive dysfunction. The relative importance of vascular damage to cognitive decline is poorly understood. Here, we systematically review the evidence for radiation-induced damage to the entire neurovascular unit (NVU), particularly focusing on establishing the factors that influence damage severity, and timing and duration of vascular effects relative to effects on neural tissue. Methods Using PubMed and Web of Science, we searched preclinical and clinical literature published between January 1, 1970 and December 1, 2022 and evaluated factors influencing NVU damage severity and timing of NVU effects resulting from ionizing radiation. Results Seventy-two rodents, 4 canines, 1 rabbit, and 5 human studies met inclusion criteria. Radiation increased blood-brain barrier (BBB) permeability, reduced endothelial cell number and extracellular matrix proteoglycans, reduced tight junction proteins, upregulated cellular adhesion molecule expression, reduced activity of glucose and BBB efflux transporters and activated glial cells. In the brain parenchyma, increased metalloproteinases 2 and 9 levels, demyelination, cell death, and inhibited differentiation were observed. Effects on the vasculature and neural compartment were observed across acute, delayed, and late timepoints, and damage extent was higher with low linear energy transfer radiation, higher doses, lower dose rates, broader beams, and in the presence of a tumor. Conclusions Irradiation of normal brain tissue leads to widespread and varied impacts on the NVU. Data indicate that vascular damage is in most cases an early effect that does not quickly resolve. More studies are needed to confirm sequence of damages, and mechanisms that lead to cognitive dysfunction.
Collapse
Affiliation(s)
- Annet Nakkazi
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, The University of Manchester, Manchester, UK
- Faculty of Biology, Medicine, and Health, Division of Informatics, Imaging, and Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Duncan Forster
- Faculty of Biology, Medicine, and Health, Division of Informatics, Imaging, and Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Gillian A Whitfield
- Division of Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, The University of Manchester, Manchester, UK
| | - Ben R Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, The University of Manchester, Manchester, UK
- Faculty of Biology, Medicine, and Health, Division of Informatics, Imaging, and Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
2
|
OUP accepted manuscript. Brain 2022; 145:1978-1991. [DOI: 10.1093/brain/awab438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/04/2021] [Accepted: 10/29/2021] [Indexed: 11/14/2022] Open
|
3
|
Laissue JA. Elke Bräuer-Krisch: dedication, creativity and generosity: May 17, 1961-September 10, 2018. Int J Radiat Biol 2021; 98:280-287. [PMID: 34129423 DOI: 10.1080/09553002.2021.1941385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE This extraordinary woman worked her professional way from a radiation protection engineer to become the successful principal investigator of a prestigious international European project for a new radiation therapy (ERC Synergy grant, HORIZON 2020). The evaluation of the submitted proposal was very positive. The panel proposed that it be funded. Elke tragically passed away a few days before this conclusion of the panel. The present account describes her gradual career development; it includes many episodes that Elke personally chronicled in her curriculum of 2017. METHODS An internet literature search was performed using Google Scholar and other sources to assist in the writing of this narrative review and account. CONCLUSIONS In parallel to the development of the new Biomedical Beamline ID17 at the European Synchrotron Radiation Facility in Grenoble in the late nineties, Elke focused her interest and her personal and professional priorities on MRT, particularly on its clinical goals. She outlined her main objectives in several documents: (1) develop a new paradigm of cancer care by broadening the foundation for MRT. (2) Filling the gaps in basic biological knowledge about the mechanisms of MRT effects on normal and neoplastic tissues. (3) Broaden the preclinical level of evidence for the low normal organ toxicity of MRT versus standard X-ray irradiations; preclinical experiments involved the application of MRT to animal tumor patients, to animals of larger size than laboratory rodents, using larger radiation field sizes, and irradiating in a real-time scenario comparable to the one planned for human patients. (4) To foster the specific purpose of radiosurgical MRT of tumor patients at the ESRF that required development of new, specific state of the art modalities and tools for treatment planning, dosimetry, dose calculation, patient positioning and, of particular importance, redundant levels of patient safety. Just as she was about to take responsibility as principal investigator for a prestigious international European project on a new radiation therapy, death called Elke in.
Collapse
Affiliation(s)
- Jean A Laissue
- Institute of Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Schültke E, Fiedler S, Menk RH, Jaekel F, Dreossi D, Casarin K, Tromba G, Bartzsch S, Kriesen S, Hildebrandt G, Arfelli F. Perspectives for microbeam irradiation at the SYRMEP beamline. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:410-418. [PMID: 33650552 PMCID: PMC7941286 DOI: 10.1107/s1600577521000400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/12/2021] [Indexed: 05/10/2023]
Abstract
It has been shown previously both in vitro and in vivo that microbeam irradiation (MBI) can control malignant tumour cells more effectively than the clinically established concepts of broad beam irradiation. With the aim to extend the international capacity for microbeam research, the first MBI experiment at the biomedical beamline SYRMEP of the Italian synchrotron facility ELETTRA has been conducted. Using a multislit collimator produced by the company TECOMET, arrays of quasi-parallel microbeams were successfully generated with a beam width of 50 µm and a centre-to-centre distance of 400 µm. Murine melanoma cell cultures were irradiated with a target dose of approximately 65 Gy at a mean photon energy of ∼30 keV with a dose rate of 70 Gy s-1 and a peak-to-valley dose of ∼123. This work demonstrated a melanoma cell reduction of approximately 80% after MBI. It is suggested that, while a high energy is essential to achieve high dose rates in order to deposit high treatment doses in a short time in a deep-seated target, for in vitro studies and for the treatment of superficial tumours a spectrum in the lower energy range might be equally suitable or even advantageous.
Collapse
Affiliation(s)
- Elisabeth Schültke
- Department of Radiooncology, Rostock University Medical Center, Südring 75, 18059 Rostock, Germany
| | - Stefan Fiedler
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Ralf Hendrik Menk
- Elettra-Sincrotrone Trieste, Strada Statale 14, Trieste 34149, Italy
- University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Trieste Section, Istituto Nazionale Fisica Nucleare (INFN), Trieste, Italy
| | - Felix Jaekel
- Department of Radiooncology, Rostock University Medical Center, Südring 75, 18059 Rostock, Germany
| | - Diego Dreossi
- Elettra-Sincrotrone Trieste, Strada Statale 14, Trieste 34149, Italy
| | - Katia Casarin
- Elettra-Sincrotrone Trieste, Strada Statale 14, Trieste 34149, Italy
| | - Giuliana Tromba
- Elettra-Sincrotrone Trieste, Strada Statale 14, Trieste 34149, Italy
| | - Stefan Bartzsch
- Department of Radiooncology, Technical University Munich, Munich, Germany
- Institute for Innovative Radiotherapy, Helmholtz-Zentrum Munich (HMGU), Munich, Germany
| | - Stephan Kriesen
- Department of Radiooncology, Rostock University Medical Center, Südring 75, 18059 Rostock, Germany
| | - Guido Hildebrandt
- Department of Radiooncology, Rostock University Medical Center, Südring 75, 18059 Rostock, Germany
| | - Fulvia Arfelli
- Trieste Section, Istituto Nazionale Fisica Nucleare (INFN), Trieste, Italy
- Department of Physics, University of Trieste, Trieste, Italy
| |
Collapse
|
5
|
Locomotion and eating behavior changes in Yucatan minipigs after unilateral radio-induced ablation of the caudate nucleus. Sci Rep 2019; 9:17082. [PMID: 31745153 PMCID: PMC6863900 DOI: 10.1038/s41598-019-53518-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/28/2019] [Indexed: 11/27/2022] Open
Abstract
The functional roles of the Caudate nucleus (Cd) are well known. Selective Cd lesions can be found in neurological disorders. However, little is known about the dynamics of the behavioral changes during progressive Cd ablation. Current stereotactic radiosurgery technologies allow the progressive ablation of a brain region with limited adverse effects in surrounding normal tissues. This could be of high interest for the study of the modified behavioral functions in relation with the degree of impairment of the brain structures. Using hypofractionated stereotactic radiotherapy combined with synchrotron microbeam radiation, we investigated, during one year after irradiation, the effects of unilateral radio-ablation of the right Cd on the behavior of Yucatan minipigs. The right Cd was irradiated to a minimal dose of 35.5 Gy delivered in three fractions. MRI-based morphological brain integrity and behavioral functions, i.e. locomotion, motivation/hedonism were assessed. We detected a progressive radio-necrosis leading to a quasi-total ablation one year after irradiation, with an additional alteration of surrounding areas. Transitory changes in the motivation/hedonism were firstly detected, then on locomotion, suggesting the influence of different compensatory mechanisms depending on the functions related to Cd and possibly some surrounding areas. We concluded that early behavioral changes related to eating functions are relevant markers for the early detection of ongoing lesions occurring in Cd-related neurological disorders.
Collapse
|
6
|
Donzelli M, Oelfke U, Bräuer-Krisch E. Introducing the concept of spiral microbeam radiation therapy (spiralMRT). Phys Med Biol 2019; 64:065005. [PMID: 30650386 DOI: 10.1088/1361-6560/aaff23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MOTIVATION With interlaced microbeam radiation therapy (MRT) a first kilovoltage radiotherapy (RT) concept combining spatially fractionated entrance beams and homogeneous dose distribution at the target exists. However, this technique suffers from its high sensitivity to positioning errors of the target relative to the radiation source. With spiral microbeam radiation therapy (spiralMRT), this publication introduces a new irradiation geometry, offering similar spatial fractionation properties as interlaced MRT, while being less vulnerable to target positioning uncertainties. METHODS The dose distributions achievable with spiralMRT in a simplified human head geometry were calculated with Monte Carlo simulations based on Geant4 and the dependence of the result on the microbeam pitch, total field size, and photon energy were analysed. A comparison with interlaced MRT and conventional megavoltage tomotherapy was carried out. RESULTS SpiralMRT can deliver homogeneous dose distributions, while using spatially fractionated entrance beams. The valley dose of spiralMRT entrance beams is by up to 40% lower than the corresponding tomotherapy dose, thus indicating a better normal tissue sparing. The optimum photon energy is found to be around [Formula: see text]. CONCLUSIONS SpiralMRT is a promising approach to delivering homogeneous dose distributions with spatially fractionated entrance beams, possibly decreasing normal tissue side effects in hypofractionated RT.
Collapse
Affiliation(s)
- Mattia Donzelli
- European Synchrotron Radiation Facility, Biomedical beamline ID17, Grenoble, France. Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom. Author to whom any correspondence should be addressed
| | | | | |
Collapse
|
7
|
Merrem A, Bartzsch S, Laissue J, Oelfke U. Computational modelling of the cerebral cortical microvasculature: effect of x-ray microbeams versus broad beam irradiation. Phys Med Biol 2017; 62:3902-3922. [PMID: 28333689 PMCID: PMC6050522 DOI: 10.1088/1361-6560/aa68d5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 12/31/2022]
Abstract
Microbeam Radiation Therapy is an innovative pre-clinical strategy which uses arrays of parallel, tens of micrometres wide kilo-voltage photon beams to treat tumours. These x-ray beams are typically generated on a synchrotron source. It was shown that these beam geometries allow exceptional normal tissue sparing from radiation damage while still being effective in tumour ablation. A final biological explanation for this enhanced therapeutic ratio has still not been found, some experimental data support an important role of the vasculature. In this work, the effect of microbeams on a normal microvascular network of the cerebral cortex was assessed in computer simulations and compared to the effect of homogeneous, seamless exposures at equal energy absorption. The anatomy of a cerebral microvascular network and the inflicted radiation damage were simulated to closely mimic experimental data using a novel probabilistic model of radiation damage to blood vessels. It was found that the spatial dose fractionation by microbeam arrays significantly decreased the vascular damage. The higher the peak-to-valley dose ratio, the more pronounced the sparing effect. Simulations of the radiation damage as a function of morphological parameters of the vascular network demonstrated that the distribution of blood vessel radii is a key parameter determining both the overall radiation damage of the vasculature and the dose-dependent differential effect of microbeam irradiation.
Collapse
Affiliation(s)
- A Merrem
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany
- This work was carried out at the German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - S Bartzsch
- Klinikum Rechts der Isar, Ismaninger Str. 2, 81675 München, Germany
- The Institute of Cancer Research, Royal Marsden Hospital, Fulham Rd, London SW3 6JJ, United Kingdom
- This work was carried out at the German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - J Laissue
- University of Bern, Hochschulstrasse 4, 3012 Bern, Switzerland
| | - U Oelfke
- The Institute of Cancer Research, Royal Marsden Hospital, Fulham Rd, London SW3 6JJ, United Kingdom
- This work was carried out at the German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Lu Y, Tang G, Lin H, Lin X, Jiang L, Yang GY, Wang Y. A biosafety evaluation of synchrotron radiation X-ray to skin and bone marrow: single dose irradiation study of rats and macaques. Int J Radiat Biol 2017; 93:637-645. [PMID: 28112006 DOI: 10.1080/09553002.2017.1286049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Very limited experimental data is available regarding the safe dosages related to synchrotron radiation (SR) procedures. We used young rats and macaques to address bone marrow and skin tolerance to various doses of synchrotron radiation. METHODS Rats were subjected to 0, 0.5, 2.5, 5, 25 or 100 Gy local SR X-ray irradiation at left hind limb. Rat blood samples were analyzed at 2-90 days after irradiation. The SR X-ray irradiated skin and tibia were sectioned for morphological examination. For non-human primate study, three male macaques were subjected to 0.5 or 2.5 Gy SR X-ray on crus. Skin responses of macaques were observed. RESULTS All rats that received SR X-ray irradiation doses greater than 2.5 Gy experienced hair loss and bone-growth inhibition, which were accompanied by decreased number of follicles, thickened epidermal layer, and decreased density of bone marrow cells (p < 0.05). Macaque skin could tolerate 0.5 Gy SR X-ray but showed significant hair loss when the dose was raised above 2.5 Gy. CONCLUSION The safety threshold doses of SR X-ray for rat skin, bone marrow and macaque skin are between 0.5 and 2.5 Gy. Our study provided essential information regarding the biosafety of SR X-ray irradiation.
Collapse
Affiliation(s)
- Yifan Lu
- a Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , China
| | - Guanghui Tang
- a Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , China
| | - Hui Lin
- b School of Electronic Science and Application Physics , Hefei University of Technology , Hefei , Anhui , China
| | - Xiaojie Lin
- a Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , China
| | - Lu Jiang
- a Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , China
| | - Guo-Yuan Yang
- a Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , China.,c Department of Neurology, Ruijin Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , China
| | - Yongting Wang
- a Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
9
|
Pouyatos B, Nemoz C, Chabrol T, Potez M, Bräuer E, Renaud L, Pernet-Gallay K, Estève F, David O, Kahane P, Laissue JA, Depaulis A, Serduc R. Synchrotron X-ray microtransections: a non invasive approach for epileptic seizures arising from eloquent cortical areas. Sci Rep 2016; 6:27250. [PMID: 27264273 PMCID: PMC4893707 DOI: 10.1038/srep27250] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/13/2016] [Indexed: 11/09/2022] Open
Abstract
Synchrotron-generated X-ray (SRX) microbeams deposit high radiation doses to submillimetric targets whilst minimizing irradiation of neighboring healthy tissue. We developed a new radiosurgical method which demonstrably transects cortical brain tissue without affecting adjacent regions. We made such image-guided SRX microtransections in the left somatosensory cortex in a rat model of generalized epilepsy using high radiation doses (820 Gy) in thin (200 μm) parallel slices of tissue. This procedure, targeting the brain volume from which seizures arose, altered the abnormal neuronal activities for at least 9 weeks, as evidenced by a decrease of seizure power and coherence between tissue slices in comparison to the contralateral cortex. The brain tissue located between transections stayed histologically normal, while the irradiated micro-slices remained devoid of myelin and neurons two months after irradiation. This pre-clinical proof of concept highlights the translational potential of non-invasive SRX transections for treating epilepsies that are not eligible for resective surgery.
Collapse
Affiliation(s)
- B. Pouyatos
- Inserm, U1216, F-38000 Grenoble, France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- Synapcell S.A.S – Bâtiment Biopolis – 5 avenue du Grand Sablon, La Tronche, France
| | | | - T. Chabrol
- Univ. Grenoble Alpes, EA RSRM, F-38000 Grenoble, France
| | - M. Potez
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
| | | | - L. Renaud
- CNRS; CE2F PRIM UMS3537; Marseille, France
- Aix Marseille Université; Centre d’Exploration Fonctionnelle et de Formation; France
| | - K. Pernet-Gallay
- Inserm, U1216, F-38000 Grenoble, France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
| | - F. Estève
- Univ. Grenoble Alpes, EA RSRM, F-38000 Grenoble, France
| | - O. David
- Inserm, U1216, F-38000 Grenoble, France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
| | - P. Kahane
- Inserm, U1216, F-38000 Grenoble, France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- CHU Grenoble Alpes, F-38000 Grenoble, France
| | | | - A. Depaulis
- Inserm, U1216, F-38000 Grenoble, France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
| | - R. Serduc
- Univ. Grenoble Alpes, EA RSRM, F-38000 Grenoble, France
| |
Collapse
|
10
|
Smyth LML, Senthi S, Crosbie JC, Rogers PAW. The normal tissue effects of microbeam radiotherapy: What do we know, and what do we need to know to plan a human clinical trial? Int J Radiat Biol 2016; 92:302-11. [DOI: 10.3109/09553002.2016.1154217] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Lloyd M. L. Smyth
- University of Melbourne, Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, Australia
- Epworth Radiation Oncology, Epworth HealthCare, Melbourne, Victoria, Australia
| | - Sashendra Senthi
- William Buckland Radiotherapy Centre, Alfred Hospital, Melbourne, Victoria, Australia
| | - Jeffrey C. Crosbie
- William Buckland Radiotherapy Centre, Alfred Hospital, Melbourne, Victoria, Australia
- School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Peter A. W. Rogers
- University of Melbourne, Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, Australia
| |
Collapse
|