1
|
Fotopoulou ET, Jenkins C, Barker CR, Painset A, Didelot X, Simbo A, Douglas A, Godbole G, Jorgensen F, Gharbia S, McLauchlin† J. Genomic epidemiology of the clinically dominant clonal complex 1 in the Listeria monocytogenes population in the UK. Microb Genom 2024; 10:001155. [PMID: 38165396 PMCID: PMC10868620 DOI: 10.1099/mgen.0.001155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Listeria monocytogenes is a food-borne pathogen, typically affecting the elderly, immunocompromised patients and pregnant women. The aim of this study was to determine the population structure of L. monocytogenes clonal complex 1 (CC1) in the UK and describe the genomic epidemiology of this clinically significant CC. We interrogated a working dataset of 4073 sequences of L. monocytogenes isolated between January 2015 and December 2020 from human clinical specimens, food and/or food-production environments. A minimum spanning tree was reconstructed to determine the population structure of L. monocytogenes in the UK. Subsequent analysis focused on L. monocytogenes CC1, as the cause of the highest proportion of invasive listeriosis in humans. Sequencing data was integrated with metadata on food and environmental isolates, and information from patient questionnaires, including age, sex and clinical outcomes. All isolates either belonged to lineage I (n=1299/4073, 32%) or lineage II (n=2774/4073, 68%), with clinical isolates from human cases more likely to belong to lineage I (n=546/928, 59%) and food isolates more likely to belong to lineage II (n=2352/3067, 77%). Of the four largest CCs, CC1 (n=237) had the highest proportion of isolates from human cases of disease (CC1 n=160/237, 67.5 %; CC121 n=13/843, 2 %; CC9 n=53/360, 15 %; CC2 n=69/339, 20%). Within CC1, most cases were female (n=95/160, 59%, P=0.01771) and the highest proportion of cases were in people >60 years old (39/95, 41%, P=1.314×10-6) with a high number of them aged 20-39 years old (n=35/95, 37%) most linked to pregnancy-related listeriosis (n=29/35, 83%). Most of the male cases were in men aged over 60 years old (40/65, 62%), and most of the fatal cases in both males and females were identified in this age group (42/55, 76%). Phylogenetic analysis revealed 23 5 SNP single linkage clusters comprising 80/237 (34 %) isolates with cluster sizes ranging from 2 to 19. Five 5 SNP clusters comprised isolates from human cases and an implicated food item. Expanding the analysis to 25 SNP single linkage clusters resolved an additional two clusters linking human cases to a potential food vehicle. Analysis of demographic and clinical outcome data identified CC1 as a clinically significant cause of invasive listeriosis in the elderly population and in women of child-bearing age. Phylogenetic analysis revealed the population structure of CC1 in the UK comprised small, sparsely populated genomic clusters. Only clusters containing isolates from an implicated food vehicle, or food processing or farming environments, were resolved, emphasizing the need for clinical, food and animal-health agencies to share sequencing data in real time, and the importance of a One Health approach to public-health surveillance of listeriosis.
Collapse
Affiliation(s)
- Emily T. Fotopoulou
- Water and Environmental Microbiology Services, UK Health Security Agency Food, 61 Colindale Avenue, London NW9 5EQ, UK
- Gastrointestinal Bacteria Reference Unit, UK Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Claire Jenkins
- Water and Environmental Microbiology Services, UK Health Security Agency Food, 61 Colindale Avenue, London NW9 5EQ, UK
- Gastrointestinal Bacteria Reference Unit, UK Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Clare R. Barker
- Water and Environmental Microbiology Services, UK Health Security Agency Food, 61 Colindale Avenue, London NW9 5EQ, UK
- Health Protection Research Unit in Gastrointestinal Infections, National Institute for Health and Care Research, University of Liverpool, Liverpool L69 7BE, UK
| | - Anais Painset
- Water and Environmental Microbiology Services, UK Health Security Agency Food, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Xavier Didelot
- Gastrointestinal Bacteria Reference Unit, UK Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK
- Health Protection Research Unit in Gastrointestinal Infections, National Institute for Health and Care Research, University of Liverpool, Liverpool L69 7BE, UK
- Health Protection Research Unit in Genomics and Enabling Data, National Institute for Health and Care Research, University of Warwick, Coventry CV4 7AL, UK
| | - Ameze Simbo
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Amy Douglas
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Gauri Godbole
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Frieda Jorgensen
- Gastrointestinal Infections and Food Safety (One Health) Division, UK Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Saheer Gharbia
- Water and Environmental Microbiology Services, UK Health Security Agency Food, 61 Colindale Avenue, London NW9 5EQ, UK
- Health Protection Research Unit in Gastrointestinal Infections, National Institute for Health and Care Research, University of Liverpool, Liverpool L69 7BE, UK
| | - Jim McLauchlin†
- Gastrointestinal Infections and Food Safety (One Health) Division, UK Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK
| |
Collapse
|
2
|
Identification of Listeria species and Multilocus Variable-Number Tandem Repeat Analysis (MLVA) Typing of Listeria innocua and Listeria monocytogenes Isolates from Cattle Farms and Beef and Beef-Based Products from Retail Outlets in Mpumalanga and North West Provinces, South Africa. Pathogens 2023; 12:pathogens12010147. [PMID: 36678495 PMCID: PMC9862459 DOI: 10.3390/pathogens12010147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
In this study, Listeria isolates (214) were characterized as follows: L. innocua (77.10%), L. monocytogenes (11.21%), L. welshimeri (5.61%), L. grayi (1.40%), L. seeligeri (0.93%), and L. species (3.73%) that were not identified at the species level, from beef and beef based products from retail and farms in Mpumalanga and North West provinces of South Africa. MLVA was further used to type Listeria innocua isolates (165) and Listeria monocytogenes isolates (24). The L. monocytogenes isolates were also serogrouped using PCR. The MLVA protocol for L. monocytogenes typing included six tandem repeat primer sets, and the MLVA protocol for L. innocua included the use of three tandem repeats primer sets. The L. monocytogenes serogroups were determined as follows: 4b-4d-4e (IVb) (37.50%), 1/2a-3a (IIa) (29.16%), 1/2b-3b (IIb) (12.50%), 1/2c-3c (IIc) (8.33%), and IVb-1 (4.16%). MLVA could cluster isolates belonging to each specie, L. monocytogenes, and L. innocua isolates, into MLVA-related strains. There were 34 and 10 MLVA types obtained from the MLVA typing of L. innocua and L. monocytogenes, respectively. MLVA clustered the L. monocytogenes isolates irrespective of sample category, serogroups, and geographical origin. Similarly, the L. innocua isolates clustered irrespective of meat category and geographical origin. MLVA was able to cluster isolates based on MLVA relatedness. The clustering of isolates from farms and retailers indicates transmission of Listeria spp. MLVA is an affordable, simple, and discriminatory method that can be used routinely to type L. monocytogenes and L. innocua isolates.
Collapse
|
3
|
Mazaheri T, Cervantes-Huamán B, Turitich L, Ripolles-Avila C, Rodríguez-Jerez J. Removal of Listeria monocytogenes biofilms on stainless steel surfaces through conventional and alternative cleaning solutions. Int J Food Microbiol 2022; 381:109888. [DOI: 10.1016/j.ijfoodmicro.2022.109888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 10/31/2022]
|
4
|
Gana J, Gcebe N, Pierneef R, Moerane R, Adesiyun AA. Multiple-Locus Variable-Number Tandem Repeat Analysis Genotypes of Listeria monocytogenes Isolated from Farms, Abattoirs, and Retail in Gauteng Province, South Africa. J Food Prot 2022; 85:1249-1257. [PMID: 35588459 DOI: 10.4315/jfp-22-081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/29/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT The use of multiple-locus variable-number analysis (MLVA) of tandem repeats (TRs) for subtyping Listeria monocytogenes has proven to be reliable and fast. This study determined the MLVA genotypes of 60 isolates of L. monocytogenes recovered from cattle farms, abattoirs, and retail outlets in Gauteng province, South Africa. The distribution of the 60 L. monocytogenes isolates analyzed by type of sample was as follows: raw beef (28, 46.7%), ready-to-eat beef products (9, 15.0%), beef carcass swabs (9, 15.0%), cattle environment (6, 10.0%), and cattle feces (8, 13.3%). The serogroups of the isolates were determined using PCR and the MLVA genotypes based on six selected loci. The frequency of the 60 serogroups detected was as follows: 1/2a-3a (IIa) (27, 45.0%); 4b-4d-4e (1Vb) (24, 40.0%); 1/2c-3c (IIc) (8, 13.3%); and 1/2b-3b (IIb) (1, 1.7%). MLVA successfully clustered genetically related isolates and differentiated nonrelated isolates, irrespective of their sources, sample types, and serogroups, as demonstrated by 16 MLVA pattern types detected. For serogroup 4b-4d-4e (IVb), there was no variation in TRs LM-TR2, LM-TR4, and LM-TR6, which each contained only one allele (02, 00, and 93, respectively). However, across the sources and sample types of isolates, there was variation in serogroup 4b-4d-4e (IVb): LM-TR1 contained 00, 03, and 05; LM-TR3 contained 14, 20, and 22; and LM-TR5 contained 14, 21, and 25. Similar patterns of variation in the TRs were detected in the other serogroups (1/2a-3a, 1/2b-3b, and 1/2c-3c). BioNumeric data analysis identified at least five types in Gauteng province. MLVA epidemiologically clustered the related isolates and differentiated unrelated isolates. HIGHLIGHTS
Collapse
Affiliation(s)
- James Gana
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.,Department of Agricultural Education, Federal College of Education, Kontagora, Niger State, Nigeria
| | - Nomakorinte Gcebe
- Bacteriology Department, Onderstepoort Veterinary Research, Agricultural Research Council, South Africa
| | - Rian Pierneef
- Agricultural Research Council-Biotechnology Platform, 100 Old Soutpan Road, Onderstepoort, Pretoria 0110, South Africa
| | - Rebone Moerane
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Abiodun A Adesiyun
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.,Department of Paraclinical Sciences, School of Veterinary Medicine, The University of West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
5
|
Conditions of In Vitro Biofilm Formation by Serogroups of Listeria monocytogenes Isolated from Hass Avocados Sold at Markets in Mexico. Foods 2021; 10:foods10092097. [PMID: 34574207 PMCID: PMC8467555 DOI: 10.3390/foods10092097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Listeria monocytogenes is an important pathogen that has been implicated in foodborne illnesses and the recall of products such as fruit and vegetables. This study determines the prevalence of virulence-associated genes and serogroups and evaluates the effects of different growth media and environmental conditions on biofilm formation by L. monocytogenes. Eighteen L. monocytogenes isolates from Hass avocados sold at markets in Guadalajara, Mexico, were characterized by virulence-associated genes and serogroup detection with PCR. All isolates harbored 88.8% actA, 88.8% plcA, 83.3% mpl, 77.7% inlB, 77.7% hly, 66.6% prfA, 55.5% plcB, and 33.3% inlA. The results showed that 38.8% of isolates harbored virulence genes belonging to Listeria pathogenicity island 1 (LIPI-1). PCR revealed that the most prevalent serogroup was serogroup III (1/2b, 3b, and 7 (n = 18, 66.65%)), followed by serogroup IV (4b, 4d-4e (n = 5, 27.7%)) and serogroup I (1/2a-3a (n = 1, 5.5%)). The assessment of the ability to develop biofilms using a crystal violet staining method revealed that L. monocytogenes responded to supplement medium TSBA, 1/10 diluted TSBA, and TSB in comparison with 1/10 diluted TSB (p < 0.05) on polystyrene at 240 h (p < 0.05). In particular, the biofilm formation by L. monocytogenes (7.78 ± 0.03-8.82 ± 0.03 log10 CFU/cm2) was significantly different in terms of TSBA on polypropylene type B (PP) (p < 0.05). In addition, visualization by epifluorescence microscopy, scanning electron microscopy (SEM), and treatment (DNase I and proteinase K) revealed the metabolically active cells and extracellular polymeric substances of biofilms on PP. L. monocytogenes has the ability to develop biofilms that harbor virulence-associated genes, which represent a serious threat to human health and food safety.
Collapse
|
6
|
Lachtara B, Osek J, Wieczorek K. Molecular Typing of Listeria monocytogenes IVb Serogroup Isolated from Food and Food Production Environments in Poland. Pathogens 2021; 10:pathogens10040482. [PMID: 33921133 PMCID: PMC8071568 DOI: 10.3390/pathogens10040482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/31/2022] Open
Abstract
Listeria monocytogenes is one of the most important foodborne pathogens that may be present in food and in food processing environments. In the present study, 91 L. monocytogenes isolates of serogroup IVb from raw meat, ready-to-eat food and food production environments in Poland were characterized by whole genome sequencing (WGS). The strains were also compared, using core genome multi-locus sequence typing (cgMLST) analysis, with 186 genomes of L. monocytogenes recovered worldwide from food, environments, and from humans with listeriosis. The L. monocytogenes examined belonged to three MLST clonal complexes: CC1 (10; 11.0% isolates), CC2 (70; 76.9%), and CC6 (11; 12.1%). CC1 comprised of two STs (ST1 and ST515) which could be divided into five cgMLST, CC2 covered two STs (ST2 and ST145) with a total of 20 cgMLST types, whereas CC6 consisted of only one ST (ST6) classified as one cgMLST. WGS sequences of the tested strains revealed that they had several pathogenic markers making them potentially hazardous for public health. Molecular comparison of L. monocytogenes strains tested in the present study with those isolated from food and human listeriosis showed a relationship between the isolates from Poland, but not from other countries.
Collapse
|
7
|
Heidarlo MN, Lotfollahi L, Yousefi S, Lohrasbi V, Irajian G, Talebi M. Analysis of virulence genes and molecular typing of Listeria monocytogenes isolates from human, food, and livestock from 2008 to 2016 in Iran. Trop Anim Health Prod 2021; 53:127. [PMID: 33454847 DOI: 10.1007/s11250-021-02569-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
The frequency of Listeria monocytogenes isolates collected from a total of 1150 samples including food (n = 300), livestock (n = 50), and human clinical (n = 800) was evaluated during 2008-2016. Antimicrobial resistance patterns, virulence factors, and molecular characteristics of these isolates were analyzed using disk diffusion method, sequencing, serotyping, and pulsed-field gel electrophoresis (PFGE). The analysis of 44 L. monocytogenes isolates showed that 72.7% (32 of 44) of all the isolates belonged to Serotype 1/2c, and 15.9% (7 of 44) belonged to Serotype 3c. All 44 isolates were resistant to one or more antimicrobial agents with the most frequent resistance to penicillin (75%) and tetracycline (47.7%). Of the 44 L. monocytogenes strains, 100, 69.2, and 62.5% of livestock, human, and food strains were resistant to penicillin, respectively. Using pulsed-field gel electrophoresis (PFGE) technique, the isolates' genetic diversity was determined, and 28 PFGE patterns with 8 common (CT) and 20 single types (ST) were identified. This study highlights the high prevalence of Serotype 1/2c in clinical and livestock samples, while different serotypes were observed in food samples. The presence of rare serotypes such as 4c, belonging to the Lineage III, as well as 4e and 1/2c which are infrequent in Iran indicates that paying attention to uncommon serotypes, especially 1/2c, during the listeriosis outbreaks is necessary.
Collapse
Affiliation(s)
| | - Lida Lotfollahi
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Saber Yousefi
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Lohrasbi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Irajian
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Center, University of Medical sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Center, University of Medical sciences, Tehran, Iran
| |
Collapse
|
8
|
Gkerekou MA, Athanaseli KG, Kapetanakou AE, Drosinos EH, Skandamis PN. Εvaluation of oxygen availability on growth and inter-strain interactions of L. monocytogenes in/on liquid, semi-solid and solid laboratory media. Int J Food Microbiol 2021; 341:109052. [PMID: 33515814 DOI: 10.1016/j.ijfoodmicro.2021.109052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Abstract
The coexistence and interactions among Listeria monocytogenes strains in combination with the structural characteristics of foods, may influence their growth capacity and thus, the final levels at the time of consumption. In the present study, we aimed to evaluate the effect of oxygen availability in combination with substrate micro-structure on growth and inter-strain interactions of L. monocytogenes. L. monocytogenes strains, selected for resistance to different antibiotics (to enable distinct enumeration), belonging to serotypes 4b (C5, ScottA), 1/2a (6179) and 1/2b (PL25) and were inoculated in liquid (Tryptic Soy Broth supplemented with Yeast Extract - TSB-YE) and solid (TSB-YE supplemented with 0.6% and 1.2% agar) media (2-3 log CFU/mL, g or cm2), single or as two-strain cultures (1:1 strain-ratio). Aerobic conditions (A) were achieved with constant shaking or surface inoculation for liquid and solid media respectively, while static incubation or pour plated media corresponded to hypoxic environment (H). Anoxic conditions (An) were attained by adding 0.1% w/v sodium thioglycolate and paraffin overlay (for solid media). Growth was assessed during storage at 7 °C (n = 3 × 2). Inter-strain interactions were manifested by the difference in the final population between singly and co-cultured strains. Τhe extent of suppression increased with reduction in agar concentration, while the impact of oxygen availability was dependent on strain combination. During co-culture, in liquid and solid media, 6179 was suppressed by C5 by 4.0 (in TSB-YE under H) to 1.8 log units (in solid medium under An), compared to the single culture, which attained population of ca. 9.4 log CFU/mL or g. The growth of 6179 was also inhibited by ScottA by 2.7 and 1.9 log units, in liquid culture under H and An, respectively. Interestingly, in liquid medium under A, H and An, ScottA was suppressed by C5, by 3.3, 2.4 and 2.3 log units, respectively, while in solid media, growth inhibition was less pronounced. Investigating growth interactions in different environments could assist in explaining the dominance of L. monocytogenes certain serotypes.
Collapse
Affiliation(s)
- Maria A Gkerekou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Konstantina G Athanaseli
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Anastasia E Kapetanakou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Eleftherios H Drosinos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Panagiotis N Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece.
| |
Collapse
|
9
|
Matle I, Mbatha KR, Madoroba E. A review of Listeria monocytogenes from meat and meat products: Epidemiology, virulence factors, antimicrobial resistance and diagnosis. ACTA ACUST UNITED AC 2020; 87:e1-e20. [PMID: 33054262 PMCID: PMC7565150 DOI: 10.4102/ojvr.v87i1.1869] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
Listeria monocytogenes is a zoonotic food-borne pathogen that is associated with serious public health and economic implications. In animals, L. monocytogenes can be associated with clinical listeriosis, which is characterised by symptoms such as abortion, encephalitis and septicaemia. In human beings, listeriosis symptoms include encephalitis, septicaemia and meningitis. In addition, listeriosis may cause gastroenteric symptoms in human beings and still births or spontaneous abortions in pregnant women. In the last few years, a number of reported outbreaks and sporadic cases associated with consumption of contaminated meat and meat products with L. monocytogenes have increased in developing countries. A variety of virulence factors play a role in the pathogenicity of L. monocytogenes. This zoonotic pathogen can be diagnosed using both classical microbiological techniques and molecular-based methods. There is limited information about L. monocytogenes recovered from meat and meat products in African countries. This review strives to: (1) provide information on prevalence and control measures of L. monocytogenes along the meat value chain, (2) describe the epidemiology of L. monocytogenes (3) provide an overview of different methods for detection and typing of L. monocytogenes for epidemiological, regulatory and trading purposes and (4) discuss the pathogenicity, virulence traits and antimicrobial resistance profiles of L. monocytogenes.
Collapse
Affiliation(s)
- Itumeleng Matle
- Bacteriology Division, Agricultural Research Council - Onderstepoort Veterinary Research, Onderstepoort, Pretoria, South Africa; and, Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida.
| | | | | |
Collapse
|
10
|
Barría C, Singer RS, Bueno I, Estrada E, Rivera D, Ulloa S, Fernández J, Mardones FO, Moreno-Switt AI. Tracing Listeria monocytogenes contamination in artisanal cheese to the processing environments in cheese producers in southern Chile. Food Microbiol 2020; 90:103499. [PMID: 32336367 DOI: 10.1016/j.fm.2020.103499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 12/19/2019] [Accepted: 03/17/2020] [Indexed: 12/16/2022]
Abstract
Artisanal cheese from southern Chile is made primarily by rural families who raise dairy cows and produce cheese as a way to add value to their milk. The most common cheese produced is chanco, a semi-hard cheese that is typically sold in unauthorized markets. The methods of chanco production do not always follow good manufacturing practices; however, the presence of Listeria monocytogenes contamination in this cheese has not been previously documented. To better understand production practices and L. monocytogenes contamination, 39 cheese producers were surveyed with regard to infrastructure, cleaning and sanitation, pest control, personal hygiene, training, raw materials, and manufacturing. During four sampling trips in 2016 (March, May, August, and November), 546 samples were collected (468 cheese samples and 78 milk samples). For producers that tested positive for L. monocytogenes, environmental monitoring was also conducted, for which 130 additional samples were collected. Presumptive L. monocytogenes isolates (N = 94) were further characterized and subtyped using standard techniques and qPCR-based species/subtype verification; a subset of 52 isolates were also subtyped by Pulsed Field Gel Electrophoresis (PFGE). L. monocytogenes was found in 19 cheeses (4.1%) from five producers (12.8%). The most frequent serotypes were 1/2b (48.9%), group 4B (4b, 4d, 4e) (45.7%), and serotype 1/2a (5.4%). Although no milk samples tested positive for L. monocytogenes, all cheese samples from two producers tested positive during two of the samplings. Distinct PFGE types were recovered from each facility, demonstrating persistence of certain subtypes of the pathogen that ultimately caused end-product contamination. Environmental monitoring of the five positive producers revealed a prevalence of L. monocytogenes ranging from 0 to 30%, with food contact surfaces having the highest incidence of this organism. The findings of this study contribute to the understanding of L. monocytogenes incidence in artisanal cheese in the region of southern Chile.
Collapse
Affiliation(s)
- Carla Barría
- Escuela de Medicina Veterinaria, Facultad de Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile; Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Randall S Singer
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Irene Bueno
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Erika Estrada
- Department of Food Science and Technology, Virginia Tech, Painter, VA, 23420, USA
| | - Dácil Rivera
- Escuela de Medicina Veterinaria, Facultad de Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile
| | - Soledad Ulloa
- Subdepartamento de Genética Molecular, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Jorge Fernández
- Subdepartamento de Genética Molecular, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Fernando O Mardones
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Alameda, 340, Santiago, Chile
| | - Andrea I Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile; Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile.
| |
Collapse
|
11
|
Rip D, Gouws PA. PCR-Restriction Fragment Length Polymorphism and Pulsed-Field Gel Electrophoresis Characterization of Listeria monocytogenes Isolates from Ready-to-Eat Foods, the Food Processing Environment, and Clinical Samples in South Africa. J Food Prot 2020; 83:518-533. [PMID: 32073615 DOI: 10.4315/0362-028x.jfp-19-301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/06/2019] [Indexed: 11/11/2022]
Abstract
ABSTRACT Listeria monocytogenes is a ubiquitous, intracellular foodborne pathogen that is responsible for invasive listeriosis. The ability of L. monocytogenes to cause disease has some correlation with the serotypes of a specific lineage group, making the identification of lineage groups important for epidemiological analysis. The development of typing methods to link the strains of L. monocytogenes to an outbreak of listeriosis would help minimize the spread of the disease. The aim of this study was to design a PCR-restriction fragment length polymorphism (RFLP) method to differentiate between the lineage groups of L. monocytogenes. PCR-amplified fragments of the hly gene for 12 serotypes of L. monocytogenes were sequenced, aligned, and analyzed with the BioEdit program, and single nucleotide polymorphisms (SNPs) within regions of this gene were identified. Because of the difficulty in acquiring a serotype 4ab reference strain, this serotype was not included in this study. We tested the specificity and accuracy of the PCR-RFLP method on these L. monocytogenes reference strains and validated the method with 172 L. monocytogenes strains recovered from humans, food, and the food processing environment in 2000 to 2002 and 2008 to 2010 from regions within South Africa. PCR-RFLP analysis applied in this study placed L. monocytogenes serotypes into one of three lineage groups based on the sequence differences and SNPs within each lineage group. The SNPs were conserved in a region where RFLP analysis could be applied for a distinction between L. monocytogenes lineage groups. HIGHLIGHTS
Collapse
Affiliation(s)
- Diane Rip
- Food Microbiology Research Group, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Pieter A Gouws
- Food Microbiology Research Group, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
12
|
Genomic Diversity of Common Sequence Types of Listeria monocytogenes Isolated from Ready-to-Eat Products of Animal Origin in South Africa. Genes (Basel) 2019; 10:genes10121007. [PMID: 31817243 PMCID: PMC6947032 DOI: 10.3390/genes10121007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/08/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022] Open
Abstract
Listeria monocytogenes is a highly fatal foodborne causative agent that has been implicated in numerous outbreaks and related deaths of listeriosis in the world. In this study, six L. monocytogenes isolated from ready-to-eat (RTE) meat products were analysed using Whole Genome Sequencing (WGS) to identify virulence and resistance genes, prophage sequences, PCR-serogroups, and sequence types (STs). The WGS identified four different STs (ST1, ST121, ST204, and ST876) that belonged to serogroup 4b (lineage I) and 1/2a (lineage II). Core genome, and average nucleotide identity (ANI) phylogenetic analyses showed that the majority of strains from serogroup 4b (lineage I) clustered together. However, two isolates that belong to serogroup 1/2a (lineage II) grouped far from each other and the other strains. Examination of reference-guided scaffolds for the presence of prophages using the PHAge Search Tool Enhanced Release (PHASTER) software identified 24 diverse prophages, which were either intact or incomplete/questionable. The National Center for Biotechnology Information- Nucleotide Basic Local Alignment Search Tool (NCBI-BLASTn) revealed that Listeria monocytogenes strains in this study shared some known major virulence genes that are encoded in Listeria pathogenicity islands 1 and 3. In general, the resistance profiles for all the isolates were similar and encoded for multidrug, heavy metal, antibiotic, and sanitizer resistance genes. All the isolates in this study possessed genes that code for resistance to common food processing antiseptics such as Benzalkonium chloride.
Collapse
|
13
|
Drali R, Deriet A, Verhaegen B, De Keersmaecker SCJ, Botteldoorn N, Vanneste K, Roosens NHC, Mouffok F. Whole-genome sequencing of Listeria monocytogenes serotype 4b isolated from ready-to-eat lentil salad in Algiers, Algeria. New Microbes New Infect 2019; 33:100628. [PMID: 31908783 PMCID: PMC6939032 DOI: 10.1016/j.nmni.2019.100628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 11/10/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive food-borne pathogen causing a serious threat for public health. Here we announce the whole genome sequence (3 011 693 bp) of Listeria monocytogenes serotype 4b, isolated from ready-to-eat lentil salad in Algiers and belonging to sequence type 2, lineage I and clonal complex 2.
Collapse
Affiliation(s)
- R Drali
- Plateforme Génomique-Bioinformatique, Institut Pasteur d'Algérie, Alger, Algeria
| | - A Deriet
- Laboratoire de Bactériologie des Aliments, Eaux et Environnement, Institut Pasteur d'Algérie, Alger, Algeria
| | - B Verhaegen
- Sciensano, Service Food-Borne Pathogens, Brussels, Belgium
| | | | - N Botteldoorn
- Sciensano, Service Food-Borne Pathogens, Brussels, Belgium
| | - K Vanneste
- Sciensano, Transversal Activities in Applied Genomics, Brussels, Belgium
| | - N H C Roosens
- Sciensano, Transversal Activities in Applied Genomics, Brussels, Belgium
| | - F Mouffok
- Laboratoire de Bactériologie des Aliments, Eaux et Environnement, Institut Pasteur d'Algérie, Alger, Algeria
| |
Collapse
|
14
|
Yao H, Kang M, Wang Y, Feng Y, Kong S, Cai X, Ling Z, Chen S, Jiao X, Yin Y. An essential role for hfq involved in biofilm formation and virulence in serotype 4b Listeria monocytogenes. Microbiol Res 2018; 215:148-154. [DOI: 10.1016/j.micres.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/22/2018] [Accepted: 07/07/2018] [Indexed: 11/28/2022]
|
15
|
Listeria monocytogenes at chicken slaughterhouse: Occurrence, genetic relationship among isolates and evaluation of antimicrobial susceptibility. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.01.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Abstract
Human listeriosis results from the ingestion of foods contaminated with Listeria monocytogenes (Lm). About 1600 listeriosis cases are reported every year in the USA with >95% hospitalization and 15-20% death. The proportions of persons with listeriosis hospitalized and who die are very similar in Europe with slightly higher rates in Scandinavian countries. The occurrence of disease requires adaptation, survival, and usually growth of Lm in foods before consumption by members of the susceptible population. Despite concerted efforts by the food safety community, the disease incidence has not changed significantly since 2001 and remains higher than the Healthy People 2020 target of 0.2 cases per 100,000 individuals. In recent years, human listeriosis cases have been reported to involve non-typical foods, e.g. celery, cantaloupe, caramel apple, frozen vegetables and ice cream. In some outbreaks, a few infected individuals were considered outside the realm of the standard vulnerable population group. Our recent work with the outbreak associated with ice cream samples, indicated that a low-level contamination in a food that does not support growth can cause listeriosis in highly susceptible populations. Separately, using a combination of polymerase chain reaction (PCR)-based serotyping and whole genome sequencing (WGS)-based analyses; we have discovered that a genetic variant of the serotype 4b strain, called 4bV, was responsible for 3-4 recent outbreaks in the USA. Three of the four products associated with these outbreaks were grown in a small geographical region of the USA while the fourth was never linked to a specific grower, but rather a processing facility. These 4bV strains contain a 6.3kb DNA fragment normally associated with lineage II Lm strains. The significance of this DNA fragment in the serotype 4b background is currently being investigated. This article reviews current listeriosis outbreaks with an emphasis on the expansions in food niche, case demography and genotypes of Lm. The discussion raises important questions about Lm adaptation in different foods and environments and the role of certain genotypes in such adaptation and disease outcome.
Collapse
|
17
|
Sonnier JL, Karns JS, Lombard JE, Kopral CA, Haley BJ, Kim SW, Van Kessel JAS. Prevalence of Salmonella enterica, Listeria monocytogenes, and pathogenic Escherichia coli in bulk tank milk and milk filters from US dairy operations in the National Animal Health Monitoring System Dairy 2014 study. J Dairy Sci 2018; 101:1943-1956. [DOI: 10.3168/jds.2017-13546] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/26/2017] [Indexed: 01/07/2023]
|
18
|
Biofilm formation and microscopic analysis of biofilms formed by Listeria monocytogenes in a food processing context. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.05.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Burall LS, Grim CJ, Mammel MK, Datta AR. A Comprehensive Evaluation of the Genetic Relatedness of Listeria monocytogenes Serotype 4b Variant Strains. Front Public Health 2017; 5:241. [PMID: 28955706 PMCID: PMC5601410 DOI: 10.3389/fpubh.2017.00241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/23/2017] [Indexed: 01/10/2023] Open
Abstract
Recently, we have identified a link between four listeriosis incidents/outbreaks to a variant of Listeria monocytogenes (Lm) serotype 4b strains, 4bV. Although 4bV strains have been reported from clinical specimens as well as from foods, listeriosis outbreaks occurring in 2014–2016 were the first reported outbreaks involving 4bV in the USA. Since traditional typing methods do not detect members of this group, we undertook a systematic and retrospective analysis of all Lm in the NCBI WGS Sequence Read Archive database to investigate the burden of 4bV strains among all listeriosis cases. This analysis identified the presence of isolates causing sporadic cases as well as those associated with the aforementioned outbreaks, as determined by WGS and traditional epidemiology. In total, approximately 350 Lm 4bV strains were identified from multiple parts of the USA as well as from Australia and Chile, dating back to 2001. The genomic relatedness of these strains was compared using the CFSAN SNP Pipeline and multi-virulence-locus sequence typing (MVLST). Using the CFSAN Pipeline tool, the 4bV strains were found to group into seven clusters that were separate from 4b strains. All seven clades appeared to contain isolates from both clinical and non-clinical sources. Conversely, the MVLST analysis revealed that practically all of the strains belonged to a single clade, suggesting that 4bV strains from disparate geographic regions and sources are under varied selective pressure, restricting diversity across these six virulence loci while allowing more variability across the genome as a whole. Further evaluation of these 4bV strains identified genes potentially acquired from a lineage II source external to the lmo0733–lmo0739 region, as well as highly conserved SNPs unique to the 4bV strains when compared to those from other lineages. Taken together, these data suggest that 4bV strains have undergone adaptive responses to selective pressures that may enhance survival in the environment while maintaining the pathogenic potential of serotype 4b strains.
Collapse
Affiliation(s)
- Laurel S Burall
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Christopher J Grim
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Mark K Mammel
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Atin R Datta
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| |
Collapse
|
20
|
Datta AR, Burall LS. Serotype to genotype: The changing landscape of listeriosis outbreak investigations. Food Microbiol 2017; 75:18-27. [PMID: 30056958 DOI: 10.1016/j.fm.2017.06.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/08/2017] [Accepted: 06/15/2017] [Indexed: 02/07/2023]
Abstract
The classical definition of a disease outbreak is the occurrence of cases of disease in excess of what would normally be expected in a community, geographical area or time period. The establishment of an outbreak then starts with the identification of an incidence of cases above the normally expected threshold during a given time period. Subsequently, the cases are examined using a variety of subtyping methods to identify potential linkages. As listeriosis disease has a long incubation period, relating a single source or multiple sources of contaminated food to clinical disease is challenging and time consuming. The vast majority of human listeriosis cases are caused by three serotypes, 1/2a, 1/2b, and 4b. Thus serotyping of isolates from suspected foods and clinical samples, although useful for eliminating some food sources, has a very limited discriminatory power. The advent of faster and more affordable sequencing technology, coupled with increased computational power, has permitted comparisons of whole Listeria genome sequences from isolates recovered from clinical, food, and environmental sources. These analyses made it possible to identify outbreaks and the source much more accurately and faster, thus leading to a reduction in number of illnesses as well as a reduction in economic losses. Initial DNA sequence information also facilitated the development of a simple molecular serotype protocol which allowed for the identification of major disease causing serotypes of L. monocytogenes, including a clade of 4b variant (4bV) strains of L. monocytogenes involved in at least 3 more recent listeriosis outbreaks in the US. Furthermore, data generated using whole genome sequence (WGS) analyses was successfully utilized to develop a pan-genomic DNA microarray as well as a single nucleotide polymorphism (SNP) based analysis. Herein, we present and compare, the two recently developed sub-typing technologies and discuss how these methods are not only important in outbreak investigations, but could also shed light on possible adaptations to different foods and environments.
Collapse
Affiliation(s)
- Atin R Datta
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, 20708, USA.
| | - Laurel S Burall
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, 20708, USA
| |
Collapse
|
21
|
Burall LS, Grim CJ, Datta AR. A clade of Listeria monocytogenes serotype 4b variant strains linked to recent listeriosis outbreaks associated with produce from a defined geographic region in the US. PLoS One 2017; 12:e0176912. [PMID: 28464038 PMCID: PMC5413027 DOI: 10.1371/journal.pone.0176912] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/19/2017] [Indexed: 11/19/2022] Open
Abstract
Four listeriosis incidences/outbreaks, spanning 19 months, have been linked to Listeria monocytogenes serotype 4b variant (4bV) strains. Three of these incidents can be linked to a defined geographical region, while the fourth is likely to be linked. In this study, whole genome sequencing (WGS) of strains from these incidents was used for genomic comparisons using two approached. The first was JSpecies tetramer, which analyzed tetranucleotide frequency to assess relatedness. The second, the CFSAN SNP Pipeline, was used to perform WGS SNP analyses against three different reference genomes to evaluate relatedness by SNP distances. In each case, unrelated strains were included as controls. The analyses showed that strains from these incidents form a highly related clade with SNP differences of ≤101 within the clade and >9000 against other strains. Multi-Virulence-Locus Sequence Typing, a third standardized approach for evaluation relatedness, was used to assess the genetic drift in six conserved, known virulence loci and showed a different clustering pattern indicating possible differences in selection pressure experienced by these genes. These data suggest a high degree of relatedness among these 4bV strains linked to a defined geographic region and also highlight the possibility of alterations related to adaptation and virulence.
Collapse
Affiliation(s)
- Laurel S. Burall
- Center for Food Safety and Applied Nutrition, Food and Drug Administration Laurel, Maryland, United States of America
- * E-mail: (LSB); (ARD)
| | - Christopher J. Grim
- Center for Food Safety and Applied Nutrition, Food and Drug Administration Laurel, Maryland, United States of America
| | - Atin R. Datta
- Center for Food Safety and Applied Nutrition, Food and Drug Administration Laurel, Maryland, United States of America
- * E-mail: (LSB); (ARD)
| |
Collapse
|
22
|
Inactivation and induction of sublethal injury of Listeria monocytogenes in biofilm treated with various sanitizers. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Lozinak KA, Jani N, Gangiredla J, Patel I, Elkins CA, Hu Z, Kassim PA, Myers RA, Laksanalamai P. Investigation of potential Shiga toxin producing Escherichia coli (STEC) associated with a local foodborne outbreak using multidisciplinary approaches. FOOD SCIENCE AND HUMAN WELLNESS 2016. [DOI: 10.1016/j.fshw.2016.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Burall LS, Grim CJ, Mammel MK, Datta AR. Whole Genome Sequence Analysis Using JSpecies Tool Establishes Clonal Relationships between Listeria monocytogenes Strains from Epidemiologically Unrelated Listeriosis Outbreaks. PLoS One 2016; 11:e0150797. [PMID: 26950338 PMCID: PMC4780826 DOI: 10.1371/journal.pone.0150797] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/21/2016] [Indexed: 11/19/2022] Open
Abstract
In an effort to build a comprehensive genomic approach to food safety challenges, the FDA has implemented a whole genome sequencing effort, GenomeTrakr, which involves the sequencing and analysis of genomes of foodborne pathogens. As a part of this effort, we routinely sequence whole genomes of Listeria monocytogenes (Lm) isolates associated with human listeriosis outbreaks, as well as those isolated through other sources. To rapidly establish genetic relatedness of these genomes, we evaluated tetranucleotide frequency analysis via the JSpecies program to provide a cursory analysis of strain relatedness. The JSpecies tetranucleotide (tetra) analysis plots standardized (z-score) tetramer word frequencies of two strains against each other and uses linear regression analysis to determine similarity (r2). This tool was able to validate the close relationships between outbreak related strains from four different outbreaks. Included in this study was the analysis of Lm strains isolated during the recent caramel apple outbreak and stone fruit incident in 2014. We identified that many of the isolates from these two outbreaks shared a common 4b variant (4bV) serotype, also designated as IVb-v1, using a qPCR protocol developed in our laboratory. The 4bV serotype is characterized by the presence of a 6.3 Kb DNA segment normally found in serotype 1/2a, 3a, 1/2c and 3c strains but not in serotype 4b or 1/2b strains. We decided to compare these strains at a genomic level using the JSpecies Tetra tool. Specifically, we compared several 4bV and 4b isolates and identified a high level of similarity between the stone fruit and apple 4bV strains, but not the 4b strains co-identified in the caramel apple outbreak or other 4b or 4bV strains in our collection. This finding was further substantiated by a SNP-based analysis. Additionally, we were able to identify close relatedness between isolates from clinical cases from 1993–1994 and a single case from 2011 as well as links between two isolates from over 30 years ago. The identification of these potential links shows that JSpecies Tetra analysis can be a useful tool in rapidly assessing genetic relatedness of Lm isolates during outbreak investigations and for comparing historical isolates. Our analyses led to the identification of a highly related clonal group involved in two separate outbreaks, stone fruit and caramel apple, and suggests the possibility of a new genotype that may be better adapted for certain foods and/or environment.
Collapse
Affiliation(s)
- Laurel S. Burall
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, Maryland, United States of America
- * E-mail: (LSB); (ARD)
| | - Christopher J. Grim
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, Maryland, United States of America
| | - Mark K. Mammel
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, Maryland, United States of America
| | - Atin R. Datta
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, Maryland, United States of America
- * E-mail: (LSB); (ARD)
| |
Collapse
|
25
|
Camargo AC, Vallim DC, Hofer E, Nero LA. Molecular Serogrouping of Listeria monocytogenes from Brazil Using PCR. J Food Prot 2016; 79:144-7. [PMID: 26735041 DOI: 10.4315/0362-028x.jfp-15-294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We assessed the serotype distribution of Listeria monocytogenes isolates from clinical, beef, and environment samples using two PCR-based protocols for serogrouping. A panel of 134 isolates (22 clinical samples, 79 samples of beef cuts, and 33 samples from the beef processing environment) were subjected to conventional serology and identified as serotypes 1/2a (n = 12), 1/2b (n = 21), 1/2c (n = 71), and 4b (n = 30). Isolates from clinical samples were predominantly serotype 4b, and the most prevalent serotype among the beef cut and environment samples was 1/2c. The protocol described by M. Doumith, C. Buchrieser, P. Glaser, C. Jacquet, and P. Martin (J. Clin. Microbiol. 42:3819-3822, 2004) produced contradictory results for seven 1/2a isolates, which were positive for lmo1118 and had the profile IIc (serotypes 1/2c and 3c). Fifteen serotype 4b isolates amplified the target lmo0737, with the atypical profile IVb variant 1. The results obtained with the protocol described by M. K. Borucki and D. R. Call (J. Clin. Microbiol. 41:5537-5540, 2003) were in full agreement with those of the conventional serology. We recommend using this multiplex PCR approach by adding one pair of the reported primers to the panel to reduce total effort by one PCR while maintaining specificity. We present additional recommendations to improve the efficiency and reproducibility of this serogrouping assay.
Collapse
Affiliation(s)
| | - Deyse Christina Vallim
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Zoonoses Bacterianas, Rio de Janeiro, RJ, Brazil
| | - Ernesto Hofer
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Zoonoses Bacterianas, Rio de Janeiro, RJ, Brazil
| | - Luís Augusto Nero
- Universidade Federal de Viçosa, Departamento de Veterinária, Viçosa, MG, Brazil.
| |
Collapse
|
26
|
Prospective Whole-Genome Sequencing Enhances National Surveillance of Listeria monocytogenes. J Clin Microbiol 2015; 54:333-42. [PMID: 26607978 PMCID: PMC4733179 DOI: 10.1128/jcm.02344-15] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/10/2015] [Indexed: 12/31/2022] Open
Abstract
Whole-genome sequencing (WGS) has emerged as a powerful tool for comparing bacterial isolates in outbreak detection and investigation. Here we demonstrate that WGS performed prospectively for national epidemiologic surveillance of Listeria monocytogenes has the capacity to be superior to our current approaches using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), multilocus variable-number tandem-repeat analysis (MLVA), binary typing, and serotyping. Initially 423 L. monocytogenes isolates underwent WGS, and comparisons uncovered a diverse genetic population structure derived from three distinct lineages. MLST, binary typing, and serotyping results inferred in silico from the WGS data were highly concordant (>99%) with laboratory typing performed in parallel. However, WGS was able to identify distinct nested clusters within groups of isolates that were otherwise indistinguishable using our current typing methods. Routine WGS was then used for prospective epidemiologic surveillance on a further 97 L. monocytogenes isolates over a 12-month period, which provided a greater level of discrimination than that of conventional typing for inferring linkage to point source outbreaks. A risk-based alert system based on WGS similarity was used to inform epidemiologists required to act on the data. Our experience shows that WGS can be adopted for prospective L. monocytogenes surveillance and investigated for other pathogens relevant to public health.
Collapse
|