1
|
Huang X, Wang J, Zhao X, Sooranna SR, Liao B, Jian C, Shang J, Li X. Molecular mechanisms of MAPK9, BAX, and TFEB proteins: Genetic correlations between oxidative stress and autophagy pathways in Alzheimer's disease. Int J Biol Macromol 2025; 309:143196. [PMID: 40246113 DOI: 10.1016/j.ijbiomac.2025.143196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/03/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease whose pathological mechanisms involve dysregulation of oxidative stress and autophagy pathways. MAPK9, BAX and TFEB were used as key proteins. Wayne analysis was used to identify genes associated with autophagy and oxidative stress, and protein-protein interaction (PPI) networks were constructed to study the associations between key genes. The key genes were mined by machine learning algorithm and prognostic marker models were constructed. The immune characteristics of AD were investigated by gene collection enrichment analysis (GSEA) and immunoresponse pathway enrichment analysis, and the clinical application potential was evaluated by drug prediction and molecular docking analysis. Finally, Mendelian randomization (MR) analysis was used to verify the causal relationship between key genes and AD. The results showed that we successfully identified several genes associated with Alzheimer's disease, including MAPK9, BAX, and TFEB. GSEA analysis showed their active involvement in the immune response, indicating the importance of immune function in AD. Drug prediction models reveal potential therapeutic targets for these key genes.
Collapse
Affiliation(s)
- Xiaorui Huang
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong, China; Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Jie Wang
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Xiaoyue Zhao
- Department of Nephrology, Baise People's Hospital, Baise, Guangxi, China
| | - Suren Rao Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW10 9NH, United Kingdom
| | - Bao Liao
- Department of Neurology, Baise People's Hospital, Baise, Guangxi, China
| | - Chongdong Jian
- Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China; Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Baise, Guangxi, China.
| | - Jingwei Shang
- Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China; Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Baise, Guangxi, China.
| | - Xuebin Li
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong, China; Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China; Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Baise, Guangxi, China.
| |
Collapse
|
2
|
Meng T, Zhang Y, Ye Y, Li H, He Y. Bioinformatics insights into mitochondrial and immune gene regulation in Alzheimer's disease. Eur J Med Res 2025; 30:89. [PMID: 39920860 PMCID: PMC11806906 DOI: 10.1186/s40001-025-02297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND There is growing evidence that the pathogenesis of Alzheimer's disease is closely linked to the resident innate immune cells of the central nervous system, including microglia and astrocytes. Mitochondrial dysfunction in microglia has also been reported to play an essential role in the pathogenesis of AD and other neurological diseases. Therefore, finding the mitochondrial and immune-related gene (MIRG) signatures in AD can be significant in diagnosing and treating AD. METHODS In this study, the intersection of the differentially expressed genes (DEGs) from the GSE109887 cohort, immune-related genes (IRGs) obtained from WGCNA analysis, and mitochondria-related genes (MRGs) was taken to identify mitochondria-immune-related genes (MIRGs). Then, using machine learning algorithms, biomarkers with good diagnostic value were selected, and a nomogram was constructed. Subsequently, we further analyzed the signaling pathways and potential biological mechanisms of the biomarkers through gene set enrichment analysis, prediction of transcription factors (TFs), miRNAs, and drug prediction. RESULTS Using machine learning algorithms, five biomarkers (TSPO, HIGD1A, NDUFAB1, NT5DC3, and MRPS30) were successfully identified, and a nomogram model with strong diagnostic ability and accuracy (AUC > 0.9) was constructed. In addition, single-gene enrichment analysis revealed that NDUFAB1 was significantly enriched in pathways associated with diseases, such as Alzheimer's and Parkinson's, providing valuable insights for future clinical research on Alzheimer's in the context of mitochondrial-immune interactions. Interestingly, brain tissue pathology showed neuronal atrophy and demyelination in AD mice, along with a reduction in Nissl bodies. Furthermore, the escape latency of AD mice was significantly longer than that of the control group. After platform removal, there was a notable increase in the path complexity and time required to reach the target quadrant, suggesting a reduction in spatial memory capacity in AD mice. Moreover, qRT-PCR validation confirmed that the mRNA expression of the five biomarkers was consistent with bioinformatics results. In AD mice, TSPO expression was increased, while HIGD1A, NDUFAB1, NT5DC3, and MRPS30 expressions were decreased. However, peripheral blood samples did not show expression of HIGD1A or MRPS30. These findings provide new insights for research on Alzheimer's disease in the context of mitochondrial-immune interactions, further exploring the pathogenesis of Alzheimer's disease and offering new perspectives for the clinical development of novel drugs. CONCLUSIONS Five mitochondrial and immune biomarkers, i.e., TSPO, HIGD1A, NDUFAB1, NT5DC3, and MRPS30, with diagnostic value in Alzheimer's disease, were screened by machine-learning algorithmic models, which will be a guide for future clinical research of Alzheimer's disease in the mitochondria-immunity-related direction.
Collapse
Affiliation(s)
- Tian Meng
- Yunnan Yunke Institute of Biotechnology, No. 871 Longquan Rd, Kunming, 650500, China
| | - Yazhou Zhang
- Department of Geriatrics, The Second People's Hospital of Kunming, No. 338Guangming Rd, Kunming, 650233, Yunnan, China
| | - Yuan Ye
- Department of Geriatrics, The Second People's Hospital of Kunming, No. 338Guangming Rd, Kunming, 650233, Yunnan, China
| | - Hui Li
- Yunnan Labreal Biotechnology Co., LTD, No. 871 Longquan Rd, Kunming, 650500, China
| | - Yongsheng He
- Yunnan Yunke Institute of Biotechnology, No. 871 Longquan Rd, Kunming, 650500, China.
- Yunnan Labreal Biotechnology Co., LTD, No. 871 Longquan Rd, Kunming, 650500, China.
| |
Collapse
|
3
|
Zhang N, Yue W, Jiao B, Cheng D, Wang J, Liang F, Wang Y, Liang X, Li K, Liu J, Li Y. Unveiling prognostic value of JAK/STAT signaling pathway related genes in colorectal cancer: a study of Mendelian randomization analysis. Infect Agent Cancer 2025; 20:9. [PMID: 39920741 PMCID: PMC11806682 DOI: 10.1186/s13027-025-00640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) ranks among the frequently occurring malignant neoplasms affecting the gastrointestinal tract. This study aimed to explore JAK-STAT signaling pathway related genes in CRC and establish a new prognostic model. METHODS The data set used in this study is from a public database. JAK-STAT-differentially expressed genes (DEGs) were identified through differential expression analysis and weighted gene co-expression network analysis (WGCNA). Prognostic genes were selected from JAK-STAT-DEGs through Mendelian randomization (MR), univariate Cox regression, and least absolute shrinkage and selection operator (LASSO) analyses. The expressions of prognostic genes were verified by RT-qPCR. Then, a risk model was built and validated by the GSE39582. Independent prognostic factors were screened underlying risk scores and different clinical indicators, resulting in the construction of a nomogram. Additionally, immune infiltration, immune scores and immune checkpoint inhibitors analyses and gene set enrichment analysis (GSEA) were carried out. RESULTS The 3,668 JAK-STAT-DEGs were obtained by intersection of 5826 CRC-DEGs and 9766 JAK-STAT key module genes. Five prognostic genes were selected (ANK3, F5, FAM50B, KLHL35, MPP2), and their expressions were significantly different between CRC and control groups. A risk model was constructed according to prognostic genes and verified by GSE39582. In addition, the nomogram exhibited superior predictive accuracy for CRC. Furthermore, immune analysis results indicated a notable positive correlation between risk score and the scores of immune (R = 0.486), stromal (R = 0.309), and ESTIMATE (R = 0.422). Immune checkpoint inhibitor ADORA2A (Cor = 0.483263) exhibited the strongest positive correlation with risk score. And MPP2 exhibited the most potent activating influence on the cell cycle pathway, whereas ANK3 demonstrated the most significant inhibitory effect within the apoptosis pathway. CONCLUSIONS A new JAK-STAT related CRC prognostic model was constructed and validated, which possessed an underlying predictive potential for CRC patients' prognosis and could potentially enhance tailored guidance for immunotherapy.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China.
| | - Wenli Yue
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Bihang Jiao
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Duo Cheng
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Jingjing Wang
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Fang Liang
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Yingnan Wang
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Xiyue Liang
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Kunkun Li
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
- Medical Key Laboratory for Diagnosis and Treatment of Colorectal Cancer in Henan Province, Zhengzhou, Henan, China
| | - Junwei Liu
- Department of Anorectal Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Yadong Li
- Department of Gastrointestinal Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Min R, Hu Z, Zhou Y. Identifying the prognostic significance of mitophagy-associated genes in multiple myeloma: a novel risk model construction. Clin Exp Med 2024; 24:249. [PMID: 39470826 PMCID: PMC11522179 DOI: 10.1007/s10238-024-01499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/24/2024] [Indexed: 11/01/2024]
Abstract
Multiple myeloma (MM) is a highly heterogeneous hematological malignancy that is currently incurable. Individualized therapeutic approaches based on accurate risk assessment are essential for improving the prognosis of MM patients. Nevertheless, current prognostic models for MM exhibit certain limitations and prognosis heterogeneity still an unresolved issue. Recent studies have highlighted the pivotal involvement of mitochondrial autophagy in the development and drug sensitivity of MM. This study seeks to conduct an integrative analysis of the prognostic significance and immune microenvironment of mitophagy-related signature in MM, with the aim of constructing a novel predictive risk model. GSE4581 and GSE47552 datasets were acquired from the Gene Expression Omnibus database. MM-differentially expressed genes (DEGs) were identified by limma between MM samples and normal samples in GSE47552. Mitophagy key module genes were obtained by weighted gene co-expression network analysis in the Cancer Genome Atlas (TCGA)-MM dataset. Mitophagy DEGs were identified by the overlap genes between MM-DEGs and mitophagy key module genes. Prognostic genes were selected through univariate Cox regression and least absolute shrinkage and selection operator (LASSO) analysis, and a risk model was subsequently constructed based on these prognostic genes. Subsequently, the MM samples were stratified into high- and low-risk groups based on their median risk scores. The validity of the risk model was further evaluated using the GSE4581 dataset. Moreover, a nomogram was developed using the independent prognostic factors identified from the risk score and various clinical indicators. Additionally, analyses were conducted on immune infiltration, immune scores, immune checkpoint, and chemotherapy drug sensitivity. The 17 mitophagy DEGs were obtained by intersection of 803 MM-DEGs and 1084 mitophagy key module genes. Five prognostic genes (CDC6, PRIM1, SNRPB, TOP2A, and ZNF486) were selected via LASSO and univariate cox regression analyses. The predictive performance of the risk model, which was constructed based on the five prognostic genes, demonstrated favorable results in both TCGA-MM and GSE4581 datasets as indicated by the receiver operating characteristic (ROC) curves. In addition, calibration curve, ROC curve, and decision curve analysis curve corroborated that the nomogram exhibited superior predictive accuracy for MM. Furthermore, immune analysis results indicated a significant difference in stromal scores of two risk groups categorized on median risk scores. And four immune checkpoints (CD274, CTLA4, LAG3, and PDCD1LG2) showed significant differences in different risk groups. The analysis of chemotherapy drug sensitivity revealed that etoposide and doxorubicin, which target TOP2A, exhibited superior treatment outcomes in the high-risk group. A novel prognostic model for MM was developed and validated, demonstrating significant potential in predicting patient outcomes and providing valuable guidance for personalized immunotherapy counseling.
Collapse
Affiliation(s)
- Rui Min
- Joint Program of Nanchang University and Queen Mary University of London, Medical College of Nangchang University, Nanchang, 330006, China
| | - Zeyu Hu
- Joint Program of Nanchang University and Queen Mary University of London, Medical College of Nangchang University, Nanchang, 330006, China
| | - Yulan Zhou
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Institute of Hematology, Academy of Clinical Medicine of Jiangxi Province, Nanchang, 330006, China.
| |
Collapse
|
5
|
Zhao J, Wang X, Zhu H, Wei S, Zhang H, Ma L, Zhu W. Exploring natural killer cell-related biomarkers in multiple myeloma: a novel nature killer cell-related model predicting prognosis and immunotherapy response using single-cell study. Clin Exp Med 2024; 24:79. [PMID: 38634972 PMCID: PMC11026209 DOI: 10.1007/s10238-024-01322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/03/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Natural killer cells (NKs) may be involved in multiple myeloma (MM) progression. The present study elucidated the correlation between NKs and the progression of MM using single-cell binding transcriptome probes to identify NK cell-related biomarkers. METHODS Single-cell analysis was performed including cell and subtype annotation, cell communication, and pseudotime analysis. Hallmark pathway enrichment analysis of NKs and NKs-related differentially expressed genes (DEGs) were conducted using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and protein-protein interaction (PPI) networks. Then, a risk model was structured based on biomarkers identified through univariate Cox regression analysis and least absolute shrinkage and selection operator regression analysis and subsequently validated. Additionally, correlation of clinical characteristics, gene set enrichment analysis, immune analysis, regulatory network, and drug forecasting were explored. RESULTS A total of 13 cell clusters were obtained and annotated, including 8 cell populations that consisted of NKs. Utilizing 123 PPI network node genes, 8 NK-related DEGs were selected to construct a prognostic model. Immune cell infiltration results suggested that 11 immune cells exhibited marked differences in the high and low-risk groups. Finally, the model was used to screen potential drug targets to enhance immunotherapy efficacy. CONCLUSION A new prognostic model for MM associated with NKs was constructed and validated. This model provides a fresh perspective for predicting patient outcomes, immunotherapeutic response, and candidate drugs.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Xiaoning Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Huachao Zhu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Suhua Wei
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Hailing Zhang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Le Ma
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Wenjuan Zhu
- Department of Medical, Xi'an Gem Flower Changqing Hospital, No. 20 Changqing West Road, Xi'an, 710201, Shaanxi, People's Republic of China
| |
Collapse
|
6
|
Mohamed Gamal El-Din G, Ibrahim FK, Shehata HH, Osman NM, Abdel-Rahman OM, Ali M. Exosomal expression of RAB27A and its related lncRNA Lnc-RNA-RP11-510M2 in lung cancer. Arch Physiol Biochem 2022; 128:1479-1485. [PMID: 32657170 DOI: 10.1080/13813455.2020.1778036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Examine the diagnostic role of serum exosomal RAB27A mRNA in lung cancer and evaluate the relation of LncRNAs to lung cancer in association to RAB27A mRNA in Egyptian population. METHODS Exosomal RNA-based biomarkers RAB27A mRNA and Lnc-RNA-RP11-510M2.10 were selected based on bioinformatic methods, followed by RT-qPCR validation of their expression in serum of 20 patients with lung cancer, 10 patients with COPD and 10 healthy volunteers. we examined their expression in 10 bronchoalveolar lavage samples and assessed correlation with the serum levels. RESULTS There was an inverse relationship between expression of serum exosomal RAB27A mRNA and Lnc-RNA-RP11-510M2.10 (r = -0.62, p = .00). Both serum exosomal RAB27A mRNA and Lnc-RNA-RP11-510M2.10 showed a significant positive and negative association with lung cancer patients respectively in comparison to patients with COPD and healthy persons (p < .001). CONCLUSION RAB27A mRNA and Lnc-RNA-RP11-510M2.10 could be used as diagnostic and prognostic biomarker tools for lung cancer.
Collapse
Affiliation(s)
- Ghada Mohamed Gamal El-Din
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| | - Fawzia Khalil Ibrahim
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| | - Hanan Hussein Shehata
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| | - Nehad Mohammed Osman
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| | - Omar Mohammed Abdel-Rahman
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| | - Marwa Ali
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
7
|
Pratt J, Haidara K, Annabi B. MT1-MMP Expression Levels and Catalytic Functions Dictate LDL Receptor-Related Protein-1 Ligand Internalization Capacity in U87 Glioblastoma Cells. Int J Mol Sci 2022; 23:14214. [PMID: 36430705 PMCID: PMC9692856 DOI: 10.3390/ijms232214214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Modulations in cell surface receptor ectodomain proteolytic shedding impact on receptor function and cancer biomarker expression. As such, heavily pursued therapeutic avenues have exploited LDL receptor-related protein-1 (LRP-1)-mediated capacity in internalizing Angiopep-2 (An2), a brain-penetrating peptide that allows An2-drug conjugates to cross the blood-brain tumor barrier (BBTB). Given that LRP-1 is proteolytically shed from the cell surface through matrix metalloproteinase (MMP) activity, the balance between MMP expression/function and LRP-1-mediated An2 internalization is unknown. In this study, we found that membrane type-1 (MT1)-MMP expression increased from grade 1 to 4 brain tumors, while that of LRP-1 decreased inversely. MMP pharmacological inhibitors such as Ilomastat, Doxycycline and Actinonin increased in vitro An2 internalization by up to 2.5 fold within a human grade IV-derived U87 glioblastoma cell model. Transient siRNA-mediated MT1-MMP gene silencing resulted in increased basal An2 cell surface binding and intracellular uptake, while recombinant MT1-MMP overexpression reduced both cell surface LRP-1 expression as well as An2 internalization. The addition of Ilomastat to cells overexpressing recombinant MT1-MMP restored LRP-1 expression at the cell surface and An2 uptake to levels comparable to those observed in control cells. Collectively, our data suggest that MT1-MMP expression status dictates An2-mediated internalization processes in part by regulating cell surface LRP-1 functions. Such evidence prompts preclinical evaluations of combined MMP inhibitors/An2-drug conjugate administration to potentially increase the treatment of high-MT1-MMP-expressing brain tumors.
Collapse
Affiliation(s)
| | | | - Borhane Annabi
- Laboratoire d’Oncologie Moléculaire, Centre de Recherche CERMO-FC, Département de Chimie, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
8
|
Brunel A, Bégaud G, Auger C, Durand S, Battu S, Bessette B, Verdier M. Autophagy and Extracellular Vesicles, Connected to rabGTPase Family, Support Aggressiveness in Cancer Stem Cells. Cells 2021; 10:1330. [PMID: 34072080 PMCID: PMC8227744 DOI: 10.3390/cells10061330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022] Open
Abstract
Even though cancers have been widely studied and real advances in therapeutic care have been made in the last few decades, relapses are still frequently observed, often due to therapeutic resistance. Cancer Stem Cells (CSCs) are, in part, responsible for this resistance. They are able to survive harsh conditions such as hypoxia or nutrient deprivation. Autophagy and Extracellular Vesicles (EVs) secretion are cellular processes that help CSC survival. Autophagy is a recycling process and EVs secretion is essential for cell-to-cell communication. Their roles in stemness maintenance have been well described. A common pathway involved in these processes is vesicular trafficking, and subsequently, regulation by Rab GTPases. In this review, we analyze the role played by Rab GTPases in stemness status, either directly or through their regulation of autophagy and EVs secretion.
Collapse
|
9
|
van Solinge TS, Abels ER, van de Haar LL, Hanlon KS, Maas SLN, Schnoor R, de Vrij J, Breakefield XO, Broekman MLD. Versatile Role of Rab27a in Glioma: Effects on Release of Extracellular Vesicles, Cell Viability, and Tumor Progression. Front Mol Biosci 2020; 7:554649. [PMID: 33282910 PMCID: PMC7691322 DOI: 10.3389/fmolb.2020.554649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction: Glioma cells exert influence over the tumor-microenvironment in part through the release of extracellular vesicles (EVs), membrane-enclosed structures containing proteins, lipids, and RNAs. In this study, we evaluated the function of Ras-associated protein 27a (Rab27a) in glioma and evaluated the feasibility of assessing its role in EV release in glioma cells in vitro and in vivo. Methods: Rab27a was knocked down via a short hairpin RNA (shRNA) stably expressed in mouse glioma cell line GL261, with a scrambled shRNA as control. EVs were isolated by ultracentrifugation and quantified with Nanoparticle Tracking Analysis (NTA) and Tunable Resistive Pulse Sensing (TRPS). CellTiter-Glo viability assays and cytokine arrays were used to evaluate the impact of Rab27a knockdown. GL261.shRab27a cells and GL261.shControl were implanted into the left striatum of eight mice to assess tumor growth and changes in the tumor microenvironment. Results: Knockdown of Rab27a in GL261 glioma cells decreased the release of small EVs isolated at 100,000 × g in vitro (p = 0.005), but not the release of larger EVs, isolated at 10,000 × g. GL261.shRab27a cells were less viable compared to the scramble control in vitro (p < 0.005). A significant increase in CCL2 expression in shRab27a GL261 cells was also observed (p < 0.001). However, in vivo there was no difference in tumor growth or overall survival between the two groups, while shRab27a tumors showed lower proliferation at the tumor borders. Decreased infiltration of IBA1 positive macrophages and microglia, but not FoxP3 positive regulatory T cells was observed. Conclusion: Rab27a plays an important role in the release of small EVs from glioma cells, and also in their viability and expression of CCL2 in vitro. As interference in Rab27a expression influences glioma cell viability and expression profiles, future studies should be cautious in using the knockdown of Rab27a as a means of studying the role of small EVs in glioma growth.
Collapse
Affiliation(s)
- Thomas S van Solinge
- Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,NeuroDiscovery Center, Harvard Medical School, Boston, MA, United States.,Department of Neurosurgery, Leiden University Medical Center, Leiden, Netherlands
| | - Erik R Abels
- Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,NeuroDiscovery Center, Harvard Medical School, Boston, MA, United States
| | - Lieke L van de Haar
- Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,NeuroDiscovery Center, Harvard Medical School, Boston, MA, United States
| | - Killian S Hanlon
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Sybren L N Maas
- Department of Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, Netherlands.,Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Rosalie Schnoor
- Department of Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Jeroen de Vrij
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - Xandra O Breakefield
- Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,NeuroDiscovery Center, Harvard Medical School, Boston, MA, United States
| | - Marike L D Broekman
- Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,NeuroDiscovery Center, Harvard Medical School, Boston, MA, United States.,Department of Neurosurgery, Leiden University Medical Center, Leiden, Netherlands.,Department of Neurosurgery, Haaglanden Medical Center, The Hague, Netherlands
| |
Collapse
|
10
|
Yu F, Wu W, Liang M, Huang Y, Chen C. Prognostic Significance of Rab27A and Rab27B Expression in Esophageal Squamous Cell Cancer. Cancer Manag Res 2020; 12:6353-6361. [PMID: 32801878 PMCID: PMC7394507 DOI: 10.2147/cmar.s258940] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022] Open
Abstract
Purpose Rab27A and Rab27B, members of the Rab family of small GTPases, have aberrant expression and exert different roles in various cancers. However, their expression and potential prognostic values in esophageal squamous cell cancer (ESCC) still remain elusive. In the present study, we explored the association of Rab27A and Rab27B expression with clinical significance and prognosis in ESCC. Patients and Methods A total of 100 surgically resected ESCC tissues were examined to evaluate Rab27A and Rab27B expression levels using the immunohistochemistry method. The relationship of Rab27A and Rab27B with clinicopathological features and prognosis was analyzed. We also investigated the correlation between Rab27A and Rab27B through external and internal validation. Results High-expression Rab27A was found to be significantly correlated with N (p=0.045) and TNM (p=0.005) stage, while up-regulated Rab27B was remarkably associated with N stage (p=0.033), TNM stage (p=0.009), and differentiation (p=0.013). High expression of both Rab27A and Rab27B had a worse overall survival (OS) rate. In addition, multivariate Cox regression analyses were utilized to validate that Rab27B expression is an independent prognostic factor for unfavorable OS. Further combined analyses showed that the Rab27Alow/Blow group had a superior OS rate than the Rab27Ahigh/Blow group, Rab27Alow/Bhigh group, and Rab27Ahigh/Bhigh group. Nevertheless, the latter three groups displayed rare significance between each two comparisons. Furthermore, our data demonstrated that Rab27A expression was positively correlated with Rab27B expression, which were also verified in TCGA datasets. Conclusion Rab27A and Rab27B expression levels could be potentially novel prognostic biomarkers in ESCC.
Collapse
Affiliation(s)
- Fengqiang Yu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Weihan Wu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Mingqiang Liang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Yu Huang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Chun Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
11
|
Chen H, Chen G, Li G, Zhang S, Chen H, Chen Y, Duggan D, Hu Z, Chen J, Zhao Y, Zhao Y, Huang H, Zheng SL, Trent JM, Yu L, Jiang D, Mo Z, Wang H, Mou Y, Jiang T, Mao Y, Xu J, Lu D. Two novel genetic variants in the STK38L and RAB27A genes are associated with glioma susceptibility. Int J Cancer 2019; 145:2372-2382. [PMID: 30714141 DOI: 10.1002/ijc.32179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 01/07/2019] [Indexed: 11/09/2022]
Abstract
Glioma is the most common malignant primary brain tumors with poor prognosis. Genome wide association studies (GWAS) of glioma in populations with Western European ancestry were completed in the US and UK. However, our previous results strongly suggest the genetic heterogeneity could be important in glioma risk. To systematically investigate glioma risk-associated variants in Chinese population, we performed a multistage GWAS of glioma in the Han Chinese population, with a total of 3,097 glioma cases and 4,362 controls. In addition to confirming two associations reported in other ancestry groups, this study identified one new risk-associated locus for glioma on chromosome 12p11.23 (rs10842893, pmeta = 2.33x10-12, STK38L) as well as a promising association at 15q15-21.1 (rs4774756, pmeta = 6.12x10-8, RAB27A) in 3,097 glioma cases and 4,362 controls. Our findings demonstrate two novel association between the glioma risk region marked by variant rs10842893 and rs4774756) and glioma risk. These findings may advance the understanding of genetic susceptibility to glioma.
Collapse
Affiliation(s)
- Hongyan Chen
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, Fudan University, and School of Life Sciences, Fudan University, Shanghai, China
| | - Gong Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Gang Li
- Department of Neurosurgery, Tangdu hospital, the Fourth Military Medical University, Xi'an, China
| | - Shuo Zhang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, Fudan University, and School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Haitao Chen
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, Fudan University, and School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, GuangZhou, China
| | - Yuanyuan Chen
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, Fudan University, and School of Life Sciences, Fudan University, Shanghai, China
| | - Dave Duggan
- Translational Genomics Research Institute (TGen), Phoenix, AZ
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Juxing Chen
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yingjie Zhao
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, Fudan University, and School of Life Sciences, Fudan University, Shanghai, China
| | - Yao Zhao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Huiling Huang
- Department of Neuroscience, Tianjin Huanhu Hospital, Tianjin, China
| | - S Lilly Zheng
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL
| | - Jeffrey M Trent
- Translational Genomics Research Institute (TGen), Phoenix, AZ
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, Fudan University, and School of Life Sciences, Fudan University, Shanghai, China
| | - Deke Jiang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, Fudan University, and School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, GuangZhou, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Hongwei Wang
- Department of Medicine, The University of Chicago, Chicago, IL
| | - Yonggao Mou
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianfeng Xu
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, Fudan University, and School of Life Sciences, Fudan University, Shanghai, China
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, Fudan University, and School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Zhu X, Tian G, Quan J, He P, Liu J. Effects of miR‑340 overexpression and knockdown on the proliferation and metastasis of NSCLC cell lines. Int J Mol Med 2019; 44:643-651. [PMID: 31173161 PMCID: PMC6605470 DOI: 10.3892/ijmm.2019.4213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
The present study aimed to investigate the potential biological functions of microRNA‑340 (miR‑340) in non‑small cell lung cancer (NSCLC) beyond its role as a critical regulator of tumorigenesis and tumor progression. The expression levels of miR‑340 and RAB27B were analyzed by reverse transcription‑quantitative polymerase chain reaction. Subsequently, the protein expression levels of RAB27A, RAB27B, RAB9A, RAB11A and BRAB21 were determined by western blot analysis. The expression levels of the aforementioned proteins in NSCLC tissues were analyzed by immunohistochemistry. RAB27B, as a potential target of miR‑340 was investigated via a dual‑luciferase reporter assay. The proliferative ability of PC9, A549 and BEAS‑2B cells was detected with a Cell Counting kit‑8 assay, while the migration and invasion of the NSCLC cells were analyzed using a Transwell assay. The results revealed that the expression levels of miR‑340 in the NSCLC cells were significantly decreased compared with those in normal cells (BEAS‑2B cells). RAB27B was proposed as a potential target gene of miR‑340, and its expression was notably increased in the NSCLC cells. miR‑340 overexpression inhibited the migration and invasion of the NSCLC cells by targeting RAB27B, while the knockdown of miR‑340 exerted opposite effects. On the whole, these findings indicate that the miR‑340/RAB27B axis may be actively involved in the occurrence of NSCLC. Thus, miR‑340 and RAB27B may be novel therapeutic targets for the treatment of NSCLC.
Collapse
Affiliation(s)
- Xidan Zhu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jing Quan
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Peng He
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
13
|
Guo D, Lui GYL, Lai SL, Wilmott JS, Tikoo S, Jackett LA, Quek C, Brown DL, Sharp DM, Kwan RYQ, Chacon D, Wong JH, Beck D, van Geldermalsen M, Holst J, Thompson JF, Mann GJ, Scolyer RA, Stow JL, Weninger W, Haass NK, Beaumont KA. RAB27A promotes melanoma cell invasion and metastasis via regulation of pro-invasive exosomes. Int J Cancer 2019; 144:3070-3085. [PMID: 30556600 DOI: 10.1002/ijc.32064] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/30/2018] [Indexed: 01/03/2023]
Abstract
Despite recent advances in targeted and immune-based therapies, advanced stage melanoma remains a clinical challenge with a poor prognosis. Understanding the genes and cellular processes that drive progression and metastasis is critical for identifying new therapeutic strategies. Here, we found that the GTPase RAB27A was overexpressed in a subset of melanomas, which correlated with poor patient survival. Loss of RAB27A expression in melanoma cell lines inhibited 3D spheroid invasion and cell motility in vitro, and spontaneous metastasis in vivo. The reduced invasion phenotype was rescued by RAB27A-replete exosomes, but not RAB27A-knockdown exosomes, indicating that RAB27A is responsible for the generation of pro-invasive exosomes. Furthermore, while RAB27A loss did not alter the number of exosomes secreted, it did change exosome size and altered the composition and abundance of exosomal proteins, some of which are known to regulate cancer cell movement. Our data suggest that RAB27A promotes the biogenesis of a distinct pro-invasive exosome population. These findings support RAB27A as a key cancer regulator, as well as a potential prognostic marker and therapeutic target in melanoma.
Collapse
Affiliation(s)
- Dajiang Guo
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Goldie Y L Lui
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Siew Li Lai
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia
| | - James S Wilmott
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia
| | - Shweta Tikoo
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Louise A Jackett
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Camelia Quek
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia
| | - Darren L Brown
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Danae M Sharp
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Rain Y Q Kwan
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Diego Chacon
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology, Sydney, NSW, Australia.,Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Jason H Wong
- Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Dominik Beck
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology, Sydney, NSW, Australia.,Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Michelle van Geldermalsen
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Jeff Holst
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - John F Thompson
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Graham J Mann
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Richard A Scolyer
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Jennifer L Stow
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Wolfgang Weninger
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Discipline of Dermatology, The University of Sydney, Camperdown, NSW, Australia.,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Nikolas K Haass
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Discipline of Dermatology, The University of Sydney, Camperdown, NSW, Australia.,The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Kimberley A Beaumont
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
14
|
Koh HM, Song DH. Prognostic role of Rab27A and Rab27B expression in patients with non-small cell lung carcinoma. Thorac Cancer 2018; 10:143-149. [PMID: 30480360 PMCID: PMC6360262 DOI: 10.1111/1759-7714.12919] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
Background Rab27A and Rab27B are the major components of vesicle fusion and trafficking in exosome secretion and play important roles in tumor progression and metastasis. In addition, Rab27A and Rab27B are associated with tumor prognosis. This study investigated the prognostic roles of Rab27A and Rab27B expression in patients with non‐small cell lung cancer (NSCLC). Methods Rab27A and Rab27B expression was assessed in 133 cases of NSCLC by immunohistochemistry. We evaluated the correlations between Rab27A and Rab27B expression and clinicopathological data and determined their prognostic role in NSCLC. Results Rab27A and Rab27B expression were significantly related to patient gender (P = 0.007 and 0.002, respectively) and histologic type (P = 0.009 and < 0.001, respectively), but not to patient age, smoking history, surgical method, or tumor node metastasis stage. The multivariate Cox proportional hazards regression model verified that high Rab27B expression is a prognostic factor for unfavorable disease‐specific survival (hazard ratio 2.680, 95% confidence interval 1.116–6.437; P = 0.027) in squamous cell carcinoma (SQCC). Kaplan–Meier analysis revealed significantly poorer prognosis in SQCC patients with high Rab27B expression compared to patients with low Rab27B expression (P = 0.030). Conclusion High Rab27B expression could be an unfavorable prognostic factor in patients with SQCC of the lung.
Collapse
Affiliation(s)
- Hyun Min Koh
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon, South Korea
| | - Dae Hyun Song
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon, South Korea.,Gyeongsang National University School of Medicine, Jinju, South Korea.,Gyeongsang Institute of Health Science, Jinju, South Korea
| |
Collapse
|
15
|
Almiron Bonnin DA, Havrda MC, Israel MA. Glioma Cell Secretion: A Driver of Tumor Progression and a Potential Therapeutic Target. Cancer Res 2018; 78:6031-6039. [PMID: 30333116 DOI: 10.1158/0008-5472.can-18-0345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/30/2018] [Accepted: 08/14/2018] [Indexed: 11/16/2022]
Abstract
Cellular secretion is an important mediator of cancer progression. Secreted molecules in glioma are key components of complex autocrine and paracrine pathways that mediate multiple oncogenic pathologies. In this review, we describe tumor cell secretion in high-grade glioma and highlight potential novel therapeutic opportunities. Cancer Res; 78(21); 6031-9. ©2018 AACR.
Collapse
Affiliation(s)
- Damian A Almiron Bonnin
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Matthew C Havrda
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Mark A Israel
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. .,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.,Departments of Medicine and Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
16
|
Dornier E, Rabas N, Mitchell L, Novo D, Dhayade S, Marco S, Mackay G, Sumpton D, Pallares M, Nixon C, Blyth K, Macpherson IR, Rainero E, Norman JC. Glutaminolysis drives membrane trafficking to promote invasiveness of breast cancer cells. Nat Commun 2017; 8:2255. [PMID: 29269878 PMCID: PMC5740148 DOI: 10.1038/s41467-017-02101-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/06/2017] [Indexed: 01/31/2023] Open
Abstract
The role of glutaminolysis in providing metabolites to support tumour growth is well-established, but the involvement of glutamine metabolism in invasive processes is yet to be elucidated. Here we show that normal mammary epithelial cells consume glutamine, but do not secrete glutamate. Indeed, low levels of extracellular glutamate are necessary to maintain epithelial homoeostasis, and provision of glutamate drives disruption of epithelial morphology and promotes key characteristics of the invasive phenotype such as lumen-filling and basement membrane disruption. By contrast, primary cultures of invasive breast cancer cells convert glutamine to glutamate which is released from the cell through the system Xc- antiporter to activate a metabotropic glutamate receptor. This contributes to the intrinsic aggressiveness of these cells by upregulating Rab27-dependent recycling of the transmembrane matrix metalloprotease, MT1-MMP to promote invasive behaviour leading to basement membrane disruption. These data indicate that acquisition of the ability to release glutamate is a key watershed in disease aggressiveness.
Collapse
Affiliation(s)
- Emmanuel Dornier
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK
| | - Nicolas Rabas
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK
| | - Louise Mitchell
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK
| | - David Novo
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK
| | - Sandeep Dhayade
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK
| | - Sergi Marco
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK
| | - Gillian Mackay
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK
| | - David Sumpton
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK
| | - Maria Pallares
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK
| | - Colin Nixon
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK
| | - Karen Blyth
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK
| | - Iain R Macpherson
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Elena Rainero
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK.
- Biomedical Science Department, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Jim C Norman
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
17
|
Dickman CTD, Lawson J, Jabalee J, MacLellan SA, LePard NE, Bennewith KL, Garnis C. Selective extracellular vesicle exclusion of miR-142-3p by oral cancer cells promotes both internal and extracellular malignant phenotypes. Oncotarget 2017; 8:15252-15266. [PMID: 28146434 PMCID: PMC5362484 DOI: 10.18632/oncotarget.14862] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/16/2017] [Indexed: 02/06/2023] Open
Abstract
Packaging of small molecular factors, including miRNAs, into small extracellular vesicles (SEVs) may contribute to malignant phenotypes and facilitate communication between cancer cells and tumor stroma. The process by which some miRNAs are enclosed in SEVs is selective rather than indiscriminate, with selection in part governed by specific miRNA sequences. Herein, we describe the selective packaging and removal via SEVs of four miRNAs (miR-142-3p, miR-150-5p, miR-451a, and miR-223-3p) in a panel of oral dysplasia and oral squamous cell carcinoma cell lines. Inhibition of exosome export protein Rab27A increased intracellular concentration of these miRNA candidates and prevented their exclusion via SEVs. Increased intracellular miR-142-3p specifically was found to target TGFBR1, causing a decrease in TGFBR1 expression in donor cells and a reduction of malignant features such as growth and colony formation. Conversely, increased excretion of miR-142-3p via donor cell SEVs and uptake by recipient endothelial cells was found to reduce TGFBR1 activity and cause tumor-promoting changes in these cells in vitro and in vivo.
Collapse
Affiliation(s)
- Christopher T D Dickman
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - James Lawson
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - James Jabalee
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Sara A MacLellan
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Nancy E LePard
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Kevin L Bennewith
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Cathie Garnis
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC Canada.,Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Liu J, Gong X, Zhu X, Xue D, Liu Y, Wang P. Rab27A overexpression promotes bladder cancer proliferation and chemoresistance through regulation of NF-κB signaling. Oncotarget 2017; 8:75272-75283. [PMID: 29088864 PMCID: PMC5650419 DOI: 10.18632/oncotarget.20775] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/29/2017] [Indexed: 11/25/2022] Open
Abstract
Overexpression of Rab27A has been found in human cancers. However, the clinical significance and biological effects of Rab27A in bladder cancer tissues and cell lines have not been investigated. Here, we checked Rab27A protein in 87 cases of bladder cancer using immunohistochemistry. We found that Rab27A was overexpressed in 39 of 87 (44.8%) cancer cases. Significant association was found between Rab27 and invading depth (p=0.0083). We knocked down Rab27A in 5637 cell line and transfected Rab27A plasmid in BIU-87 cell line. Rab27A depletion inhibited cell growth rate and invasion while its overexpression induced cell growth and invasion. Rab27A also promoted cancer cell growth in vivo. Cell viability and Annexin V/PI staining demonstrated that Rab27A maintained cancer cell survival and reduced apoptosis rate when treated with cisplatin. JC-1 staining showed that Rab27A upregulated mitochondrial membrane potential. Western blot demonstrated that Rab27A overexpression upregulated cyclin D1, cyclin E, p-IκB, p-p65, Bcl-2, cIAP1, cIAP2 protein expression. NF-κB inhibitor BAY 11-7082 abolished the effects of Rab27 on cisplatin resistance and Bcl-2 protein. In conclusion, the present study demonstrated that Rab27A overexpression facilitates bladder cancer growth, invasion and chemoresistance in bladder cancer, possibly through regulation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jia Liu
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xue Gong
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xingwang Zhu
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Dongwei Xue
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yili Liu
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Ping Wang
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
miR-182-5p improves the viability, mitosis, migration, and invasion ability of human gastric cancer cells by down-regulating RAB27A. Biosci Rep 2017; 37:BSR20170136. [PMID: 28546229 PMCID: PMC6434084 DOI: 10.1042/bsr20170136] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/27/2022] Open
Abstract
We investigated the effect of miR-182-5p on the viability, proliferation, invasion, and migration ability of human gastric cells by regulating the expression of RAB27A. Real-time PCR assay was used to detect the expression of miR-182-5 and RAB27A in human gastric carcinoma tissues, para-carcinoma tissues, and different cell lines. Western blotting was also used to determine the RAB27A expression in both tissues and cell lines. We chose the HGC-27 cell line as experiment subject as it demonstrated the highest miR-182-5p level. HGC-27 cells were transfected with different vectors and the cell viability, mitosis, invasion, and migration ability were measured through MTT assay, flow cytometry (FCM) analysis, Transwell assay, and wound healing assay. In comparison with the normal tissues, miR-182-5p is expressed at a higher level in gastric cancer (GC) tissues, while RAB27A is expressed at a lower level in cancerous tissues. The down-regulation of miR-182-5p and up-regulation of RAB27A can significantly decrease the viability, migration, invasion, and mitosis of HGC-27 cells. The target relationship between miR-182-5p and RAb27A was confirmed through a dual-luciferase reporter gene assay and Western blot assay. miR-182-5p enhances the viability, mitosis, migration, and invasion of human GC cells by down-regulating RAB27A.
Collapse
|
20
|
Qin X, Wang J, Wang X, Liu F, Jiang B, Zhang Y. Targeting Rabs as a novel therapeutic strategy for cancer therapy. Drug Discov Today 2017; 22:1139-1147. [PMID: 28390930 DOI: 10.1016/j.drudis.2017.03.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/18/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
Rab GTPases constitute the largest family of small GTPases. Rabs regulate not only membrane trafficking but also cell signaling, growth and survival, and development. Increasingly, Rabs and their effectors are shown to be overexpressed or subject to loss-of-function mutations in a variety of disease settings, including cancer progression. This review provides an overview of dysregulated Rab proteins in cancer, and highlights the signaling and secretory pathways in which they operate, with the aim of identifying potential avenues for therapeutic intervention. Recent progress and perspectives for direct and/or indirect targeting of Rabs are also summarized.
Collapse
Affiliation(s)
- Xiaoyu Qin
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Jiongyi Wang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Xinxin Wang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Feng Liu
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Bin Jiang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China.
| | - Yanjie Zhang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China.
| |
Collapse
|
21
|
Han MZ, Huang B, Chen AJ, Zhang X, Xu R, Wang J, Li XG. High expression of RAB43 predicts poor prognosis and is associated with epithelial-mesenchymal transition in gliomas. Oncol Rep 2017; 37:903-912. [DOI: 10.3892/or.2017.5349] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/06/2016] [Indexed: 11/06/2022] Open
|
22
|
Shi C, Yang X, Ni Y, Hou N, Xu L, Zhan F, Zhu H, Xiong L, Chen P. High Rab27A expression indicates favorable prognosis in CRC. Diagn Pathol 2015; 10:68. [PMID: 26070933 PMCID: PMC4465473 DOI: 10.1186/s13000-015-0303-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 05/29/2015] [Indexed: 12/31/2022] Open
Abstract
Background Rab27A is a peculiar member in Rab family and has been suggested to play essential roles in the development of human cancers. However, the association between Rab27A expression and clinicopathological characteristics of colorectal cancer (CRC) has not been elucidated yet. Methods One-step quantitative real-time polymerase chain reaction (qPCR) test with 18 fresh-frozen CRC samples and immunohistochemistry (IHC) analysis in 112 CRC cases were executed to evaluate the relationship between Rab27A expression and the clinicopathological features of CRC. Cox regression and Kaplan-Meier survival analyses were performed to identify the prognostic factors for 112 CRC patients. Results The results specified that the expression levels of Rab27A mRNA and protein were significantly higher in CRC tissues than that in matched non-cancerous tissues, in both qPCR test (p = 0.029) and IHC analysis (p = 0.020). The IHC data indicated that the Rab27A protein expression in CRC was statistically correlated with lymph node metastasis (p = 0.022) and TNM stage (p = 0.026). Cox multi-factor analysis and Kaplan-Meier method suggested Rab27A protein expression (p = 0.012) and tumor differentiation (p = 0.004) were significantly associated with the overall survival of CRC patients. Conclusion The data indicated the differentiate expression of Rab27A in CRC tissues and matched non-cancerous tissues. Rab27A may be used as a valuable prognostic biomarker for CRC patients.
Collapse
Affiliation(s)
- Chuanbing Shi
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiaojun Yang
- Department of General Surgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yijiang Ni
- Department of Traumatic Surgery, Changzhou No. 2 People's Hospital Affiliated with Nanjing Medical University, Changzhou, 213000, China
| | - Ning Hou
- Department of Pathology, Jiangsu Cancer Hospital, Nanjing, 210000, China
| | - Li Xu
- Department of Pathology, Jiangsu Cancer Hospital, Nanjing, 210000, China
| | - Feng Zhan
- Department of Hepatobiliary and Laparoscopic Surgery, YiXing People's Hospital, the Affiliated YiXing Hospital of Jiangsu University, Yixing, 214200, China
| | - Huijun Zhu
- Department of Pathology and Laboratory Medicine, the Affiliated Hospital of Nantong University, Nantong, 226000, China
| | - Lin Xiong
- Department of Pathology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.,The Key Laboratory of Cancer Biomarkers, Prevention & Treatment Cancer Center and The Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, 210029, China
| | - Pingsheng Chen
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
23
|
Wang Q, Ni Q, Wang X, Zhu H, Wang Z, Huang J. High expression of RAB27A and TP53 in pancreatic cancer predicts poor survival. Med Oncol 2014; 32:372. [PMID: 25428385 DOI: 10.1007/s12032-014-0372-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 12/11/2022]
Abstract
RAB27A is a member of Rab family GTPases involved in cellular vesicle trafficking, and TP53 has recently been implicated in regulating the exosome secretion pathway. Because exosome secretion plays an important role in modulating tumor microenvironment and invasive growth, we hypothesized that RAB27A and TP53 expression might be associated with aggressive behavior in pancreatic ductal adenocarcinoma (PDAC), one of the most deadly human malignancies. We determined protein expression of RAB27A and TP53 in 265 pancreatic tissues (186 carcinomas and 79 normal or benign tissues) by immunohistochemistry analysis on tissue microarray and found their expression was correlated with patients' clinical parameters and overall survival. We found that RAB27A and TP53 protein expression was significantly higher in cancerous tissues compared to normal and benign tissues. High RAB27A protein expression (RAB27A+) was significantly associated with tumor stage and vascular invasion. No correlation between RAB27A and TP53 expression was observed. Patients with high RAB27A expression and high TP53 expression had a poor overall survival. Our data indicate that RAB27A expression is an independent prognostic marker for PDAC, and RAB27A-regulated exosome secretion pathway may represent a novel therapeutic target in pancreatic cancer .
Collapse
Affiliation(s)
- Qingqing Wang
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, 226001, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
24
|
Liu L, Li W, Xia H, Zhu Z, Luan X. Differential expression and clinical significance of glioblastoma mRNA expression profiles in Uyghur and Han patients in Xinjiang province. Med Sci Monit 2014; 20:2404-13. [PMID: 25418065 PMCID: PMC4247232 DOI: 10.12659/msm.892519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background The aim of this study was to investigate differences in glioblastoma RNA gene expression profiles between Uyghur and Han patients in Xinjiang province and to screen and compare differentially expressed genes with respect to their clinical significance in the pathogenesis of high-grade glioma and their relationship to disease prognosis. Material/Methods Illumina HT-12mRNA expression profiles microarray was employed to measure the gene expression profiles of 6 patients with advanced glioma and to screen for differentially expressed genes. Results GO and KEGG analyses were performed on the differentially expressed genes using Web Gestalt software (P<0.05). Comparison of glioblastoma RNA expression profiles in the Uyghur and Han patients indicated that 1475 genes were significantly differentially expressed, of which 669 showed increased expression, while 807 showed decreased expression. One gene (STRC) corresponded to 2 transcripts, 1 of which showed increased expression and the other showed decreased expression. The differentially expressed genes participate in metabolic processes, biological regulation, stress response, and multi-cellular organic processes, including small GTPase regulatory signaling pathways, Ras signaling pathway, neuronal reactive protein regulation, and myelination of the central nervous system. The genes are also involved in tumor-related signaling pathways, including metabolic pathways, cancer pathways, MAPK signaling pathway, TGF-β signaling pathway, neurotrophic factor signal transduction pathway, and mTOR signaling pathway. Conclusions Differentially expressed genes were screened by studying the gene expression profiles in glioblastoma from Uyghur and Han patients. The cellular function and location of these genes were further investigated. Based on related molecular markers of glioblastoma, the differences in the mechanism of initiation and development of glioblastoma between Uyghur and Han patients were investigated for polygenic interactions.
Collapse
Affiliation(s)
- Liang Liu
- Department of Neurosurgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Wenting Li
- Department of Pathology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Haicheng Xia
- Department of Neurosurgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Zhengquan Zhu
- Department of Neurosurgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Xinping Luan
- Department of Neurosurgery, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| |
Collapse
|