1
|
Xu J, Du X, Li D, Li P, Guo Q, Xu X, Hu F, Wang M. Clinical characteristics and antimicrobial therapy of healthcare-associated carbapenem-non-susceptible gram-negative bacterial meningitis: a 16-year retrospective cohort study. BMC Infect Dis 2024; 24:368. [PMID: 38566040 PMCID: PMC10985894 DOI: 10.1186/s12879-024-09237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVE Healthcare-associated Gram-negative bacterial meningitis is a substantial clinical issue with poor outcomes, especially for neurosurgical patients. Here, we aimed to study the characteristics and treatment options of patients with healthcare-associated carbapenem-non-susceptible (Carba-NS) Gram-negative bacterial meningitis. METHODS This observational cohort study was conducted at a teaching hospital from 2004 to 2019. The clinical characteristics of patients with meningitis with Carba-NS and carbapenem-susceptible (Carba-S) bacilli were compared, and the antimicrobial chemotherapy regimens and outcomes for Carba-NS Gram-negative bacterial meningitis were analyzed. RESULTS A total of 505 patients were included, of whom 83.8% were post-neurosurgical patients. The most common isolates were Acinetobacter spp. and Klebsiella spp., which had meropenem-resistance rates of 50.6% and 42.5%, respectively, and showed a markedly growing carbapenem-resistance trend. Kaplan-Meier curve analysis revealed that Carba-NS Gram-negative bacilli were associated with a significantly higher in-hospital mortality rate (18.8%, 35/186) compared to the Carba-S group (7.4%, 9/122; P = 0.001). For Carba-NS Enterobacterales meningitis, aminoglycoside-based and trimethoprim-sulfamethoxazole-based regimens yielded significantly higher clinical efficacy rates than non-aminoglycoside-based and non-trimethoprim-sulfamethoxazole-based regimens (69.0% vs. 38.7%, P = 0.019 and 81.8% vs. 46.9%, P = 0.036, respectively). For Carba-NS A. baumannii complex meningitis, tetracycline-based (including doxycycline, minocycline, or tigecycline) therapy achieved a significantly higher clinical efficacy rate (62.9%, 22/35) than the non-tetracycline-based therapy group (40.4%, 19/47; P = 0.044). CONCLUSIONS Our findings revealed that Carba-NS Gram-negative bacilli are associated with higher in-hospital mortality in patients with healthcare-associated meningitis. The combination therapies involving particular old antibiotics may improve patients' outcome. TRIAL REGISTRATION This study was registered on the Chinese Clinical Trial Register under ChiCTR2000036572 (08/2020).
Collapse
Affiliation(s)
- Jiyan Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission of People's Republic of China, Shanghai, China
| | - Xiaoling Du
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission of People's Republic of China, Shanghai, China
| | - Dan Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission of People's Republic of China, Shanghai, China
| | - Pei Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission of People's Republic of China, Shanghai, China
| | - Qinglan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission of People's Republic of China, Shanghai, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission of People's Republic of China, Shanghai, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission of People's Republic of China, Shanghai, China
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission of People's Republic of China, Shanghai, China.
| |
Collapse
|
2
|
Wilske F, Skorup P, Hanslin K, Janols H, Larsson A, Lipcsey M, Sjölin J. Enhanced bacterial clearance in early secondary sepsis in a porcine intensive care model. Sci Rep 2023; 13:1964. [PMID: 36737631 PMCID: PMC9898276 DOI: 10.1038/s41598-023-28880-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Early secondary sepsis (ESS), occurring after recent inflammatory activation is associated with a reduced inflammatory response. If this attenuation also is associated with decreased bacterial killing, the need for antibiotic efficacy might be greater than in primary sepsis (PS). This prospective, randomised interventional study compares bacterial killing in ESS and PS in a large animal intensive care sepsis model. 38 pigs were intravenously administered live Escherichia coli for 3 h. Before baseline ESS was pre-exposed to endotoxin 24 h, whereas PS was not. Bacterial growth was measured in organs immediately post-mortem, repeatedly during 6 h in blood in vivo and for blood intrinsic bactericidal capacity ex vivo. Splenic growth was lower in ESS animals, than in PS animals (3.31 ± 0.12, vs. 3.84 ± 0.14 log10 CFU/mL, mean ± SEM) (p < 0.01) with a similar trend in hepatic growth (p = NS). Blood bacterial count at 2 h correlated with splenic bacterial count in ESS (ESS: r = 0.71, p < 0.001) and to blood killing capacity in PS (PS: r = 0.69, p < 0.001). Attenuated inflammation in ESS is associated with enhanced antibacterial capacities in the spleen. In ESS blood bacterial count is related to splenic killing and in PS to blood bactericidal capacity. The results suggest no increased need for synergistic antibiotic combinations in ESS.
Collapse
Affiliation(s)
- Frida Wilske
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, SE 751 85, Uppsala, Sweden.
| | - Paul Skorup
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, SE 751 85, Uppsala, Sweden
| | - Katja Hanslin
- Section of Anaesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Helena Janols
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, SE 751 85, Uppsala, Sweden
| | - Anders Larsson
- Section of Clinical Chemistry, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Miklós Lipcsey
- Section of Anaesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Hedenstierna Laboratory, Anaesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan Sjölin
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, SE 751 85, Uppsala, Sweden
| |
Collapse
|
3
|
Cengiz M, Sahinturk P, Hepbostanci G, Akalin H, Sonal S. The in vitro activity of danofloxacin plus ceftiofur combination: implications for antimicrobial efficacy and resistance prevention. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2022; 13:149-153. [PMID: 35919857 PMCID: PMC9340295 DOI: 10.30466/vrf.2020.113272.2696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/12/2020] [Indexed: 11/13/2022]
Abstract
Due to the high prevalence of multi-drug resistant bacteria, combination therapy is an efficient choice for treatment of infections caused by highly resistant strains. In this study, the efficacy of ceftiofur plus danofloxacin combination was investigated against resistant Escherichia coli. The interaction between the two drugs was determined by checkerboard tests and time-kill assays. The combination was defined as bactericidal or bacteriostatic based on the minimum bactericidal concentration test results. Mutant prevention concentration test was used to evaluate the resistance tendency suppression potential of the combination. The combination had a synergistic effect against 83.00% of the isolates as verified by the checkerboard and time-kill assays. The combination was defined as bactericidal against all E. coli strains, since minimum bactericidal concentration: minimum inhibitory concentration ratios were below four thresholds and also markedly reduced mutant prevention concentration values of ceftiofur up to 4000-fold compared to its single use. Ceftiofur plus danofloxacin combination inhibited growth of E. coli strains which were resistant to ceftiofur or newer generation of fluoroquinolones. Our results suggest that ceftiofur plus danofloxacin combination has a bactericidal characteristic and can be an important alternative for the treatment of infections caused by resistant E. coli.
Collapse
Affiliation(s)
- Murat Cengiz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Uludag University, Nilufer, Turkiye; ,Correspondence Murat Cengiz. PhD, Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Uludag University, Nilufer, Turkiye. E-mail:
| | - Pinar Sahinturk
- Institute of Health Science, Uludag University, Nilufer, Turkiye;
| | | | - Halis Akalin
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Uludag University, Nilufer, Turkiye.
| | - Songul Sonal
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Uludag University, Nilufer, Turkiye;
| |
Collapse
|
4
|
Skorup P, Fransson A, Gustavsson J, Sjöholm J, Rundgren H, Özenci V, Wong AYW, Karlsson T, Svensén C, Günther M. Evaluation of an extracorporeal ozone-based bactericide system for the treatment of Escherichia coli sepsis. Intensive Care Med Exp 2022; 10:14. [PMID: 35467176 PMCID: PMC9038973 DOI: 10.1186/s40635-022-00443-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sepsis is associated with substantial mortality rates. Antibiotic treatment is crucial, but global antibiotic resistance is now classified as one of the top ten global public health risks facing humanity. Ozone (O3) is an inorganic molecule with no evident function in the body. We investigated the bactericide properties of ozone, using a novel system of extracorporeal ozone blood treatment. We hypothesized that ozone would decrease the concentration of viable Escherichia coli (E. coli) in human whole blood and that the system would be technically feasible and physiologically tolerable in a clinically relevant model of E. coli sepsis in swine. METHODS The E. coli strain B09-11822, a clinical isolate from a patient with septic shock was used. The in vitro study treated E. coli infected human whole blood (n = 6) with ozone. The in vivo 3.5-h sepsis model randomized swine to E. coli infusion and ozone treatment (n = 5) or E. coli infusion and no ozone treatment (n = 5). Live E. coli, 5 × 107 colony-forming units (CFU/mL) was infused in a peripheral vein. Ozone treatment was initiated with a duration of 30 min after 1.5 h. RESULTS The single pass in vitro treatment decreased E. coli by 27%, mean 1941 to 1422 CFU/mL, mean of differences - 519.0 (95% CI - 955.0 to - 82.98, P = 0.0281). pO2 increased (95% CI 31.35 to 48.80, P = 0.0007), pCO2 decreased (95% CI - 3.203 to - 1.134, P = 0.0069), oxyhemoglobin increased (95% CI 1.010 to 3.669, P = 0.0113). Methemoglobin was not affected. In the sepsis model, 9/10 swine survived. One swine randomized to ozone treatment died from septic shock before initiation of the treatment. Circulatory, respiratory, and metabolic parameters were not affected by the ozone treatment. E. coli in arterial blood, in organs and in aerobic and anaerobic blood cultures did not differ. Hemoglobin, leucocytes, and methemoglobin were not affected by the treatment. CONCLUSIONS Ozone decreased the concentration of viable E. coli in human whole blood. The system was technically feasible and physiologically tolerable in porcine sepsis/septic shock and should be considered for further studies towards clinical applications.
Collapse
Affiliation(s)
- Paul Skorup
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Anette Fransson
- Section for Experimental Traumatology, Department of Neuroscience, Karolinska Institutet, Biomedicum - 8B, 171 77, Stockholm, Sweden
| | - Jenny Gustavsson
- Section for Experimental Traumatology, Department of Neuroscience, Karolinska Institutet, Biomedicum - 8B, 171 77, Stockholm, Sweden
| | | | | | - Volkan Özenci
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, Sweden
| | - Alicia Y W Wong
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Tomas Karlsson
- Department of Clinical Science at Education Södersjukhuset, Unit of Anesthesiology and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Christer Svensén
- Department of Clinical Science at Education Södersjukhuset, Unit of Anesthesiology and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Günther
- Section for Experimental Traumatology, Department of Neuroscience, Karolinska Institutet, Biomedicum - 8B, 171 77, Stockholm, Sweden. .,Department of Clinical Science at Education Södersjukhuset, Unit of Anesthesiology and Intensive Care, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Plasma hyaluronan, hyaluronidase activity and endogenous hyaluronidase inhibition in sepsis: an experimental and clinical cohort study. Intensive Care Med Exp 2021; 9:53. [PMID: 34632531 PMCID: PMC8502523 DOI: 10.1186/s40635-021-00418-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 09/23/2021] [Indexed: 12/29/2022] Open
Abstract
Background Plasma hyaluronan concentrations are increased during sepsis but underlying mechanisms leading to high plasma hyaluronan concentration are poorly understood. In this study we evaluate the roles of plasma hyaluronan, effective plasma hyaluronidase (HYAL) activity and its endogenous plasma inhibition in clinical and experimental sepsis. We specifically hypothesized that plasma HYAL acts as endothelial glycocalyx shedding enzyme, sheddase. Methods Plasma hyaluronan, effective HYAL activity and HYAL inhibition were measured in healthy volunteers (n = 20), in patients with septic shock (n = 17, day 1 and day 4), in patients with acute pancreatitis (n = 7, day 1 and day 4) and in anesthetized and mechanically ventilated pigs (n = 16). Sixteen pigs were allocated (unblinded, open label) into three groups: Sepsis-1 with infusion of live Escherichia coli (E. coli) 1 × 108 CFU/h of 12 h (n = 5), Sepsis-2 with infusion of E. coli 1 × 108 CFU/h of 6 h followed by 1 × 109 CFU/h of the remaining 6 h (n = 5) or Control with no E. coli infusion (n = 6). Results In experimental E. coli porcine sepsis and in time controls, plasma hyaluronan increases with concomitant decrease in effective plasma HYAL activity and increase of endogenous HYAL inhibition. Plasma hyaluronan increased in patients with septic shock but not in acute pancreatitis. Effective plasma HYAL was lower in septic shock and acute pancreatitis as compared to healthy volunteers, while plasma HYAL inhibition was only increased in septic shock. Conclusion Elevated plasma hyaluronan levels coincided with a concomitant decrease in effective plasma HYAL activity and increase of endogenous plasma HYAL inhibition both in experimental and clinical sepsis. In acute pancreatitis, effective plasma HYAL activity was decreased which was not associated with increased plasma hyaluronan concentrations or endogenous HYAL inhibition. The results suggest that plasma HYAL does not act as sheddase in sepsis or pancreatitis. Supplementary Information The online version contains supplementary material available at 10.1186/s40635-021-00418-3.
Collapse
|
6
|
Jahn LJ, Simon D, Jensen M, Bradshaw C, Ellabaan MMH, Sommer MOA. Compatibility of Evolutionary Responses to Constituent Antibiotics Drive Resistance Evolution to Drug Pairs. Mol Biol Evol 2021; 38:2057-2069. [PMID: 33480997 PMCID: PMC8097295 DOI: 10.1093/molbev/msab006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Antibiotic combinations are considered a relevant strategy to tackle the global antibiotic resistance crisis since they are believed to increase treatment efficacy and reduce resistance evolution (WHO treatment guidelines for drug-resistant tuberculosis: 2016 update.). However, studies of the evolution of bacterial resistance to combination therapy have focused on a limited number of drugs and have provided contradictory results (Lipsitch, Levin BR. 1997; Hegreness et al. 2008; Munck et al. 2014). To address this gap in our understanding, we performed a large-scale laboratory evolution experiment, adapting eight replicate lineages of Escherichia coli to a diverse set of 22 different antibiotics and 33 antibiotic pairs. We found that combination therapy significantly limits the evolution of de novode novo resistance in E. coli, yet different drug combinations vary substantially in their propensity to select for resistance. In contrast to current theories, the phenotypic features of drug pairs are weak predictors of resistance evolution. Instead, the resistance evolution is driven by the relationship between the evolutionary trajectories that lead to resistance to a drug combination and those that lead to resistance to the component drugs. Drug combinations requiring a novel genetic response from target bacteria compared with the individual component drugs significantly reduce resistance evolution. These data support combination therapy as a treatment option to decelerate resistance evolution and provide a novel framework for selecting optimized drug combinations based on bacterial evolutionary responses.
Collapse
Affiliation(s)
- Leonie Johanna Jahn
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Daniel Simon
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mia Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Charles Bradshaw
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | |
Collapse
|
7
|
Skorup P, Maudsdotter L, Lipcsey M, Larsson A, Sjölin J. Mode of bacterial killing affects the inflammatory response and associated organ dysfunctions in a porcine E. coli intensive care sepsis model. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:646. [PMID: 33189146 PMCID: PMC7666448 DOI: 10.1186/s13054-020-03303-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/21/2020] [Indexed: 11/25/2022]
Abstract
Background Sepsis is often treated with penicillin-binding protein 3 (PBP-3) acting β-lactam antibiotics, such as piperacillin-tazobactam, cefotaxime, and meropenem. They cause considerable bacterial structural changes and have in vitro been associated with an increased inflammatory response. In a clinically relevant large animal sepsis model, our primary aim was to investigate whether bacteria killed by a PBP-3-active antibiotic has a greater effect on the early inflammatory response and organ dysfunction compared with corresponding amounts of live or heat-killed bacteria. A secondary aim was to determine whether the addition of an aminoglycoside could mitigate the cefuroxime-induced response. Method Killed or live Escherichia coli were administrated as a 3-h infusion to 16 healthy pigs in a prospective, randomized controlled interventional experimental study. Cefuroxime was chosen as the PBP-3-active antibiotic and tobramycin represented the aminoglycosides. The animals were randomized to receive (I) bacteria killed by cefuroxime, (II) live bacteria, (III) bacteria killed by heat, or (IV) bacteria killed by the combination of cefuroxime and tobramycin. Plasma endotoxin, tumor necrosis factor alpha, interleukin-6, interleukin-10, leukocytes, and organ function were recorded at the start of the experiment and then hourly for 6 h. Results Differences in dynamics of concentration over time between the four treatment groups were found for the three cytokines (p < 0.001). Animals receiving cefuroxime-killed bacteria demonstrated higher responses than those receiving live (p < 0.05) or heat-killed bacteria (p < 0.01). The addition of tobramycin reduced the cefuroxime-induced responses (p < 0.001). The cytokine responses were associated with leucocyte activation that was further associated with pulmonary dysfunction and increases in lactate (p < 0.01). Conclusions In comparison with live or heat-killed bacteria, bacteria killed by a PBP-3-active antibiotic induced an increased inflammatory response that appears to be associated with deteriorated organ and cellular function. The addition of an aminoglycoside to the PBP-3-active antibiotic reduced that response.
Collapse
Affiliation(s)
- Paul Skorup
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, 751 85, Uppsala, SE, Sweden.
| | - Lisa Maudsdotter
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Miklós Lipcsey
- Department of Surgical Sciences, Hedenstierna Laboratory, Anesthesiology & Intensive Care, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Section of Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Jan Sjölin
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, 751 85, Uppsala, SE, Sweden
| |
Collapse
|
8
|
Toll-like Receptor 4 Signaling and Downstream Neutrophilic Inflammation Mediate Endotoxemia-Enhanced Blood-Labyrinth Barrier Trafficking. Otol Neurotol 2020; 41:123-132. [PMID: 31568132 DOI: 10.1097/mao.0000000000002447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
HYPOTHESIS Both toll-like receptor 4 (TLR4) and downstream neutrophil activity are required for endotoxemia-enhanced blood-labyrinth barrier (BLB) trafficking. BACKGROUND Aminoglycoside and cisplatin are valuable clinical therapies; however, these drugs often cause life-long hearing loss. Endotoxemia enhances the ototoxicity of aminoglycosides and cisplatin in a TLR4 dependent mechanism for which downstream proinflammatory signaling orchestrates effector immune cells including neutrophils. Neutrophil-mediated vascular injury (NMVI) can enhance molecular trafficking across endothelial barriers and may contribute to endotoxemia-enhanced drug-induced ototoxicity. METHODS Lipopolysaccharide (LPS) hypo-responsive TLR4-KO mice and congenitally neutropenic granulocyte colony-stimulating factor (GCSF) GCSF-KO mice were studied to investigate the relative contributions of TLR4 signaling and downstream neutrophil activity to endotoxemia-enhanced BLB trafficking. C57Bl/6 wild-type mice were used as a positive control. Mice were treated with LPS and 24 hours later cochleae were analyzed for gene transcription of innate inflammatory cytokine/chemokine signaling molecules, neutrophil recruitment, and vascular trafficking of the paracellular tracer biocytin-TMR. RESULTS Cochlear transcription of innate proinflammatory cytokines/chemokines was increased in endotoxemic C57Bl/6 and GCSF-KO, but not in TLR4-KO mice. More neutrophils were recruited to endotoxemic C57Bl/6 cochleae compared with both TLR4 and GCSF-KO cochleae. Endotoxemia enhanced BLB trafficking of biocytin-TMR in endotoxemic C57Bl/6 cochleae and this was attenuated in both TLR4 and GCSF-KO mice. CONCLUSION Together these results suggest that TLR4-mediated innate immunity cytokine/chemokine signaling alone is not sufficient for endotoxemia-enhanced trafficking of biocytin-TMR and that downstream neutrophil activity is required to enhance BLB trafficking. Clinically, targeting neutrophilic inflammation could protect hearing during aminoglycoside, cisplatin, or other ototoxic drug therapies.
Collapse
|
9
|
Dynamics of Endotoxin, Inflammatory Variables, and Organ Dysfunction After Treatment With Antibiotics in an Escherichia coli Porcine Intensive Care Sepsis Model. Crit Care Med 2019; 46:e634-e641. [PMID: 29595561 DOI: 10.1097/ccm.0000000000003139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES To investigate the dynamics of antibiotic-induced endotoxin liberation and inflammatory response in vivo in a clinically relevant large animal intensive care sepsis model and whether the addition of an aminoglycoside to a β-lactam antibiotic affects these responses. DESIGN Prospective, placebo-controlled interventional experimental study. SETTING University research unit. SUBJECTS Thirty-six healthy pigs administered Escherichia coli as a 3-hour infusion. INTERVENTIONS After 2 hours, during E. coli infusion, the animals were exposed to cefuroxime alone, the combination of cefuroxime and tobramycin, or saline. MEASUREMENTS AND MAIN RESULTS Plasma endotoxin, interleukin-6, tumor necrosis factor-α, leucocytes, and organ dysfunction were recorded for 4 hours after antibiotic treatment, and differences to the values before treatment were calculated. In vitro experiments were performed to ascertain whether endotoxin is released during antibiotic-induced bacterial killing of this E. coli strain. Despite differences between the treatment arms in vitro, no differences in plasma endotoxin were observed in vivo. Antibiotic-treated animals demonstrated a higher interleukin-6 response (p < 0.001), greater leucocyte activation (p < 0.001), and more pronounced deterioration in pulmonary static compliance (p < 0.01) over time than controls. Animals treated with the combination showed a trend toward less inflammation. CONCLUSIONS Treatment with antibiotics may elicit an increased inflammatory interleukin-6 response that is associated with leucocyte activation and pulmonary organ dysfunction. No observable differences were detected in plasma endotoxin concentrations. The reduction in cefuroxime-induced endotoxin release after the addition of an aminoglycoside in vitro could not be reproduced in this model.
Collapse
|
10
|
Hanslin K, Sjölin J, Skorup P, Wilske F, Frithiof R, Larsson A, Castegren M, Tano E, Lipcsey M. The impact of the systemic inflammatory response on hepatic bacterial elimination in experimental abdominal sepsis. Intensive Care Med Exp 2019; 7:52. [PMID: 31456116 PMCID: PMC6712186 DOI: 10.1186/s40635-019-0266-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/19/2019] [Indexed: 01/29/2023] Open
Abstract
Background Bacterial translocation from the gut has been suggested to induce a systemic inflammatory response syndrome (SIRS) and organ dysfunction. The liver has a pivotal role in eliminating circulating bacteria entering from the gut. We investigated whether pre-existing inflammation affects hepatic bacterial elimination. Methods Fifteen anaesthetised piglets were infused with E. coli in the portal vein for 3 h. The naive group (n = 6) received the bacterial infusion without endotoxin exposure. SIRS (SIRS group, n = 6) was induced by endotoxin infusion 24 h before the bacterial infusion. For effects of anaesthesia, controls (n = 3) received saline instead of endotoxin for 24 h. Bacterial counts and endotoxin levels in the portal and hepatic veins were analysed during bacterial infusion. Results The bacterial killing rate was higher in the naive group compared with the SIRS group (p = 0.001). The ratio of hepatic to portal venous bacterial counts, i.e. the median bacterial influx from the splanchnic circulation, was 0.06 (IQR 0.01–0.11) in the naive group and 0.71 (0.03–1.77) in the SIRS group at 3 h, and a magnitude lower in the naive group during bacteraemia (p = 0.03). Similar results were seen for hepatic endotoxin elimination. Peak log tumour necrosis factor alpha was higher in the naive 4.84 (4.77–4.89) vs. the SIRS group 3.27 (3.26–3.32) mg/L (p < 0.001). Conclusions Our results suggest that hepatic bacterial and endotoxin elimination is impaired in pigs with pre-existing SIRS while the inflammatory response to bacterial infusion is diminished. If similar mechanisms operate in human critical illness, the hepatic elimination of bacteria from the gut could be impaired by SIRS. Electronic supplementary material The online version of this article (10.1186/s40635-019-0266-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katja Hanslin
- Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan Sjölin
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Paul Skorup
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Frida Wilske
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Robert Frithiof
- Hedenstierna Laboratory, CIRRUS, Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Section of Clinical Chemistry, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Markus Castegren
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Perioperative Medicine and Intensive Care, Karolinska University Hospital and CLINTEC, Karolinska Institute, Stockholm, Sweden
| | - Eva Tano
- Section of Clinical Bacteriology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Miklos Lipcsey
- Hedenstierna Laboratory, CIRRUS, Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
11
|
Lipcsey M, Castegren M, Furebring M, Sjölin J. Should the Aminoglycoside β-Lactam Combination Be Abandoned in All Severely Ill Patients With Presumed Gram-Negative Infection? Clin Infect Dis 2019; 66:480-482. [PMID: 29020234 DOI: 10.1093/cid/cix780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Miklos Lipcsey
- Hedenstierna Laboratory, Anaesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Sweden
| | - Markus Castegren
- Intensive Care and Surgical Services, Department of Anaesthesia, Karolinska University Hospital, Sweden
| | - Mia Furebring
- Hedenstierna Laboratory, Anaesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Sweden
| | - Jan Sjölin
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Sweden
| |
Collapse
|
12
|
Thorsted A, Bouchene S, Tano E, Castegren M, Lipcsey M, Sjölin J, Karlsson MO, Friberg LE, Nielsen EI. A non-linear mixed effect model for innate immune response: In vivo kinetics of endotoxin and its induction of the cytokines tumor necrosis factor alpha and interleukin-6. PLoS One 2019; 14:e0211981. [PMID: 30789941 PMCID: PMC6383944 DOI: 10.1371/journal.pone.0211981] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/24/2019] [Indexed: 12/29/2022] Open
Abstract
Endotoxin, a component of the outer membrane of Gram-negative bacteria, has been extensively studied as a stimulator of the innate immune response. However, the temporal aspects and exposure-response relationship of endotoxin and resulting cytokine induction and tolerance development is less well defined. The aim of this work was to establish an in silico model that simultaneously captures and connects the in vivo time-courses of endotoxin, tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and associated tolerance development. Data from six studies of porcine endotoxemia in anesthetized piglets (n = 116) were combined and used in the analysis, with purified endotoxin (Escherichia coli O111:B4) being infused intravenously for 1–30 h in rates of 0.063–16.0 μg/kg/h across studies. All data were modelled simultaneously by means of importance sampling in the non-linear mixed effects modelling software NONMEM. The infused endotoxin followed one-compartment disposition and non-linear elimination, and stimulated the production of TNF-α to describe the rapid increase in plasma concentration. Tolerance development, observed as declining TNF-α concentration with continued infusion of endotoxin, was also driven by endotoxin as a concentration-dependent increase in the potency parameter related to TNF-α production (EC50). Production of IL-6 was stimulated by both endotoxin and TNF-α, and four consecutive transit compartments described delayed increase in plasma IL-6. A model which simultaneously account for the time-courses of endotoxin and two immune response markers, the cytokines TNF-α and IL-6, as well as the development of endotoxin tolerance, was successfully established. This model-based approach is unique in its description of the time-courses and their interrelation and may be applied within research on immune response to bacterial endotoxin, or in pre-clinical pharmaceutical research when dealing with study design or translational aspects.
Collapse
Affiliation(s)
- Anders Thorsted
- Pharmacometrics Research Group, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Salim Bouchene
- Pharmacometrics Research Group, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Eva Tano
- Section of Clinical Microbiology and Infectious Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden
| | - Markus Castegren
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden
- Division of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Miklós Lipcsey
- Hedenstierna Laboratory, Section of Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University Hospital, Uppsala, Sweden
| | - Jan Sjölin
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden
| | - Mats O. Karlsson
- Pharmacometrics Research Group, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Lena E. Friberg
- Pharmacometrics Research Group, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Elisabet I. Nielsen
- Pharmacometrics Research Group, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Jensen LK, Henriksen NL, Jensen HE. Guidelines for porcine models of human bacterial infections. Lab Anim 2018; 53:125-136. [PMID: 30089438 DOI: 10.1177/0023677218789444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
During the last 10 years the number of porcine models for human bacterial infectious diseases has increased. In the future, this tendency is expected to continue and, therefore, the aim of the present review is to describe guidelines for the development and reporting of these models. The guidelines are based on a review of 122 publications of porcine models for different bacterial infectious diseases in humans. The review demonstrates a substantial lack of information in most papers which hampers reproducibility and continuation of the work that was established in the models. The guidelines describe overall principles related to the inoculum, the animal, the infected animal and the post-mortem characterization that are of crucial importance when porcine models of infectious diseases are developed, validated and reported.
Collapse
Affiliation(s)
- Louise K Jensen
- Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Nicole L Henriksen
- Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Henrik E Jensen
- Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Research progress on anti-infection therapy for sepsis in children. INFECTION INTERNATIONAL 2018. [DOI: 10.2478/ii-2018-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Sepsis is a systemic inflammatory response caused by infection and a critical illness in pediatrics. This disease is the leading cause of death in infants and children worldwide. An early, appropriate, and adequate anti-infective treatment can effectively prevent disease progression and improve the survival rate of children. However, antimicrobial drug abuse, increased drug-resistant bacteria, and lack of epidemiological data have hampered the effective and rational anti-infective treatment of patients with sepsis and enhancement of the success rate of rescue, especially for children. This article briefly reviews the recent advances in anti-infective treatment for sepsis in children at home and abroad based on sepsis definition, pathogen distribution and drug resistance, infection source control, and rational anti-infection. The results provide a foundation for clinical treatment of sepsis.
Collapse
|
15
|
Rapid Bolus Administration Does not Increase The Extravasation Rate of Albumin: A Randomized Controlled Trial in The Endotoxemic Pig. Shock 2018; 47:514-519. [PMID: 27749758 DOI: 10.1097/shk.0000000000000761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Some experimental data suggest that rapid bolus administration of albumin causes less plasma-expanding effects than slow, continuous infusion. To determine whether rapid bolus administration, in comparison with slow infusion, results in greater extravasation of albumin in experimental septic shock we performed a randomized controlled trial with 32 endotoxemic pigs. The animals were monitored and ventilated with standard intensive care equipment and given 10 mL × kg 5% albumin labeled with Technetium-99m, either as a rapid 15-min bolus (Bolus group, n = 16) or as a 2-h infusion (Infusion group, n = 16). Radioactivity was monitored in plasma, extracellular microdialysate, and urine for 6 h. Physiological parameters were monitored hourly. Radioactivity in the liver, spleen, kidney, and lung was analyzed post mortem.The plasma area under the curve activity0-6 h was 4.4 ± 0.9 × 10 in the Bolus group and 4.4 ± 1.1 × 10 counts × min × mL × h in the Infusion group. Blood hemoglobin levels increased in both groups, suggesting severe capillary leakage. Yet, there were no group differences in albumin radioactivity in plasma, muscle tissue, urine, or in the post-mortem analysis of the organs. Following albumin administration, circulatory and respiratory parameters were similar in the two groups.In conclusion, the present results suggest that albumin might be given as a bolus without leading to increased extravasation of albumin, in contrast to previous animal experiments in rodents.
Collapse
|
16
|
Brennecke J, Kraut S, Zwadlo K, Gandi SK, Pritchard D, Templeton K, Bachmann T. High-yield extraction of Escherichia coli RNA from human whole blood. J Med Microbiol 2017; 66:301-311. [PMID: 28126043 DOI: 10.1099/jmm.0.000439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Studies of bacterial transcriptomics during bloodstream infections are limited to-date because unbiased extraction of bacterial mRNA from whole blood in sufficient quantity and quality has proved challenging. Problems include the high excess of human cells, the presence of PCR inhibitors and the short intrinsic half-life of bacterial mRNA. This study aims to provide a framework for the choice of the most suitable sample preparation method. METHODOLOGY Escherichia coli cells were spiked into human whole blood and the bacterial gene expression was stabilized with RNAprotect either immediately or after lysis of the red blood cells with Triton X-100, saponin, ammonium chloride or the commercial MolYsis buffer CM. RNA yield, purity and integrity were assessed by absorbance measurements at 260 and 280 nm, real-time PCR and capillary electrophoresis. RESULTS For low cell numbers, the best mRNA yields were obtained by adding the commercial RNAprotect reagent directly to the sample without prior lyses of the human blood cells. Using this protocol, significant amounts of human RNA were co-purified, however, this had a beneficial impact on the yields of bacterial mRNA. Among the tested lysis agents, Triton X-100 was the most effective and reduced the human RNA background by three to four orders of magnitude. CONCLUSION For most applications, lysis of the human blood cells is not required. However, co-purified human RNA may interfere with some downstream processes such as RNA sequencing. In this case, blood cell lysis with Triton X-100 is desirable.
Collapse
Affiliation(s)
- Johannes Brennecke
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, UK
| | - Simone Kraut
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, UK.,AG Aus- und Weiterbildung, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Klara Zwadlo
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, UK.,AG Aus- und Weiterbildung, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Senthil Kumar Gandi
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, UK
| | | | | | - Till Bachmann
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
17
|
de Klerk N, Saroj SD, Wassing GM, Maudsdotter L, Jonsson AB. The Host Cell Transcription Factor EGR1 Is Induced by Bacteria through the EGFR-ERK1/2 Pathway. Front Cell Infect Microbiol 2017; 7:16. [PMID: 28180113 PMCID: PMC5264520 DOI: 10.3389/fcimb.2017.00016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/12/2017] [Indexed: 12/01/2022] Open
Abstract
The essential first step in bacterial colonization is adhesion to the host epithelial cells. The early host-responses post-bacterial adhesions are still poorly understood. Early growth response 1 (EGR1) is an early response transcriptional regulator that can be rapidly induced by various environmental stimuli. Several bacteria can induce EGR1 expression in host cells, but the involved bacterial characteristics and the underlying molecular mechanisms of this response are largely unknown. Here, we show that EGR1 can be induced in host epithelial cells by different species of bacteria independent of the adherence level, Gram-staining type and pathogenicity. However, bacterial viability and contact with host cells is necessary, indicating that an active interaction between bacteria and the host is important. Furthermore, the strongest response is observed in cells originating from the natural site of the infection, suggesting that the EGR1 induction is cell type specific. Finally, we show that EGFR–ERK1/2 and β1-integrin signaling are the main pathways used for bacteria-mediated EGR1 upregulation. In conclusion, the increase of EGR1 expression in epithelial cells is a common stress induced, cell type specific response upon host-bacteria interaction that is mediated by EGFR–ERK1/2 and β1-integrin signaling.
Collapse
Affiliation(s)
- Nele de Klerk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| | - Sunil D Saroj
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| | - Gabriela M Wassing
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| | - Lisa Maudsdotter
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| | - Ann-Beth Jonsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| |
Collapse
|