1
|
Xie H, Zhao Q, Zhang X, Kang Q, Bai L. Comparative functional genomics of the acarbose producers reveals potential targets for metabolic engineering. Synth Syst Biotechnol 2019; 4:49-56. [PMID: 30723817 PMCID: PMC6350373 DOI: 10.1016/j.synbio.2019.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/31/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022] Open
Abstract
The α-glucosidase inhibitor acarbose is produced in large-scale by strains derived from Actinoplanes sp. SE50 and used widely for the treatment of type-2 diabetes. Compared with the wild-type SE50, a high-yield derivative Actinoplanes sp. SE50/110 shows 2-fold and 3–7-fold improvement of acarbose yield and acb cluster transcription, respectively. The genome of SE50 was fully sequenced and compared with that of SE50/110, and 11 SNVs and 4 InDels, affecting 8 CDSs, were identified in SE50/110. The 8 CDSs were individually inactivated in SE50. Deletions of ACWT_4325 (encoding alcohol dehydrogenase) resulted in increases of acarbose yield by 25% from 1.87 to 2.34 g/L, acetyl-CoA concentration by 52.7%, and PEP concentration by 22.7%. Meanwhile, deletion of ACWT_7629 (encoding elongation factor G) caused improvements of acarbose yield by 36% from 1.87 to 2.54 g/L, transcription of acb cluster, and ppGpp concentration to 2.2 folds. Combined deletions of ACWT_4325 and ACWT_7629 resulted in further improvement of acarbose to 2.83 g/L (i.e. 76% of SE50/110), suggesting that the metabolic perturbation and improved transcription of acb cluster caused by these two mutations contribute substantially to the acarbose overproduction. Enforced application of similar strategies was performed to manipulate SE50/110, resulting in a further increase of acarbose titer from 3.73 to 4.21 g/L. Therefore, the comparative genomics approach combined with functional verification not only revealed the acarbose overproduction mechanisms, but also guided further engineering of its high-yield producers.
Collapse
Affiliation(s)
- Huixin Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinqin Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Lai GC, Cho H, Bernhardt TG. The mecillinam resistome reveals a role for peptidoglycan endopeptidases in stimulating cell wall synthesis in Escherichia coli. PLoS Genet 2017; 13:e1006934. [PMID: 28749938 PMCID: PMC5549755 DOI: 10.1371/journal.pgen.1006934] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/08/2017] [Accepted: 07/19/2017] [Indexed: 12/01/2022] Open
Abstract
Bacterial cells are typically surrounded by an net-like macromolecule called the cell wall constructed from the heteropolymer peptidoglycan (PG). Biogenesis of this matrix is the target of penicillin and related beta-lactams. These drugs inhibit the transpeptidase activity of PG synthases called penicillin-binding proteins (PBPs), preventing the crosslinking of nascent wall material into the existing network. The beta-lactam mecillinam specifically targets the PBP2 enzyme in the cell elongation machinery of Escherichia coli. Low-throughput selections for mecillinam resistance have historically been useful in defining mechanisms involved in cell wall biogenesis and the killing activity of beta-lactam antibiotics. Here, we used transposon-sequencing (Tn-Seq) as a high-throughput method to identify nearly all mecillinam resistance loci in the E. coli genome, providing a comprehensive resource for uncovering new mechanisms underlying PG assembly and drug resistance. Induction of the stringent response or the Rcs envelope stress response has been previously implicated in mecillinam resistance. We therefore also performed the Tn-Seq analysis in mutants defective for these responses in addition to wild-type cells. Thus, the utility of the dataset was greatly enhanced by determining the stress response dependence of each resistance locus in the resistome. Reasoning that stress response-independent resistance loci are those most likely to identify direct modulators of cell wall biogenesis, we focused our downstream analysis on this subset of the resistome. Characterization of one of these alleles led to the surprising discovery that the overproduction of endopeptidase enzymes that cleave crosslinks in the cell wall promotes mecillinam resistance by stimulating PG synthesis by a subset of PBPs. Our analysis of this activation mechanism suggests that, contrary to the prevailing view in the field, PG synthases and PG cleaving enzymes need not function in multi-enzyme complexes to expand the cell wall matrix. Penicillin and related beta-lactams are one of our oldest and most effective classes of antibiotics. These drugs target enzymes called penicillin-binding proteins (PBPs) that build the essential cell wall that surrounds bacterial cells. Beta-lactams have long been used as chemical and genetic probes to uncover the mechanisms required for proper bacterial cell wall biogenesis. In this report, we use a high-throughput genetic approach to comprehensively identify nearly all genetic loci that promote resistance to the beta-lactam mecillinam in the model organism Escherichia coli. Moreover, by performing our analysis in several different genetic backgrounds we were able to generate a rich resource that defines those alleles that promote resistance by inducing a stress response and those that are more likely to do so by directly modulating cell wall synthesis. Further characterization of one of the stress response-independent resistance loci helped us discover that enzymes that cleave crosslinks in the cell wall are capable of activating cell wall synthesis by a subset of PBPs. Our analysis of the activation mechanism challenges the prevailing view in the field that cell wall synthases and cell wall cleaving enzymes must work in multi-enzyme complexes to assemble the cell wall.
Collapse
Affiliation(s)
- Ghee Chuan Lai
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - Hongbaek Cho
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - Thomas G Bernhardt
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
3
|
Adler M, Anjum M, Andersson DI, Sandegren L. Combinations of mutations in envZ, ftsI, mrdA, acrB and acrR can cause high-level carbapenem resistance in Escherichia coli. J Antimicrob Chemother 2016; 71:1188-98. [PMID: 26869688 DOI: 10.1093/jac/dkv475] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/13/2015] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES The worldwide spread of ESBL-producing Enterobacteriaceae has led to an increased use of carbapenems, the group of β-lactams with the broadest spectrum of activity. Bacterial resistance to carbapenems is mainly due to acquired carbapenemases or a combination of ESBL production and reduced drug influx via loss of outer-membrane porins. Here, we have studied the development of carbapenem resistance in Escherichia coli in the absence of β-lactamases. METHODS We selected mutants with high-level carbapenem resistance through repeated serial passage in the presence of increasing concentrations of meropenem or ertapenem for ∼60 generations. Isolated clones were whole-genome sequenced, and the order in which the identified mutations arose was determined in the passaged populations. Key mutations were reconstructed, and bacterial growth rates of populations and isolated clones and resistance levels to 23 antibiotics were measured. RESULTS High-level resistance to carbapenems resulted from a combination of downstream effects of envZ mutation and target mutations in AcrAB-TolC-mediated drug export, together with PBP genes [mrdA (PBP2) after meropenem exposure or ftsI (PBP3) after ertapenem exposure]. CONCLUSIONS Our results show that antibiotic resistance evolution can occur via several parallel pathways and that new mechanisms may appear after the most common pathways (i.e. β-lactamases and loss of porins) have been eliminated. These findings suggest that strategies to target the most commonly observed resistance mechanisms might be hampered by the appearance of previously unknown parallel pathways to resistance.
Collapse
Affiliation(s)
- Marlen Adler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, SE-751 23 Uppsala, Sweden
| | - Mehreen Anjum
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, SE-751 23 Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, SE-751 23 Uppsala, Sweden
| | - Linus Sandegren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, SE-751 23 Uppsala, Sweden
| |
Collapse
|
4
|
Schaefer J, Engl C, Zhang N, Lawton E, Buck M. Genome wide interactions of wild-type and activator bypass forms of σ54. Nucleic Acids Res 2015; 43:7280-91. [PMID: 26082500 PMCID: PMC4551910 DOI: 10.1093/nar/gkv597] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/25/2015] [Indexed: 01/05/2023] Open
Abstract
Enhancer-dependent transcription involving the promoter specificity factor σ54 is widely distributed amongst bacteria and commonly associated with cell envelope function. For transcription initiation, σ54-RNA polymerase yields open promoter complexes through its remodelling by cognate AAA+ ATPase activators. Since activators can be bypassed in vitro, bypass transcription in vivo could be a source of emergent gene expression along evolutionary pathways yielding new control networks and transcription patterns. At a single test promoter in vivo bypass transcription was not observed. We now use genome-wide transcription profiling, genome-wide mutagenesis and gene over-expression strategies in Escherichia coli, to (i) scope the range of bypass transcription in vivo and (ii) identify genes which might alter bypass transcription in vivo. We find little evidence for pervasive bypass transcription in vivo with only a small subset of σ54 promoters functioning without activators. Results also suggest no one gene limits bypass transcription in vivo, arguing bypass transcription is strongly kept in check. Promoter sequences subject to repression by σ54 were evident, indicating loss of rpoN (encoding σ54) rather than creating rpoN bypass alleles would be one evolutionary route for new gene expression patterns. Finally, cold-shock promoters showed unusual σ54-dependence in vivo not readily correlated with conventional σ54 binding-sites.
Collapse
Affiliation(s)
- Jorrit Schaefer
- Faculty of Natural Sciences, Division of Cell & Molecular Biology, Imperial College London, London SW7 2AZ, UK
| | - Christoph Engl
- Faculty of Natural Sciences, Division of Cell & Molecular Biology, Imperial College London, London SW7 2AZ, UK Institute for Global Food Security, Queen's University Belfast, Belfast BT9 5BN, UK
| | - Nan Zhang
- Faculty of Natural Sciences, Division of Cell & Molecular Biology, Imperial College London, London SW7 2AZ, UK
| | - Edward Lawton
- Faculty of Natural Sciences, Division of Cell & Molecular Biology, Imperial College London, London SW7 2AZ, UK
| | - Martin Buck
- Faculty of Natural Sciences, Division of Cell & Molecular Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
5
|
Chatnaparat T, Li Z, Korban SS, Zhao Y. The bacterial alarmone (p)ppGpp is required for virulence and controls cell size and survival of Pseudomonas syringae on plants. Environ Microbiol 2015; 17:4253-70. [PMID: 25626964 DOI: 10.1111/1462-2920.12744] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/29/2014] [Accepted: 12/06/2014] [Indexed: 11/29/2022]
Abstract
The stringent response, mediated by second messenger (p)ppGpp, results in swift and massive transcriptional reprogramming under nutrient limited conditions. In this study, the role of (p)ppGpp on virulence of Pseudomonas syringae pv. syringae B728a (PssB728a) was investigated. The virulence of the relA/spoT (ppGpp(0) ) double mutant was completely impaired on bean, and bacterial growth was significantly reduced, suggesting that (p)ppGpp is required for full virulence of P. syringae. Expression of T3SS and other virulence genes was reduced in ppGpp(0) mutants. In addition, ppGpp deficiency resulted in loss of swarming motility, reduction of pyoverdine production, increased sensitivity to oxidative stress and antibiotic tolerance, as well as reduced ability to utilize γ-amino butyric acid. Increased levels of ppGpp resulted in reduced cell size of PssB728a when grown in a minimal medium and on plant surfaces, while most ppGpp(0) mutant cells were not viable on plant surfaces 24 h after spray inoculation, suggesting that ppGpp-mediated stringent response temporarily limits cell growth, and might control cell survival on plants by limiting their growth. These results demonstrated that ppGpp-mediated stringent response plays a central role in P. syringae virulence and survival and indicated that ppGpp serves as a global signal for regulating various virulence traits in PssB728a.
Collapse
Affiliation(s)
- Tiyakhon Chatnaparat
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhong Li
- Metabolomics Center, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Schuyler S Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
6
|
A regulatory feedback loop between RpoS and SpoT supports the survival of Legionella pneumophila in water. Appl Environ Microbiol 2014; 81:918-28. [PMID: 25416763 DOI: 10.1128/aem.03132-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is a waterborne pathogen, and survival in the aquatic environment is central to its transmission to humans. Therefore, identifying genes required for its survival in water could help prevent Legionnaires' disease outbreaks. In the present study, we investigate the role of the sigma factor RpoS in promoting survival in water, where L. pneumophila experiences severe nutrient deprivation. The rpoS mutant showed a strong survival defect compared to the wild-type strain in defined water medium. The transcriptome of the rpoS mutant during exposure to water revealed that RpoS represses genes associated with replication, translation, and transcription, suggesting that the mutant fails to shut down major metabolic programs. In addition, the rpoS mutant is transcriptionally more active than the wild-type strain after water exposure. This could be explained by a misregulation of the stringent response in the rpoS mutant. Indeed, the rpoS mutant shows an increased expression of spoT and a corresponding decrease in the level of (p)ppGpp, which is due to the presence of a negative feedback loop between RpoS and SpoT. Therefore, the lack of RpoS causes an aberrant regulation of the stringent response, which prevents the induction of a successful response to starvation.
Collapse
|