1
|
Toro-Urrego N, Luaces JP, Kobiec T, Udovin L, Bordet S, Otero-Losada M, Capani F. Raloxifene Protects Oxygen-Glucose-Deprived Astrocyte Cells Used to Mimic Hypoxic-Ischemic Brain Injury. Int J Mol Sci 2024; 25:12121. [PMID: 39596189 PMCID: PMC11594051 DOI: 10.3390/ijms252212121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/11/2024] [Accepted: 08/23/2024] [Indexed: 11/28/2024] Open
Abstract
Perinatal asphyxia (PA) is a clinical condition characterized by oxygen supply suspension before, during, or immediately after birth, and it is an important risk factor for neurodevelopmental damage. Its estimated 1/1000 live births incidence in developed countries rises to 5-10-fold in developing countries. Schizophrenia, cerebral palsy, mental retardation, epilepsy, blindness, and others are among the highly disabling chronic pathologies associated with PA. However, so far, there is no effective therapy to neutralize or reduce PA-induced harm. Selective regulators of estrogen activity in tissues and selective estrogen receptor modulators like raloxifene have shown neuroprotective activity in different pathological scenarios. Their effect on PA is yet unknown. The purpose of this paper is to examine whether raloxifene showed neuroprotection in an oxygen-glucose deprivation/reoxygenation astrocyte cell model. To study this issue, T98G cells in culture were treated with a glucose-free DMEM medium and incubated at 37 °C in a hypoxia chamber with 1% O2 for 3, 6, 12, and 24 h. Cultures were supplemented with raloxifene 10, and 100 nM during both glucose and oxygen deprivation and reoxygenation periods. Raloxifene 100 nM and 10 nM improved cell survival-65.34% and 70.56%, respectively, compared with the control cell groups. Mitochondrial membrane potential was preserved by 58.9% 10 nM raloxifene and 81.57% 100 nM raloxifene cotreatment. Raloxifene co-treatment reduced superoxide production by 72.72% and peroxide production by 57%. Mitochondrial mass was preserved by 47.4%, 75.5%, and 89% in T98G cells exposed to 6-h oxygen-glucose deprivation followed by 3, 6, and 9 h of reoxygenation, respectively. Therefore, raloxifene improved cell survival and mitochondrial membrane potential and reduced lipid peroxidation and reactive oxygen species (ROS) production, suggesting a direct effect on mitochondria. In this study, raloxifene protected oxygen-glucose-deprived astrocyte cells, used to mimic hypoxic-ischemic brain injury. Two examiners performed the qualitative assessment in a double-blind fashion.
Collapse
Affiliation(s)
- Nicolás Toro-Urrego
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires C1270AAH, Argentina; (N.T.-U.); (J.P.L.); (T.K.); (L.U.); (S.B.)
| | - Juan P. Luaces
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires C1270AAH, Argentina; (N.T.-U.); (J.P.L.); (T.K.); (L.U.); (S.B.)
| | - Tamara Kobiec
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires C1270AAH, Argentina; (N.T.-U.); (J.P.L.); (T.K.); (L.U.); (S.B.)
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires C1107AFB, Argentina
| | - Lucas Udovin
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires C1270AAH, Argentina; (N.T.-U.); (J.P.L.); (T.K.); (L.U.); (S.B.)
| | - Sofía Bordet
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires C1270AAH, Argentina; (N.T.-U.); (J.P.L.); (T.K.); (L.U.); (S.B.)
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires C1107AFB, Argentina
| | - Matilde Otero-Losada
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires C1270AAH, Argentina; (N.T.-U.); (J.P.L.); (T.K.); (L.U.); (S.B.)
| | - Francisco Capani
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires C1270AAH, Argentina; (N.T.-U.); (J.P.L.); (T.K.); (L.U.); (S.B.)
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 7500912, Chile
| |
Collapse
|
2
|
Jagečić D, Petrović DJ, Šimunić I, Isaković J, Mitrečić D. The Oxygen and Glucose Deprivation of Immature Cells of the Nervous System Exerts Distinct Effects on Mitochondria, Mitophagy, and Autophagy, Depending on the Cells' Differentiation Stage. Brain Sci 2023; 13:910. [PMID: 37371388 DOI: 10.3390/brainsci13060910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Perinatal brain damage, one of the most common causes of lifelong impairment, is predominantly caused by a lack of oxygen and glucose during early development. These conditions, in turn, affect cells of the nervous tissue through various stages of their maturation. To quantify the influence of these factors on cell differentiation and mitochondrial parameters, we exposed neural cell precursors to oxygen and glucose deprivation (OGD) during three stages of their differentiation: day 1, day 7, and day 14 (D1, D7, and D14, respectively). The obtained results show that OGD slows down cellular differentiation and causes cell death. Regardless of the level of cell maturity, the overall area of the mitochondria, their length, and the branching of their filaments decreased uniformly when exposed to OGD-related stress. Moreover, the cells in all stages of differentiation exhibited an increase in ROS production, hyperpolarization of the mitochondrial membrane, and autophagy. Interestingly, day 7 was the only stage in which a significant increase in mitochondrial fission, along with measurable instances of mitophagy, were detected. Taken together, the results of this study suggest that, apart from common reactions to a sudden lack of oxygen and glucose, cells in specific stages of neural differentiation can also exhibit increased preferences for mitochondrial fission and mitophagy. Such findings could play a role in guiding the future development of novel therapeutic approaches targeting perinatal brain damage during specific stages of nervous system development.
Collapse
Affiliation(s)
- Denis Jagečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 3, 10 000 Zagreb, Croatia
| | - Dražen Juraj Petrović
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 3, 10 000 Zagreb, Croatia
- Genos d.o.o., Laboratory for Glycobiology, 10 000 Zagreb, Croatia
| | - Iva Šimunić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 3, 10 000 Zagreb, Croatia
| | - Jasmina Isaković
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 3, 10 000 Zagreb, Croatia
- Omnion Research International, 10 000 Zagreb, Croatia
| | - Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 3, 10 000 Zagreb, Croatia
| |
Collapse
|
3
|
Leonurine Reduces Oxidative Stress and Provides Neuroprotection against Ischemic Injury via Modulating Oxidative and NO/NOS Pathway. Int J Mol Sci 2022; 23:ijms231710188. [PMID: 36077582 PMCID: PMC9456230 DOI: 10.3390/ijms231710188] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Leonurine (Leo) has been found to have neuroprotective effects against cerebral ischemic injury. However, the exact molecular mechanism underlying its neuroprotective ability remains unclear. The aim of the present study was to investigate whether Leo could provide protection through the nitric oxide (NO)/nitric oxide synthase (NOS) pathway. We firstly explored the effects of NO/NOS signaling on oxidative stress and apoptosis in in vivo and in vitro models of cerebral ischemia. Further, we evaluated the protective effects of Leo against oxygen and glucose deprivation (OGD)-induced oxidative stress and apoptosis in PC12 cells. We found that the rats showed anxiety-like behavior, and the morphology and number of neurons were changed in a model of photochemically induced cerebral ischemia. Both in vivo and in vitro results show that the activity of superoxide dismutase (SOD) and glutathione (GSH) contents were decreased after ischemia, and reactive oxygen species (ROS) and malondialdehyde (MDA) levels were increased, indicating that cerebral ischemia induced oxidative stress and neuronal damage. Moreover, the contents of NO, total NOS, constitutive NOS (cNOS) and inducible NOS (iNOS) were increased after ischemia in rat and PC12 cells. Treatment with L-nitroarginine methyl ester (L-NAME), a nonselective NOS inhibitor, could reverse the change in NO/NOS expression and abolish these detrimental effects of ischemia. Leo treatment decreased ROS and MDA levels and increased the activity of SOD and GSH contents in PC12 cells exposed to OGD. Furthermore, Leo reduced NO/NOS production and cell apoptosis, decreased Bax expression and increased Bcl-2 levels in OGD-treated PC12 cells. All the data suggest that Leo protected against oxidative stress and neuronal apoptosis in cerebral ischemia by inhibiting the NO/NOS system. Our findings indicate that Leo could be a potential agent for the intervention of ischemic stroke and highlighted the NO/NOS-mediated oxidative stress signaling.
Collapse
|
4
|
Taylor MK, Sullivan DK, Keller JE, Burns JM, Swerdlow RH. Potential for Ketotherapies as Amyloid-Regulating Treatment in Individuals at Risk for Alzheimer’s Disease. Front Neurosci 2022; 16:899612. [PMID: 35784855 PMCID: PMC9243383 DOI: 10.3389/fnins.2022.899612] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative condition characterized by clinical decline in memory and other cognitive functions. A classic AD neuropathological hallmark includes the accumulation of amyloid-β (Aβ) plaques, which may precede onset of clinical symptoms by over a decade. Efforts to prevent or treat AD frequently emphasize decreasing Aβ through various mechanisms, but such approaches have yet to establish compelling interventions. It is still not understood exactly why Aβ accumulates in AD, but it is hypothesized that Aβ and other downstream pathological events are a result of impaired bioenergetics, which can also manifest prior to cognitive decline. Evidence suggests that individuals with AD and at high risk for AD have functional brain ketone metabolism and ketotherapies (KTs), dietary approaches that produce ketone bodies for energy metabolism, may affect AD pathology by targeting impaired brain bioenergetics. Cognitively normal individuals with elevated brain Aβ, deemed “preclinical AD,” and older adults with peripheral metabolic impairments are ideal candidates to test whether KTs modulate AD biology as they have impaired mitochondrial function, perturbed brain glucose metabolism, and elevated risk for rapid Aβ accumulation and symptomatic AD. Here, we discuss the link between brain bioenergetics and Aβ, as well as the potential for KTs to influence AD risk and progression.
Collapse
Affiliation(s)
- Matthew K. Taylor
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
- *Correspondence: Matthew K. Taylor,
| | - Debra K. Sullivan
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
| | - Jessica E. Keller
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jeffrey M. Burns
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Russell H. Swerdlow
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
5
|
Witt B, Stiboller M, Raschke S, Friese S, Ebert F, Schwerdtle T. Characterizing effects of excess copper levels in a human astrocytic cell line with focus on oxidative stress markers. J Trace Elem Med Biol 2021; 65:126711. [PMID: 33486291 DOI: 10.1016/j.jtemb.2021.126711] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/02/2020] [Accepted: 01/02/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Being an essential trace element, copper is involved in diverse physiological processes. However, excess levels might lead to adverse effects. Disrupted copper homeostasis, particularly in the brain, has been associated with human diseases including the neurodegenerative disorders Wilson and Alzheimer's disease. In this context, astrocytes play an important role in the regulation of the copper homeostasis in the brain and likely in the prevention against neuronal toxicity, consequently pointing them out as a potential target for the neurotoxicity of copper. Major toxic mechanisms are discussed to be directed against mitochondria probably via oxidative stress. However, the toxic potential and mode of action of copper in astrocytes is poorly understood, so far. METHODS In this study, excess copper levels affecting human astrocytic cell model and their involvement in the neurotoxic mode of action of copper, as well as, effects on the homeostasis of other trace elements (Mn, Fe, Ca and Mg) were investigated. RESULTS Copper induced substantial cytotoxic effects in the human astrocytic cell line following 48 h incubation (EC30: 250 μM) and affected mitochondrial function, as observed via reduction of mitochondrial membrane potential and increased ROS production, likely originating from mitochondria. Moreover, cellular GSH metabolism was altered as well. Interestingly, not only cellular copper levels were affected, but also the homeostasis of other elements (Ca, Fe and Mn) were disrupted. CONCLUSION One potential toxic mode of action of copper seems to be effects on the mitochondria along with induction of oxidative stress in the human astrocytic cell model. Moreover, excess copper levels seem to interact with the homeostasis of other essential elements such as Ca, Fe and Mn. Disrupted element homeostasis might also contribute to the induction of oxidative stress, likely involved in the onset and progression of neurodegenerative disorders. These insights in the toxic mechanisms will help to develop ideas and approaches for therapeutic strategies against copper-mediated diseases.
Collapse
Affiliation(s)
- Barbara Witt
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Michael Stiboller
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Stefanie Raschke
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Sharleen Friese
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Franziska Ebert
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena, Germany; German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| |
Collapse
|
6
|
Saliu IO, Bhagat R, Ojo OB, Akinmoladun AC, Olaleye MT, Seth P, Rema V. Reduction of anoxia-induced bioenergetic disturbance in astrocytes by methanol fruit extract of Tetrapleura tetraptera and in silico evaluation of the effect of its antioxidative constituents on excitotoxicity. Toxicol Rep 2021; 8:264-276. [PMID: 33552925 PMCID: PMC7848610 DOI: 10.1016/j.toxrep.2021.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/06/2022] Open
Abstract
Oxidative stress and excitotoxicity are some of the pathophysiological abnormalities in hypoxia-induced brain injury. This study evaluated the intrinsic antioxidant property of methanol fruit extract of Tetrapleura tetraptera (TT), traditionally used for managing brain diseases such as cerebral infarction in West Africa, and its ability to protect primary astrocytes from anoxia-induced cell death. The effect of the phytochemicals present in TT on excitotoxicity was assessed in silico, through docking with human glutamate synthetase (hGS). Chromatographic and spectrophotometric analyses of TT were performed. Primary astrocytes derived from neural stem cells were treated with TT and its effect on astrocyte viability was assessed. TT-treated astrocytes were then subjected to anoxic insult and, cell viability and mitochondrial membrane potential were evaluated. Molecular docking of hGS with detected phytochemicals in TT (aridanin, naringenin, ferulic acid, and scopoletin) was performed and the number of interactions with the lead compounds, aridanin, analyzed. HPLC-DAD analysis of TT revealed the presence of various bioactive phytochemicals. TT demonstrated notable antioxidant and radical scavenging activities. TT also protected astrocytes from anoxic insult by restoring cell viability and preventing alteration to mitochondrial membrane integrity. Aridanin, naringenin, ferulic acid, and scopoletin demonstrated good binding affinities with hGS indicating that Tetrapleura tetraptera is a potential source of new plant-based bioactives relevant in the therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ibrahim Olabayode Saliu
- Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure, 340001, Nigeria.,Department of System and Cognitive Neuroscience, National Brain Research Center (NBRC), Manesar, Haryana, 122052, India
| | - Reshma Bhagat
- Neurovirology Section, Department of Molecular and Cellular Neuroscience, National Brain Research Centre (NBRC), Manesar, Haryana, 122052, India
| | - Olubukola Benedicta Ojo
- Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure, 340001, Nigeria
| | - Afolabi C Akinmoladun
- Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure, 340001, Nigeria
| | - M Tolulope Olaleye
- Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure, 340001, Nigeria
| | - Pankaj Seth
- Neurovirology Section, Department of Molecular and Cellular Neuroscience, National Brain Research Centre (NBRC), Manesar, Haryana, 122052, India
| | - Velayudhan Rema
- Department of System and Cognitive Neuroscience, National Brain Research Center (NBRC), Manesar, Haryana, 122052, India
| |
Collapse
|
7
|
Transmembrane Prolyl 4-Hydroxylase is a Novel Regulator of Calcium Signaling in Astrocytes. eNeuro 2021; 8:ENEURO.0253-20.2020. [PMID: 33298456 PMCID: PMC7814479 DOI: 10.1523/eneuro.0253-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/09/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Prolyl 4-hydroxylases (P4Hs) have vital roles in regulating collagen synthesis and hypoxia response. A transmembrane P4H (P4H-TM) is a recently identified member of the family. Biallelic loss of function P4H-TM mutations cause a severe autosomal recessive intellectual disability syndrome in humans, but functions of P4H-TM are essentially unknown at cellular level. Our microarray data on P4h-tm -/- mouse cortexes where P4H-TM is abundantly expressed indicated expression changes in genes involved in calcium signaling and expression of several calcium sequestering ATPases was upregulated in P4h-tm -/- primary mouse astrocytes. Cytosolic and intraorganellar calcium imaging of P4h-tm -/- cells revealed that receptor-operated calcium entry (ROCE) and store-operated calcium entry (SOCE) and calcium re-uptake by mitochondria were compromised. HIF1, but not HIF2, was found to be a key mediator of the P4H-TM effect on calcium signaling. Furthermore, total internal reflection fluorescence (TIRF) imaging showed that calcium agonist-induced gliotransmission was attenuated in P4h-tm -/- astrocytes. This phenotype was accompanied by redistribution of mitochondria from distal processes to central parts of the cell body and decreased intracellular ATP content. Our data show that P4H-TM is a novel regulator of calcium dynamics and gliotransmission.
Collapse
|
8
|
Hypoxia-Inducible Factor-1 α Knockdown Plus Glutamine Supplementation Attenuates the Predominance of Necrosis over Apoptosis by Relieving Cellular Energy Stress in Acute Pancreatitis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4363672. [PMID: 31281575 PMCID: PMC6589200 DOI: 10.1155/2019/4363672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/09/2019] [Indexed: 12/25/2022]
Abstract
The present study was conducted to investigate the effect and potential mechanism of hypoxia-inducible factor-1α (HIF-1α) genetic inhibition plus glutamine (Gln) supplementation on necrosis-apoptosis imbalance during acute pancreatitis (AP), with a specific focus on the regulations of intracellular energy metabolism status. Wistar rats and AR42J cells were used to establish AP models. When indicated, a HIF-1α knockdown with or without a Gln supplementation was administered. In vivo, local and systemic inflammatory injuries were assessed by serum cytokine measurement, H&E staining, and transmission electron microscope (TEM) observation of pancreatic tissue. In vitro, intracellular energy metabolism status was evaluated by measuring the intracellular adenosine triphosphate (ATP), lactic acid, and Ca2+ concentrations and the mitochondrial potential. In addition, changes in the apoptotic activity were analyzed using TUNEL staining in vivo and an apoptosis assay in vitro. HIF-1α knockdown alleviated AP-related inflammatory injury as indicated by the measurements of serum cytokines and examinations of TEM and H&E staining of pancreatic tissues. HIF-1α knockdown played an antioxidative role against AP-related injuries by preventing the increase in the intracellular Ca2+ concentration and the decrease in the mitochondrial membrane potential and subsequently by suppressing the glycolysis pathway and increasing energy anabolism in AR42J cells after AP induction. Apoptosis was significantly upregulated when HIF-1α was knocked down before AP induction due to an attenuation of the translocation of nuclear factor-kappa B to the nuclei. Furthermore, these merits of HIF-1α knockdown in the relief of the metabolic stress and upregulation of apoptosis were more significant when Gln was administered concomitantly. In conclusion, Gln-supplemented HIF-1α knockdown might be promising for the future management of AP by relieving the intracellular energy stress, thereby attenuating the predominance of necrosis over apoptosis.
Collapse
|
9
|
Zhang B, Li W, Dong M. Flavonoids of Kudzu Root Fermented by Eurtotium cristatum Protected Rat Pheochromocytoma Line 12 (PC12) Cells against H₂O₂-Induced Apoptosis. Int J Mol Sci 2017; 18:E2754. [PMID: 29257062 PMCID: PMC5751353 DOI: 10.3390/ijms18122754] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 01/29/2023] Open
Abstract
Novel bioactive components have greatly attracted attention as they demonstrate health benefits. Reversed-phase high performance liquid chromatography (RP-HPLC) showed that isoflavonoid compounds of kudzu root (Pueraria lobata) fermented by Eurtotium cristatum and extracted using de-ionized water were higher active compared with non-fermented. A model of H₂O₂-inducd cell damage was built using rat pheochromocytoma line 12 (PC12) cell to observe the protective effect of non-fermented kudzu root (Pueraria lobata) (NFK) and fermented kudzu root (Pueraria lobata) (FK). Cell viability and apoptosis were analyzed through inverted microscopy and flow cytometry. The level of lactate dehydrogenase, catalase activity, superoxide dismutase, glutathione, and reactive oxygen species (ROS) were evaluated. Results showed that NFK and FK could significantly protect PC12 cell against damage caused by H₂O₂-induced oxidative stress. The intracellular antioxidant system was increased, protected the cell membrane inhibit H₂O₂-induced apoptosis by scavenging of ROS. Moreover, NFK and FK regulated the cell cycle to prevent cell apoptosis. Isoflavonoid from the kudzu root especially fermented kudzu root with E. cristatum are potentially therapeutic drugs against diseases induced by oxidative damage.
Collapse
Affiliation(s)
- Bo Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
| | - Wen Li
- Jiangsu Key Construction Laboratory of Food Resource Development and Quality Safe, Xuzhou Institute Technology, Xuzhou 221008, China.
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Liu YJ, Wang DY, Yang YJ, Lei WF. Effects and mechanism of dexmedetomidine on neuronal cell injury induced by hypoxia-ischemia. BMC Anesthesiol 2017; 17:117. [PMID: 28854873 PMCID: PMC5577810 DOI: 10.1186/s12871-017-0413-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/25/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The present study aims to investigate the protective effects of dexmedetomidine (DMED) on hypoxia ischemia injury induced by oxygen and glucose deprivation (OGD) in PC12 and primary neuronal cells. METHODS PC12 cells exposed to OGD was used to establish ischemia model. The OGD-induced cell injury was evaluated by alterations of cell viability, apoptosis and expressions of apoptosis-associated proteins. Oxidative stress and expressions of neurotrophic factors after OGD and DMED treatments were also explored. The activation of possible involved signaling pathways were studied after OGD and DMED treatments, along with the addition of inhibitors of these pathways. Finally, the effects of DMED on primary neuronal cells were verified according to the alterations of inflammatory cytokines release and oxidative stress. RESULTS DMED obviously increased cell viability and reduced cell apoptosis as well as ratio of Bax/Bcl-2 in OGD-treated PC12 cells. Then, the OGD-induced changes of LDH, MDA, SOD and GSH-Px as well as decreases of neurotrophic factors were all ameliorated by DMED treatment. Key kinases in Notch/NF-κB signaling pathway were up-regulated by OGD, whereas the up-regulations were decreased by DMED. In addition, inhibitor of Notch or NF-κB could augment the effects of DMED on OGD-induced cell injury. Finally, the protective effects of DMED were verified in primary neuronal cells. CONCLUSION DMED had protective effect on OGD-induced PC12 cell injury, depending on its anti-apoptotic, anti-oxidative activity and the inhibition of Notch/NF-κB activation. Our findings suggested that DMED could be used as a potential therapeutic drug for cerebral ischemia.
Collapse
Affiliation(s)
- Ya-Jun Liu
- Department of Anesthesiology, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Jinan, Shandong 250012 China
- Department of Anesthesiology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013 China
| | - Duan-Yu Wang
- Department of Anesthesiology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013 China
| | - Yong-Jian Yang
- Department of Anesthesiology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013 China
| | - Wei-Fu Lei
- Department of Anesthesiology, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Jinan, Shandong 250012 China
| |
Collapse
|
11
|
Being right on Q: shaping eukaryotic evolution. Biochem J 2017; 473:4103-4127. [PMID: 27834740 PMCID: PMC5103874 DOI: 10.1042/bcj20160647] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/18/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) formation by mitochondria is an incompletely understood eukaryotic process. I proposed a kinetic model [BioEssays (2011) 33, 88–94] in which the ratio between electrons entering the respiratory chain via FADH2 or NADH (the F/N ratio) is a crucial determinant of ROS formation. During glucose breakdown, the ratio is low, while during fatty acid breakdown, the ratio is high (the longer the fatty acid, the higher is the ratio), leading to higher ROS levels. Thus, breakdown of (very-long-chain) fatty acids should occur without generating extra FADH2 in mitochondria. This explains peroxisome evolution. A potential ROS increase could also explain the absence of fatty acid oxidation in long-lived cells (neurons) as well as other eukaryotic adaptations, such as dynamic supercomplex formation. Effective combinations of metabolic pathways from the host and the endosymbiont (mitochondrion) allowed larger varieties of substrates (with different F/N ratios) to be oxidized, but high F/N ratios increase ROS formation. This might have led to carnitine shuttles, uncoupling proteins, and multiple antioxidant mechanisms, especially linked to fatty acid oxidation [BioEssays (2014) 36, 634–643]. Recent data regarding peroxisome evolution and their relationships with mitochondria, ROS formation by Complex I during ischaemia/reperfusion injury, and supercomplex formation adjustment to F/N ratios strongly support the model. I will further discuss the model in the light of experimental findings regarding mitochondrial ROS formation.
Collapse
|
12
|
Witt B, Meyer S, Ebert F, Francesconi KA, Schwerdtle T. Toxicity of two classes of arsenolipids and their water-soluble metabolites in human differentiated neurons. Arch Toxicol 2017; 91:3121-3134. [PMID: 28180949 DOI: 10.1007/s00204-017-1933-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/12/2017] [Indexed: 01/17/2023]
Abstract
Arsenolipids are lipid-soluble organoarsenic compounds, mainly occurring in marine organisms, with arsenic-containing hydrocarbons (AsHCs) and arsenic-containing fatty acids (AsFAs) representing two major subgroups. Recently, toxicity studies of several arsenolipids showed a high cytotoxic potential of those arsenolipids in human liver and bladder cells. Furthermore, feeding studies with Drosophila melanogaster indicated an accumulation of arsenolipids in the fruit fly's brain. In this study, the neurotoxic potential of three AsHCs, two AsFAs and three metabolites (dimethylarsinic acid, thio/oxo-dimethylarsenopropanoic acid) was investigated in comparison to the toxic reference arsenite (iAsIII) in fully differentiated human brain cells (LUHMES cells). Thereby, in the case of AsHCs both the cell number and cell viability were reduced in a low micromolar concentration range comparable to iAsIII, while AsFAs and the applied metabolites were less toxic. Mechanistic studies revealed that AsHCs reduced the mitochondrial membrane potential, whereas neither iAsIII nor AsFAs had an impact. Furthermore, neurotoxic mechanisms were investigated by examining the neuronal network. Here, AsHCs massively disturbed the neuronal network and induced apoptotic effects, while iAsIII and AsFAs showed comparatively lesser effects. Taking into account the substantial in vitro neurotoxic potential of the AsHCs and the fact that they could transfer across the physiological barriers of the brain, a neurotoxic potential in vivo for the AsHCs cannot be excluded and needs to be urgently characterized.
Collapse
Affiliation(s)
- Barbara Witt
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Sören Meyer
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Franziska Ebert
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Kevin A Francesconi
- Institute of Chemistry-Analytical Chemistry, University of Graz, Universitaetsplatz 1, 8010, Graz, Austria
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| |
Collapse
|
13
|
Ebert F, Thomann M, Witt B, Müller SM, Meyer S, Weber T, Christmann M, Schwerdtle T. Evaluating long-term cellular effects of the arsenic species thio-DMA(V): qPCR-based gene expression as screening tool. J Trace Elem Med Biol 2016; 37:78-84. [PMID: 27320638 DOI: 10.1016/j.jtemb.2016.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/01/2016] [Indexed: 01/04/2023]
Abstract
Thio-dimethylarsinic acid (thio-DMA(V)) is a human urinary metabolite of the class 1 human carcinogen inorganic arsenic as well as of arsenosugars. Thio-DMA(V) exerts strong cellular toxicity, whereas its toxic modes of action are not fully understood. For the first time, this study characterises the impact of a long-term (21days) in vitro incubation of thio-DMA(V) on the expression of selected genes related to cell death, stress response, epigenetics and DNA repair. The observed upregulation of DNMT1 might be a cellular compensation to counterregulate the in a very recent study observed massive global DNA hypomethylation after chronic thio-DMA(V) incubation. Moreover, our data suggest that chronic exposure towards subcytotoxic, pico- to nanomolar concentrations of thio-DMA(V) causes a stress response in human urothelial cells. The upregulation of genes encoding for proteins of DNA repair (Apex1, Lig1, XRCC1, DDB2, XPG, ATR) as well as damage response (GADD45A, GADD45G, Trp53) indicate a potential genotoxic risk emanating from thio-DMA(V) after long-term incubation.
Collapse
Affiliation(s)
- Franziska Ebert
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Marlies Thomann
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Barbara Witt
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Sandra M Müller
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Sören Meyer
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Till Weber
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Markus Christmann
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131 Mainz, Germany
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
14
|
Wilkins HM, Swerdlow RH. Amyloid precursor protein processing and bioenergetics. Brain Res Bull 2016; 133:71-79. [PMID: 27545490 DOI: 10.1016/j.brainresbull.2016.08.009] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 02/08/2023]
Abstract
The processing of amyloid precursor protein (APP) to amyloid beta (Aβ) is of great interest to the Alzheimer's disease (AD) field. Decades of research define how APP is altered to form Aβ, and how Aβ generates oligomers, protofibrils, and fibrils. Numerous signaling pathways and changes in cell physiology are known to influence APP processing. Existing data additionally indicate a relationship exists between mitochondria, bioenergetics, and APP processing. Here, we review data that address whether mitochondrial function and bioenergetics modify APP processing and Aβ production.
Collapse
Affiliation(s)
- Heather M Wilkins
- Department of Neurology University of Kansas Medical Center, Kansas City, KS, USA; University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| | - Russell H Swerdlow
- Department of Neurology University of Kansas Medical Center, Kansas City, KS, USA; University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS USA.
| |
Collapse
|
15
|
Toro-Urrego N, Garcia-Segura LM, Echeverria V, Barreto GE. Testosterone Protects Mitochondrial Function and Regulates Neuroglobin Expression in Astrocytic Cells Exposed to Glucose Deprivation. Front Aging Neurosci 2016; 8:152. [PMID: 27445795 PMCID: PMC4921852 DOI: 10.3389/fnagi.2016.00152] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/13/2016] [Indexed: 12/11/2022] Open
Abstract
Testosterone is a hormone that has been shown to confer neuroprotection from different insults affecting the central nervous system (CNS). Testosterone induces this protection by different mechanisms that include the activation of anti-apoptotic pathways that are directly implicated in neuronal survival. However, little attention has been devoted to its actions on glial cells. In the present study, we have assessed whether testosterone exerts protection in a human astrocyte cell model, the T98G cells. Our results indicate that testosterone improves cell survival and mitochondrial membrane potential and reduces nuclear fragmentation and reactive oxygen species (ROS) generation. These effects were accompanied by a positive regulation of neuroglobin, an oxygen-binding and sensor protein, which may serve as a regulator of ROS and nitrogen reactive species (NOS), and these protective effects of testosterone may be at least in part mediated by estradiol and DHT. In conclusion, these findings suggest that astroglia may mediate some of the protective actions of testosterone in the brain upon pathological conditions.
Collapse
Affiliation(s)
- Nicolas Toro-Urrego
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad JaverianaBogotá, Colombia
| | | | | | - George E. Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad JaverianaBogotá, Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de ChileSantiago, Chile
- Universidad Científica del SurLima, Perú
| |
Collapse
|
16
|
Neonatal anoxia leads to time dependent progression of mitochondrial linked apoptosis in rat cortex and associated long term sensorimotor deficits. Int J Dev Neurosci 2016; 52:55-65. [DOI: 10.1016/j.ijdevneu.2016.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/21/2016] [Accepted: 05/12/2016] [Indexed: 01/30/2023] Open
|
17
|
Alam MM, Sohoni S, Kalainayakan SP, Garrossian M, Zhang L. Cyclopamine tartrate, an inhibitor of Hedgehog signaling, strongly interferes with mitochondrial function and suppresses aerobic respiration in lung cancer cells. BMC Cancer 2016; 16:150. [PMID: 26911235 PMCID: PMC4766751 DOI: 10.1186/s12885-016-2200-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 02/17/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Aberrant Hedgehog (Hh) signaling is associated with the development of many cancers including prostate cancer, gastrointestinal cancer, lung cancer, pancreatic cancer, ovarian cancer, and basal cell carcinoma. The Hh signaling pathway has been one of the most intensely investigated targets for cancer therapy, and a number of compounds inhibiting Hh signaling are being tested clinically for treating many cancers. Lung cancer causes more deaths than the next three most common cancers (colon, breast, and prostate) combined. Cyclopamine was the first compound found to inhibit Hh signaling and has been invaluable for understanding the function of Hh signaling in development and cancer. To find novel strategies for combating lung cancer, we decided to characterize the effect of cyclopamine tartrate (CycT), an improved analogue of cyclopamine, on lung cancer cells and its mechanism of action. METHODS The effect of CycT on oxygen consumption and proliferation of non-small-cell lung cancer (NSCLC) cell lines was quantified by using an Oxygraph system and live cell counting, respectively. Apoptosis was detected by using Annexin V and Propidium Iodide staining. CycT's impact on ROS generation, mitochondrial membrane potential, and mitochondrial morphology in NSCLC cells was monitored by using fluorometry and fluorescent microscopy. Western blotting and fluorescent microscopy were used to detect the levels and localization of Hh signaling targets, mitochondrial fission protein Drp1, and heme-related proteins in various NSCLC cells. RESULTS Our findings identified a novel function of CycT, as well as another Hh inhibitor SANT1, to disrupt mitochondrial function and aerobic respiration. Our results showed that CycT, like glutamine depletion, caused a substantial decrease in oxygen consumption in a number of NSCLC cell lines, suppressed NSCLC cell proliferation, and induced apoptosis. Further, we found that CycT increased ROS generation, mitochondrial membrane hyperpolarization, and mitochondrial fragmentation, thereby disrupting mitochondrial function in NSCLC cells. CONCLUSIONS Together, our work demonstrates that CycT, and likely other Hh signaling inhibitors, can interrupt NSCLC cell function by promoting mitochondrial fission and fragmentation, mitochondrial membrane hyperpolarization, and ROS generation, thereby diminishing mitochondrial respiration, suppressing cell proliferation, and causing apoptosis. Our work provides novel mechanistic insights into the action of Hh inhibitors in cancer cells.
Collapse
Affiliation(s)
- Md Maksudul Alam
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Mail Stop RL11, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| | - Sagar Sohoni
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Mail Stop RL11, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| | - Sarada Preeta Kalainayakan
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Mail Stop RL11, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| | | | - Li Zhang
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Mail Stop RL11, 800 W. Campbell Road, Richardson, TX, 75080, USA. .,The Cecil H. and Ida Green Distinguished Chair, Department of Biological Sciences, The University of Texas at Dallas, Mail Stop RL11, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
18
|
Chang R, Zhou R, Qi X, Wang J, Wu F, Yang W, Zhang W, Sun T, Li Y, Yu J. Protective effects of aloin on oxygen and glucose deprivation-induced injury in PC12 cells. Brain Res Bull 2016; 121:75-83. [PMID: 26772628 DOI: 10.1016/j.brainresbull.2016.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 01/11/2023]
Abstract
The present study aims to determine whether aloin could protect cells from ischemic and reperfusion injury in vitro and to elucidate the related mechanisms. Oxygen and glucose deprivation model in PC12 cells was used in the present study. 2-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) assay and Hoechst 33342 nuclear staining were used to evaluate the protective effects of aloin, at concentrations of 10, 20, or 40 μg/mL in PC12 cells. PCR was applied to detect fluorescence caspase-3, Bax and Bcl-2 mRNA expression in PC12 cells. The contents of malondialdehyde (MDA), superoxide dismutase (SOD) activity were evaluated by biochemical method. The concentration of intracellular-free calcium [Ca(2+)]i, mitochondrial membrane potential (MMP) were determined to estimate the degree of neuronal damage. It was shown that aloin (10, 20, and 40 μg/mL) significantly attenuated PC12 cells damage with characteristics of an increased injured cells absorbance of MTT and releases of LDH, decreasing cell apoptosis, and antagonizing decreases in SOD activity and increase in MDA level induced by OGD-reoxygenation. Meanwhile pretreatment with aloin significantly reduced injury-induced intracellular ROS, increased MMP (P<0.01), but it inhibited [Ca(2+)]i (P<0.01) elevation in a dose-dependent manner. Furthermore, pre-treatment with aloin significantly up-regulated Bcl-2 mRNA expression, down-regulated Bax mRNA expression and consequently activated caspase-3 mRNA expression in a dose-dependent manner. The results indicated that the protection of aloin on OGD-induced apoptosis in PC12 cells is associated with its suppression on OGD-induced oxidative stress and protection on mitochondrial function and inhibition of caspase activity. Alion could be a promising candidate in the development of a novel class of anti-ischemic agent.
Collapse
Affiliation(s)
- Renyuan Chang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Ru Zhou
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xue Qi
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jing Wang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Fan Wu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Wenli Yang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Wannian Zhang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Ningxia Key Lab of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yuxiang Li
- College of Nursing, Ningxia Medical University, Yinchuan, China.
| | - Jianqiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China; Ningxia Hui Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
19
|
Xin L, Ma X, Xiao Z, Yao H, Liu Z. Coxsackievirus B3 induces autophagy in HeLa cells via the AMPK/MEK/ERK and Ras/Raf/MEK/ERK signaling pathways. INFECTION GENETICS AND EVOLUTION 2015; 36:46-54. [PMID: 26305625 DOI: 10.1016/j.meegid.2015.08.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 08/17/2015] [Accepted: 08/20/2015] [Indexed: 12/19/2022]
Abstract
In a previous study, the number of autophagosomes increased after coxsackievirus B3 (CVB3) infection. However, the exact mechanism by which CVB3 regulates the number of autophagosomes is unclear. Earlier studies have found that infection with CVB3 activates extracellular signal-regulated kinase (ERK). ERK is essential for CVB3 replication and can increase the number of autophagosomes. In the current study, extracellular signal-regulated kinase 1/2 was activated in HeLa cells after CVB3 infection. The ERK kinase inhibitor, U0126, was then used to inhibit the activity of ERK. Treatment with U0126 led to a significant reduction in the number of autophagosomes indicating that the CVB3-induced autophagosome accumulation may have occurred via the ERK pathway. The relationship between CVB3 infection and ERK pathway activation was also investigated. The results showed that the RasGAP protein could be further cleaved, leading to the activation of the Ras/Raf/MEK (mitogen/extracellular signal-regulated kinase)/ERK pathway and that CVB3 infection could result in an increase in the concentration of calcium in the cytoplasm, resulting in mitochondrial damage, a decrease in the concentration of ATP and activation of the AMPK (AMP-activated protein kinase)/MEK/ERK pathway. In summary, CVB3 might directly or indirectly induce autophagy via AMPK/MEK/ERK and Ras/Raf/MEK/ERK signaling pathways in the host cells, representing a pivotal mechanism for CVB3 pathogenesis.
Collapse
Affiliation(s)
- Le Xin
- Department of Molecular Immunology, Capital Institute of Pediatrics, China
| | - Xiaolin Ma
- Department of Molecular Immunology, Capital Institute of Pediatrics, China
| | - Zonghui Xiao
- Department of Molecular Immunology, Capital Institute of Pediatrics, China
| | - Hailan Yao
- Department of Molecular Immunology, Capital Institute of Pediatrics, China.
| | - Zhewei Liu
- Department of Molecular Immunology, Capital Institute of Pediatrics, China.
| |
Collapse
|
20
|
The role of autophagy and lipolysis in survival of astrocytes under nutrient deprivation. Neurosci Lett 2015; 595:128-33. [PMID: 25888813 DOI: 10.1016/j.neulet.2015.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/03/2015] [Accepted: 04/11/2015] [Indexed: 10/23/2022]
Abstract
Astrocytes can survive nutrient deprivation (ND) for days. However, the pro-survival strategy of astrocytes under such a metabolic challenge is still not clear. In the present study, we examined the effects of inhibition of two potential steps in energy acquisition during ND: autophagy (using chloroquine) and lipolysis (using orlistat). The inhibition of autophagy did not show significant effects on cell viability until 8-9h of ND. From that point onwards, the number of dead cells gradually increased, reaching ∼60% between 10 and 12h of ND. In addition, early inhibition of autophagy made astrocytes more vulnerable to the latter ND. The inhibition of lipolysis decreased the viability of cells exposed to ND, but this appeared much later compared to the inhibition of autophagy. The application of orlistat prevented ND-related hyperpolarization of the mitochondrial membrane, and mitochondria became swollen. This study clearly shows that autophagy and lipolysis are essential for the survival of astrocytes under ND conditions, which might be related to their role as neuron-supporting cells.
Collapse
|