1
|
Abdel-Hamid MS, Abdel-Ghafar SF, Sayed ISM, Zaki MS, Abdel-Salam GMH. Delineating the Clinical and Brain Imaging Characteristics of the Neonatal Form of CSTB-Related Neurodevelopmental Disorders. Clin Genet 2025. [PMID: 39966089 DOI: 10.1111/cge.14720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025]
Abstract
Cystatin B gene (CSTB) is responsible for the most common childhood onset type of progressive myoclonic epilepsy (EPM1A). More recently, biallelic CSTB variants were described in four patients with a neonatal onset phenotype of microcephaly, diffuse hypomyelination, brain atrophic changes, and dyskinesia. Herein, we describe the clinical and molecular characterization of five additional patients in whom exome sequencing detected a splice variant (c.67-1G>C) in Family I and II and a missense variant (c.10G>C, p.Gly4Arg) in Family III and IV. Interestingly, these variants were described before in patients with EPM1A. However, all our patients had progressive microcephaly, developmental delay, and dyskinesia. In addition, only one patient developed seizures. Brain imaging showed mainly diffuse hypomyelination and progressive cerebral and cerebellar atrophy of variable severity. Interestingly, one patient showed intracranial calcification and another showed congenital distal arthrogryposis. Our findings support the association between CSTB variants and the neonatal form as a distinct neurodevelopmental phenotype. This newly characterized neonatal onset of the CSTB shares many overlapping features with genetic disorders encompassing microcephaly and hypomyelination.
Collapse
Affiliation(s)
- Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Sherif F Abdel-Ghafar
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Inas S M Sayed
- Orodental Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Ghada M H Abdel-Salam
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
2
|
Gumusgoz E, Kasiri S, Verma M, Wu J, Villarreal Acha D, Marriam U, Fyffe-Maricich S, Lin A, Chen X, Gray SJ, Minassian BA. CSTB gene replacement improves neuroinflammation, neurodegeneration and ataxia in murine type 1 progressive myoclonus epilepsy. Gene Ther 2024; 31:234-241. [PMID: 38135787 DOI: 10.1038/s41434-023-00433-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
EPM1 is the most common form of Progressive Myoclonus Epilepsy characterized by late-childhood onset, ever-worsening and disabling myoclonus, seizures, ataxia, psychiatric disease, and shortened lifespan. EPM1 is caused by expansions of a dodecamer repeat sequence in the promoter of CSTB (cystatin B), which dramatically reduces, but does not eliminate, gene expression. The relatively late onset and consistent presence of a minimal amount of protein product makes EPM1 a favorable target for gene replacement therapy. If treated early, these children's normally developed brains could be rescued from the neurodegeneration that otherwise follows, and their cross-reactive immunological material (CRIM) positive status greatly reduces transgene related toxicity. We performed a proof-of-concept CSTB gene replacement study in Cstb knockout mice by introducing full-length human CSTB driven by the CBh promoter packaged in AAV9 and administered at postnatal days 21 and 60. Mice were sacrificed at 2 or 9 months of age, respectively. We observed significant improvements in expression levels of neuroinflammatory pathway genes and cerebellar granule cell layer apoptosis, as well as amelioration of motor impairment. The data suggest that gene replacement is a promising therapeutic modality for EPM1 and could spare affected children and families the ravages of this otherwise severe neurodegenerative disease.
Collapse
Affiliation(s)
- Emrah Gumusgoz
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sahba Kasiri
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mayank Verma
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniel Villarreal Acha
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ummay Marriam
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | | | - Xin Chen
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Steven J Gray
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
3
|
Pollari E, Tegelberg S, Björklund H, Kälviäinen R, Lehesjoki AE, Haapalinna A. In depth behavioral phenotyping unravels complex motor disturbances in Cstb-/- mouse, a model for progressive myoclonus epilepsy type 1. Front Behav Neurosci 2023; 17:1325051. [PMID: 38179183 PMCID: PMC10764494 DOI: 10.3389/fnbeh.2023.1325051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Progressive myoclonus epilepsy type 1 (EPM1) is an autosomal recessively inherited childhood-adolescence onset neurodegenerative disease caused by mutations in the cystatin B (CSTB gene). The key clinical manifestation in EPM1 is progressive, stimulus-sensitive, in particular action-induced myoclonus. The cystatin B-deficient mouse model, Cstb-/-, has been described to present with myoclonic seizures and progressive ataxia. Here we describe results from in-depth behavioral phenotyping of the Cstb-/- mouse model in pure isogenic 129S2/SvHsd background covering ages from 1.5 to 6 months. We developed a method for software-assisted detection of myoclonus from video recordings of the Cstb-/- mice. Additionally, we observed that the mice were hyperactive and showed reduced startle response, problems in motor coordination and lack of inhibition. We were, however, not able to demonstrate an ataxic phenotype in them. This detailed behavioral phenotyping of the Cstb-/- mice reveals new aspects of this mouse model. The nature of the motor problems in the Cstb-/- mice seems to be more complex and more resembling the human phenotype than initially described.
Collapse
Affiliation(s)
| | - Saara Tegelberg
- Folkhälsan Research Center and Medicum, Medical Faculty, University of Helsinki, Helsinki, Finland
| | | | - Reetta Kälviäinen
- Epilepsy Center, Neuro Center, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anna-Elina Lehesjoki
- Folkhälsan Research Center and Medicum, Medical Faculty, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
4
|
Gorski K, Jackson CB, Nyman TA, Rezov V, Battersby BJ, Lehesjoki AE. Progressive mitochondrial dysfunction in cerebellar synaptosomes of cystatin B-deficient mice. Front Mol Neurosci 2023; 16:1175851. [PMID: 37251643 PMCID: PMC10213208 DOI: 10.3389/fnmol.2023.1175851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
The involvement of mitochondrial dysfunction in cystatin B (CSTB) deficiency has been suggested, but its role in the onset of neurodegeneration, myoclonus, and ataxia in the CSTB-deficient mouse model (Cstb-/-) is yet unknown. CSTB is an inhibitor of lysosomal and nuclear cysteine cathepsins. In humans, partial loss-of-function mutations cause the progressive myoclonus epilepsy neurodegenerative disorder, EPM1. Here we applied proteome analysis and respirometry on cerebellar synaptosomes from early symptomatic (Cstb-/-) mice to identify the molecular mechanisms involved in the onset of CSTB-deficiency associated neural pathogenesis. Proteome analysis showed that CSTB deficiency is associated with differential expression of mitochondrial and synaptic proteins, and respirometry revealed a progressive impairment in mitochondrial function coinciding with the onset of myoclonus and neurodegeneration in (Cstb-/-) mice. This mitochondrial dysfunction was not associated with alterations in mitochondrial DNA copy number or membrane ultrastructure. Collectively, our results show that CSTB deficiency generates a defect in synaptic mitochondrial bioenergetics that coincides with the onset and progression of the clinical phenotypes, and thus is likely a contributor to the pathogenesis of EPM1.
Collapse
Affiliation(s)
- Katarin Gorski
- Folkhälsan Research Center, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Christopher B. Jackson
- Department of Biochemistry and Developmental Biology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuula A. Nyman
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Veronika Rezov
- Folkhälsan Research Center, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Anna-Elina Lehesjoki
- Folkhälsan Research Center, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Daura E, Tegelberg S, Hakala P, Lehesjoki AE, Joensuu T. Cystatin B deficiency results in sustained histone H3 tail cleavage in postnatal mouse brain mediated by increased chromatin-associated cathepsin L activity. Front Mol Neurosci 2022; 15:1069122. [DOI: 10.3389/fnmol.2022.1069122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Cystatin B (CSTB) is a cysteine cathepsin inhibitor whose biallelic loss-of-function mutations in human result in defects in brain development and in neurodegeneration. The physiological function of CSTB is largely unknown, and the mechanisms underlying the human brain diseases remain poorly understood. We previously showed that CSTB modulates the proteolysis of the N-terminal tail of histone H3 (H3cs1) during in vitro neurogenesis. Here we investigated the significance of this mechanism in postnatal mouse brain. Spatiotemporal analysis of H3cs1 intensity showed that while H3cs1 in wild-type (wt) mice was found at varying levels during the first postnatal month, it was virtually absent in adult brain. We further showed that the high level of H3cs1 coincides with chromatin association of de novo synthesized cathepsin L suggesting a role for nuclear cathepsin L in brain development and maturation. On the contrary, the brains of Cstb–/– mice showed sustained H3cs1 proteolysis to adulthood with increased chromatin-associated cathepsin L activity, implying that CSTB regulates chromatin-associated cathepsin L activity in the postnatal mouse brain. As H3 tail proteolysis has been linked to cellular senescence in vitro, we explored the presence of several cellular senescence markers in the maturing Cstb–/– cerebellum, where we see increased levels of H3cs1. While several markers showed alterations in Cstb–/– mice, the results remained inconclusive regarding the association of deficient CSTB function with H3cs1-induced senescence. Together, we identify a molecular role for CSTB in brain with implications for brain development and disease.
Collapse
|
6
|
Žerovnik E. Human stefin B: from its structure, folding, and aggregation to its function in health and disease. Front Mol Neurosci 2022; 15:1009976. [PMID: 36340691 PMCID: PMC9634419 DOI: 10.3389/fnmol.2022.1009976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2024] Open
Abstract
Mutations in the gene for human stefin B (cystatin B) cause progressive myoclonic epilepsy type 1 (EPM1), a neurodegenerative disorder. The most common change is dodecamer repeats in the promoter region of the gene, though missense and frameshift mutations also appear. Human stefin B primarily acts as a cysteine cathepsin inhibitor, and it also exhibits alternative functions. It plays a protective role against oxidative stress, likely via reducing mitochondrial damage and thus generating fewer mitochondrial reactive oxygen species (ROS). Accordingly, lack of stefin B results in increased inflammation and NLRP3 inflammasome activation, producing more ROS. The protein is cytosolic but also has an important role in the nucleus, where it prevents cleavage of the N terminal part of histone 3 by inhibiting cathepsins L and B and thus regulates transcription and cell cycle. Furthermore, it has been shown that stefin B is oligomeric in cells and that it has a specific role in the physiology of the synapse and in vesicular transport. On the basis of my research team's data on the structure, folding, and aggregation of stefin B, we have proposed that it might regulate proteostasis, possessing a chaperone-like function. In this review, I synthesize these observations and derive some conclusions on possible sources of EPM1 pathology. The interaction partners of stefin B and other gene mutations leading to EPM1-like pathology are discussed and common pathways are pinpointed.
Collapse
Affiliation(s)
- Eva Žerovnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| |
Collapse
|
7
|
Daura E, Tegelberg S, Yoshihara M, Jackson C, Simonetti F, Aksentjeff K, Ezer S, Hakala P, Katayama S, Kere J, Lehesjoki AE, Joensuu T. Cystatin B-deficiency triggers ectopic histone H3 tail cleavage during neurogenesis. Neurobiol Dis 2021; 156:105418. [PMID: 34102276 DOI: 10.1016/j.nbd.2021.105418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022] Open
Abstract
Cystatin B (CSTB) acts as an inhibitor of cysteine proteases of the cathepsin family and loss-of-function mutations result in human brain diseases with a genotype-phenotype correlation. In the most severe case, CSTB-deficiency disrupts brain development, and yet the molecular basis of this mechanism is missing. Here, we establish CSTB as a regulator of chromatin structure during neural stem cell renewal and differentiation. Murine neural precursor cells (NPCs) undergo transient proteolytic cleavage of the N-terminal histone H3 tail by cathepsins B and L upon induction of differentiation into neurons and glia. In contrast, CSTB-deficiency triggers premature H3 tail cleavage in undifferentiated self-renewing NPCs and sustained H3 tail proteolysis in differentiating neural cells. This leads to significant transcriptional changes in NPCs, particularly of nuclear-encoded mitochondrial genes. In turn, these transcriptional alterations impair the enhanced mitochondrial respiration that is induced upon neural stem cell differentiation. Collectively, our findings reveal the basis of epigenetic regulation in the molecular pathogenesis of CSTB deficiency.
Collapse
Affiliation(s)
- Eduard Daura
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Saara Tegelberg
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Stockholm, Sweden
| | - Christopher Jackson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Francesca Simonetti
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Katri Aksentjeff
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Sini Ezer
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Paula Hakala
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Shintaro Katayama
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Stockholm, Sweden
| | - Juha Kere
- Folkhälsan Research Center, 00290 Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Stockholm, Sweden; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Anna-Elina Lehesjoki
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
| | - Tarja Joensuu
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
8
|
Sierra-Torre V, Plaza-Zabala A, Bonifazi P, Abiega O, Díaz-Aparicio I, Tegelberg S, Lehesjoki AE, Valero J, Sierra A. Microglial phagocytosis dysfunction in the dentate gyrus is related to local neuronal activity in a genetic model of epilepsy. Epilepsia 2020; 61:2593-2608. [PMID: 32940364 PMCID: PMC7756777 DOI: 10.1111/epi.16692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Microglial phagocytosis of apoptotic cells is an essential component of the brain regenerative response during neurodegeneration. Whereas it is very efficient in physiological conditions, it is impaired in mouse and human mesial temporal lobe epilepsy, and now we extend our studies to a model of progressive myoclonus epilepsy type 1 in mice lacking cystatin B (CSTB). METHODS We used confocal imaging and stereology-based quantification of apoptosis and phagocytosis of the hippocampus of Cstb knockout (KO) mice, an in vitro model of phagocytosis and siRNAs to acutely reduce Cstb expression, and a virtual three-dimensional (3D) model to analyze the physical relationship between apoptosis, phagocytosis, and active hippocampal neurons. RESULTS Microglial phagocytosis was impaired in the hippocampus of Cstb KO mice at 1 month of age, when seizures arise and hippocampal atrophy begins. This impairment was not related to the lack of Cstb in microglia alone, as shown by in vitro experiments with microglial Cstb depletion. The phagocytosis impairment was also unrelated to seizures, as it was also present in Cstb KO mice at postnatal day 14, before seizures begin. Importantly, phagocytosis impairment was restricted to the granule cell layer and spared the subgranular zone, where there are no active neurons. Furthermore, apoptotic cells (both phagocytosed and not phagocytosed) in Cstb-deficient mice were at close proximity to active cFos+ neurons, and a virtual 3D model demonstrated that the physical relationship between apoptotic cells and cFos+ neurons was specific for Cstb KO mice. SIGNIFICANCE These results suggest a complex crosstalk between apoptosis, phagocytosis, and neuronal activity, hinting that local neuronal activity could be related to phagocytosis dysfunction in Cstb KO mice. Overall, these data suggest that phagocytosis impairment is an early feature of hippocampal damage in epilepsy and opens novel therapeutic approaches for epileptic patients based on targeting microglial phagocytosis.
Collapse
Affiliation(s)
- Virginia Sierra-Torre
- Achucarro Basque Center for Neuroscience, Science Park University of the Basque Country EHU/UPV, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Ainhoa Plaza-Zabala
- Achucarro Basque Center for Neuroscience, Science Park University of the Basque Country EHU/UPV, Leioa, Spain
| | - Paolo Bonifazi
- Ikerbasque Foundation, Bilbao, Spain.,Biocruces Health Research Institute, Barakaldo, Spain
| | - Oihane Abiega
- Achucarro Basque Center for Neuroscience, Science Park University of the Basque Country EHU/UPV, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Irune Díaz-Aparicio
- Achucarro Basque Center for Neuroscience, Science Park University of the Basque Country EHU/UPV, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Saara Tegelberg
- Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
| | | | - Jorge Valero
- Achucarro Basque Center for Neuroscience, Science Park University of the Basque Country EHU/UPV, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain.,Ikerbasque Foundation, Bilbao, Spain
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, Science Park University of the Basque Country EHU/UPV, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain.,Ikerbasque Foundation, Bilbao, Spain
| |
Collapse
|
9
|
Zuo X, Hou Q, Jin J, Chen X, Zhan L, Tang Y, Shi Z, Sun W, Xu E. Inhibition of Cathepsins B Induces Neuroprotection Against Secondary Degeneration in Ipsilateral Substantia Nigra After Focal Cortical Infarction in Adult Male Rats. Front Aging Neurosci 2018; 10:125. [PMID: 29867438 PMCID: PMC5954112 DOI: 10.3389/fnagi.2018.00125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/13/2018] [Indexed: 11/27/2022] Open
Abstract
Stroke is the leading cause of adult disability in the world. In general, recovery from stroke is incomplete. Accumulating evidences have shown that focal cerebral infarction leads to dynamic trans-neuronal degeneration in non-ischemic remote brain regions, with the disruption of connections to synapsed neurons sustaining ischemic insults. Previously, we had reported that the ipsilateral striatum, thalamus degenerated in succession after permanent distal branch of middle cerebral artery occlusion (dMCAO) in Sprague-Dawley (SD) rats and cathepsin (Cath) B was activated before these relay degeneration. Here, we investigate the role of CathB in the secondary degeneration of ipsilateral substantia nigra (SN) after focal cortical infarction. We further examined whether the inhibition of CathB with L-3-trans-(Propyl-carbamoyloxirane-2-carbonyl)-L-isoleucyl-L-proline methyl ester (CA-074Me) would attenuate secondary degeneration through enhancing the cortico-striatum-nigral connections and contribute to the neuroprotective effects. Our results demonstrated that secondary degeneration in the ipsilateral SN occurred and CathB was upregulated in the ipsilateral SN after focal cortical infarction. The inhibition of CathB with CA-074Me reduced the neuronal loss and gliosis in the ipsilateral SN. Using biotinylated dextran amine (BDA) or pseudorabies virus (PRV) 152 as anterograde or retrograde tracer to trace striatum-nigral and cortico-nigral projections pathway, CA-074Me can effectively enhance the cortico-striatum-nigral connections and exert neuroprotection against secondary degeneration in the ipsilateral SN after cortical ischemia. Our study suggests that the lysosomal protease CathB mediates the secondary damage in the ipsilateral SN after dMCAO, thus it can be a promising neuroprotective target for the rehabilitation of stroke patients.
Collapse
Affiliation(s)
- Xialin Zuo
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Qinghua Hou
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China.,Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jizi Jin
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Xiaohui Chen
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lixuan Zhan
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yanyan Tang
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Zhe Shi
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Weiwen Sun
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - En Xu
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
10
|
Severe neurodegeneration, progressive cerebral volume loss and diffuse hypomyelination associated with a homozygous frameshift mutation in CSTB. Eur J Hum Genet 2017; 25:775-778. [PMID: 28378817 DOI: 10.1038/ejhg.2017.39] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/11/2017] [Accepted: 02/17/2017] [Indexed: 11/08/2022] Open
Abstract
Mutations of the cystatin B gene (CSTB; OMIM 601145) are known to cause Unverricht-Lundborg disease or progressive myoclonic epilepsy-1A (EPM1A, MIM #254800). Most patients are homozygous for an expanded (>30) dodecamer repeat in the promoter region of CSTB, or are compound heterozygotes for the dodecamer repeat and a point mutation. We report two adolescent sisters born to consanguineous parents of Sri Lankan descent who presented with profound global developmental delay, microcephaly, cortical blindness and axial hypotonia with appendicular hypertonia. Neither sibling ever developed head control, independent sitting or ambulation, and never developed speech. The elder sister had a seizure disorder. Both sisters had profound microcephaly and distinct facial features. On serial brain imaging, they had progressive atrophy of the corpus callosum and supratentorial brain, and diffuse hypomyelination with progressive loss of myelin signal. Exome sequencing revealed both siblings to be homozygous for a c.218dupT (p.His75Serfs*2) mutation in exon 3 of CSTB. The neuroimaging features of our patients are consistent with those observed in Cstb-knockout mice, which supports the hypothesis that disease severity is inversely correlated with the amount of residual functional cystatin B protein.
Collapse
|
11
|
Zuo X, Hou Q, Jin J, Zhan L, Li X, Sun W, Lin K, Xu E. Inhibition of Cathepsin B Alleviates Secondary Degeneration in Ipsilateral Thalamus After Focal Cerebral Infarction in Adult Rats. J Neuropathol Exp Neurol 2016; 75:816-26. [PMID: 27371711 DOI: 10.1093/jnen/nlw054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Secondary degeneration in areas beyond ischemic foci can inhibit poststroke recovery. The cysteine protease Cathepsin B (CathB) regulates cell death and intracellular protein catabolism. To investigate the roles of CathB in the development of secondary degeneration in the ventroposterior nucleus (VPN) of the ipsilateral thalamus after focal cerebral infarction, infarct volumes, immunohistochemistry and immunofluorescence, and Western blotting analyses were conducted in a distal middle cerebral artery occlusion (dMCAO) stroke model in adult rats. We observed marked neuron loss and gliosis in the ipsilateral thalamus after dMCAO, and the expression of CathB and cleaved caspase-3 in the VPN was significantly upregulated; glial cells were the major source of CathB. Although it had no effect on infarct volume, delayed intracerebroventricular treatment with the membrane-permeable CathB inhibitor CA-074Me suppressed the expression of CathB and cleaved caspase-3 in ipsilateral VPN and accordingly alleviated the secondary degeneration. These data indicate that CathB mediates a novel mechanism of secondary degeneration in the VPN of the ipsilateral thalamus after focal cortical infarction and suggest that CathB might be a therapeutic target for the prevention of secondary degeneration in patients after stroke.
Collapse
Affiliation(s)
- Xialin Zuo
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (XZ, QH, JJ, LZ, XL, WS, KL, EX); and Department of Neurology, Provincial People's Hospital, Guangdong No.2, Guangzhou, China (QH)
| | - Qinghua Hou
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (XZ, QH, JJ, LZ, XL, WS, KL, EX); and Department of Neurology, Provincial People's Hospital, Guangdong No.2, Guangzhou, China (QH)
| | - Jizi Jin
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (XZ, QH, JJ, LZ, XL, WS, KL, EX); and Department of Neurology, Provincial People's Hospital, Guangdong No.2, Guangzhou, China (QH)
| | - Lixuan Zhan
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (XZ, QH, JJ, LZ, XL, WS, KL, EX); and Department of Neurology, Provincial People's Hospital, Guangdong No.2, Guangzhou, China (QH)
| | - Xinyu Li
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (XZ, QH, JJ, LZ, XL, WS, KL, EX); and Department of Neurology, Provincial People's Hospital, Guangdong No.2, Guangzhou, China (QH)
| | - Weiwen Sun
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (XZ, QH, JJ, LZ, XL, WS, KL, EX); and Department of Neurology, Provincial People's Hospital, Guangdong No.2, Guangzhou, China (QH)
| | - Kunqin Lin
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (XZ, QH, JJ, LZ, XL, WS, KL, EX); and Department of Neurology, Provincial People's Hospital, Guangdong No.2, Guangzhou, China (QH)
| | - En Xu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (XZ, QH, JJ, LZ, XL, WS, KL, EX); and Department of Neurology, Provincial People's Hospital, Guangdong No.2, Guangzhou, China (QH).
| |
Collapse
|
12
|
Körber I, Katayama S, Einarsdottir E, Krjutškov K, Hakala P, Kere J, Lehesjoki AE, Joensuu T. Gene-Expression Profiling Suggests Impaired Signaling via the Interferon Pathway in Cstb-/- Microglia. PLoS One 2016; 11:e0158195. [PMID: 27355630 PMCID: PMC4927094 DOI: 10.1371/journal.pone.0158195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/13/2016] [Indexed: 01/26/2023] Open
Abstract
Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1, OMIM254800) is an autosomal recessive neurodegenerative disorder characterized by stimulus-sensitive and action-activated myoclonus, tonic-clonic epileptic seizures, and ataxia. Loss-of-function mutations in the gene encoding the cysteine protease inhibitor cystatin B (CSTB) underlie EPM1. The deficiency of CSTB in mice (Cstb-/- mice) generates a phenotype resembling the symptoms of EPM1 patients and is accompanied by microglial activation at two weeks of age and an upregulation of immune system-associated genes in the cerebellum at one month of age. To shed light on molecular pathways and processes linked to CSTB deficiency in microglia we characterized the transcriptome of cultured Cstb-/- mouse microglia using microarray hybridization and RNA sequencing (RNA-seq). The gene expression profiles obtained with these two techniques were in good accordance and not polarized to either pro- or anti-inflammatory status. In Cstb-/- microglia, altogether 184 genes were differentially expressed. Of these, 33 genes were identified by both methods. Several interferon-regulated genes were weaker expressed in Cstb-/- microglia compared to control. This was confirmed by quantitative real-time PCR of the transcripts Irf7 and Stat1. Subsequently, we explored the biological context of CSTB deficiency in microglia more deeply by functional enrichment and canonical pathway analysis. This uncovered a potential role for CSTB in chemotaxis, antigen-presentation, and in immune- and defense response-associated processes by altering JAK-STAT pathway signaling. These data support and expand the previously suggested involvement of inflammatory processes to the disease pathogenesis of EPM1 and connect CSTB deficiency in microglia to altered expression of interferon-regulated genes.
Collapse
Affiliation(s)
- Inken Körber
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program’s Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Elisabet Einarsdottir
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program’s Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Kaarel Krjutškov
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Paula Hakala
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program’s Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Juha Kere
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program’s Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Anna-Elina Lehesjoki
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program’s Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Tarja Joensuu
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program’s Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
13
|
Zhu JW, Li YF, Wang ZT, Jia WQ, Xu RX. Toll-Like Receptor 4 Deficiency Impairs Motor Coordination. Front Neurosci 2016; 10:33. [PMID: 26909014 PMCID: PMC4754460 DOI: 10.3389/fnins.2016.00033] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/27/2016] [Indexed: 11/13/2022] Open
Abstract
The cerebellum plays an essential role in balance and motor coordination. Purkinje cells (PCs) are the sole output neurons of the cerebellar cortex and are critical for the execution of its functions, including motor coordination. Toll-like receptor (TLR) 4 is involved in the innate immune response and is abundantly expressed in the central nervous system; however, little is known about its role in cerebellum-related motor functions. To address this question, we evaluated motor behavior in TLR4 deficient mice. We found that TLR4(-∕-) mice showed impaired motor coordination. Morphological analyses revealed that TLR4 deficiency was associated with a reduction in the thickness of the molecular layer of the cerebellum. TLR4 was highly expressed in PCs but not in Bergmann glia or cerebellar granule cells; however, loss of TLR4 decreased the number of PCs. These findings suggest a novel role for TLR4 in cerebellum-related motor coordination through maintenance of the PC population.
Collapse
Affiliation(s)
- Jian-Wei Zhu
- Affiliated Bayi Brain Hospital, Military General Hospital of Beijing PLA, Southern Medical University Beijing, China
| | - Yi-Fei Li
- Affiliated Bayi Brain Hospital, Military General Hospital of Beijing PLA, Southern Medical University Beijing, China
| | - Zhao-Tao Wang
- Affiliated Bayi Brain Hospital, Military General Hospital of Beijing PLA, Southern Medical University Beijing, China
| | - Wei-Qiang Jia
- Affiliated Bayi Brain Hospital, Military General Hospital of Beijing PLA, Southern Medical University Beijing, China
| | - Ru-Xiang Xu
- Affiliated Bayi Brain Hospital, Military General Hospital of Beijing PLA, Southern Medical University Beijing, China
| |
Collapse
|
14
|
Kopitar-Jerala N. The Role of Stefin B in Neuro-inflammation. Front Cell Neurosci 2015; 9:458. [PMID: 26696823 PMCID: PMC4672043 DOI: 10.3389/fncel.2015.00458] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/11/2015] [Indexed: 11/29/2022] Open
Abstract
Stefin B (cystatin B) is an endogenous cysteine cathepsin inhibitor localized in the cytosol, mitochondria and nucleus. Its expression is upregulated upon macrophage activation and cellular stress. Mutations in the gene of stefin B are associated with the neurodegenerative disease known as Unverricht-Lundborg disease (EPM1). It was reported that early microglial activation precedes neuronal loss in the brain of the stefin B-deficient mice, implying a role of the inhibitor at the cross-talk between microglia and cerebellar cells. Detailed analysis of microglial activation in stefin B-deficient microglia showed a significantly higher proportion of both pro-inflammatory M1 and anti-inflammatory M2 microglia in stefin B-deficient mouse brain compared with control mice. In our recent work, we demonstrated that stefin B-deficient mice were significantly more sensitive to the lethal lipopolysaccharide (LPS)-induced sepsis, due to increased caspase-11 expression and secreted higher amounts of pro-inflammatory cytokines IL-1β and IL-18. Upon LPS stimulation, stefin B was targeted into the mitochondria, and the lack of stefin B resulted in the increased destabilization of the mitochondrial membrane potential and mitochondrial superoxide generation. The increased caspase-11 gene expression and better pro- inflammatory caspase-1 and -11 activation determined in stefin B deficient bone marrow-derived macrophages resulted in enhanced non-canonical inflammasome activation. Since signaling pathways in macrophages could be compared to the ones in microglia we propose that inflammasome activation could play an important role in the pathogenesis of EPM1.
Collapse
Affiliation(s)
- Nataša Kopitar-Jerala
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute Ljubljana, Slovenia
| |
Collapse
|
15
|
Manninen O, Puolakkainen T, Lehto J, Harittu E, Kallonen A, Peura M, Laitala-Leinonen T, Kopra O, Kiviranta R, Lehesjoki AE. Impaired osteoclast homeostasis in the cystatin B-deficient mouse model of progressive myoclonus epilepsy. Bone Rep 2015; 3:76-82. [PMID: 28377970 PMCID: PMC5365244 DOI: 10.1016/j.bonr.2015.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/19/2015] [Accepted: 10/04/2015] [Indexed: 01/09/2023] Open
Abstract
Progressive myoclonus epilepsy of Unverricht–Lundborg type (EPM1) is an autosomal recessively inherited disorder characterized by incapacitating stimulus-sensitive myoclonus and tonic-clonic epileptic seizures with onset at the age of 6 to 16 years. EPM1 patients also exhibit a range of skeletal changes, e.g., thickened frontal cranial bone, arachnodactyly and scoliosis. Mutations in the gene encoding cystatin B (CSTB) underlie EPM1. CSTB is an inhibitor of cysteine cathepsins, including cathepsin K, a key enzyme in bone resorption by osteoclasts. CSTB has previously been shown to protect osteoclasts from experimentally induced apoptosis and to modulate bone resorption in vitro. Nevertheless, its physiological function in bone and the cause of the bone changes in patients remain unknown. Here we used the CSTB-deficient mouse (Cstb−/−) model of EPM1 to evaluate the contribution of defective CSTB protein function on bone pathology and osteoclast differentiation and function. Micro-computed tomography of hind limbs revealed thicker trabeculae and elevated bone mineral density in the trabecular bone of Cstb−/− mice. Histology from Cstb−/− mouse bones showed lower osteoclast count and thinner growth plates in long bones. Bone marrow-derived osteoclast cultures revealed lower osteoclast number and size in the Cstb−/− group. Cstb−/− osteoclasts formed less and smaller resorption pits in an in vitro assay. This impaired resorptive capacity was likely due to a decrease in osteoclast numbers and size. These data imply that the skeletal changes in Cstb−/− mice and in EPM1 patients are a result of CSTB deficiency leading to impaired osteoclast formation and consequently compromised resorptive capacity. These results suggest that the role of CSTB in osteoclast homeostasis and modulation of bone metabolism extends beyond cathepsin K regulation. μCT reveals changes in trabecular bone of the Cstb−/− mouse model of EPM1, compatible with findings in human patients. Bone histology in Cstb−/− mice shows lower osteoclast number and thinner growth plates in long bones. Cultured osteoclasts of Cstb−/− mice show decreased size and number of mature osteoclasts with impaired bone resorption. Impaired osteoclast formation and resorption are likely to underlie the bone phenotype associated with CSTB deficiency.
Collapse
Affiliation(s)
- Otto Manninen
- Folkhälsan Institute of Genetics, 00290 Helsinki, Finland; Research Program's Unit, Molecular Neurology, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | | | - Jemina Lehto
- Department of Medicine, University of Turku, 20520 Turku, Finland
| | - Elina Harittu
- Department of Anatomy, University of Turku, 20520 Turku, Finland
| | - Aki Kallonen
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Marko Peura
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | | | - Outi Kopra
- Folkhälsan Institute of Genetics, 00290 Helsinki, Finland; Research Program's Unit, Molecular Neurology, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Riku Kiviranta
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Anna-Elina Lehesjoki
- Folkhälsan Institute of Genetics, 00290 Helsinki, Finland; Research Program's Unit, Molecular Neurology, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
16
|
Kopra O, Joensuu T, Lehesjoki AE. Mouse Model of Unverricht-Lundborg Disease. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|