1
|
Dong H, Ma S, Suo J, Zhu Z. Matched Stochastic Resonance Enhanced Underwater Passive Sonar Detection under Non-Gaussian Impulsive Background Noise. SENSORS (BASEL, SWITZERLAND) 2024; 24:2943. [PMID: 38733049 PMCID: PMC11086355 DOI: 10.3390/s24092943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Remote passive sonar detection with low-frequency band spectral lines has attracted much attention, while complex low-frequency non-Gaussian impulsive noisy environments would strongly affect the detection performance. This is a challenging problem in weak signal detection, especially for the high false alarm rate caused by heavy-tailed impulsive noise. In this paper, a novel matched stochastic resonance (MSR)-based weak signal detection model is established, and two MSR-based detectors named MSR-PED and MSR-PSNR are proposed based on a theoretical analysis of the MSR output response. Comprehensive detection performance analyses in both Gasussian and non-Gaussian impulsive noise conditions are presented, which revealed the superior performance of our proposed detector under non-Gasussian impulsive noise. Numerical analysis and application verification have revealed the superior detection performance with the proposed MSR-PSNR detector compared with energy-based detection methods, which can break through the high false alarm rate problem caused by heavy-tailed impulsive noise. For a typical non-Gasussian impulsive noise assumption with α=1.5, the proposed MSR-PED and MSR-PSNR can achieve approximately 16 dB and 22 dB improvements, respectively, in the detection performance compared to the classical PED method. For stronger, non-Gaussian impulsive noise conditions corresponding to α=1, the improvement in detection performance can be more significant. Our proposed MSR-PSNR methods can overcome the challenging problem of a high false alarm rate caused by heavy-tailed impulsive noise. This work can lay a solid foundation for breaking through the challenges of underwater passive sonar detection under non-Gaussian impulsive background noise, and can provide important guidance for future research work.
Collapse
Affiliation(s)
- Haitao Dong
- Xi’an Key Laboratory of Intelligent Spectrum Sensing and Information Fusion, Xidian University, Xi’an 710071, China;
- Shaanxi Union Research Center of University and Enterprise for Intelligent Spectrum Sensing and Information Fusion, Xidian University, Xi’an 710071, China
| | - Shilei Ma
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China; (S.M.); (J.S.)
| | - Jian Suo
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China; (S.M.); (J.S.)
| | - Zhigang Zhu
- Xi’an Key Laboratory of Intelligent Spectrum Sensing and Information Fusion, Xidian University, Xi’an 710071, China;
- Shaanxi Union Research Center of University and Enterprise for Intelligent Spectrum Sensing and Information Fusion, Xidian University, Xi’an 710071, China
| |
Collapse
|
2
|
Raul P, McNally K, Ward LM, van Boxtel JJA. Does stochastic resonance improve performance for individuals with higher autism-spectrum quotient? Front Neurosci 2023; 17:1110714. [PMID: 37123379 PMCID: PMC10140507 DOI: 10.3389/fnins.2023.1110714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
While noise is generally believed to impair performance, the detection of weak stimuli can sometimes be enhanced by introducing optimum noise levels. This phenomenon is termed 'Stochastic Resonance' (SR). Past evidence suggests that autistic individuals exhibit higher neural noise than neurotypical individuals. It has been proposed that the enhanced performance in Autism Spectrum Disorder (ASD) on some tasks could be due to SR. Here we present a computational model, lab-based, and online visual identification experiments to find corroborating evidence for this hypothesis in individuals without a formal ASD diagnosis. Our modeling predicts that artificially increasing noise results in SR for individuals with low internal noise (e.g., neurotypical), however not for those with higher internal noise (e.g., autistic, or neurotypical individuals with higher autistic traits). It also predicts that at low stimulus noise, individuals with higher internal noise outperform those with lower internal noise. We tested these predictions using visual identification tasks among participants from the general population with autistic traits measured by the Autism-Spectrum Quotient (AQ). While all participants showed SR in the lab-based experiment, this did not support our model strongly. In the online experiment, significant SR was not found, however participants with higher AQ scores outperformed those with lower AQ scores at low stimulus noise levels, which is consistent with our modeling. In conclusion, our study is the first to investigate the link between SR and superior performance by those with ASD-related traits, and reports limited evidence to support the high neural noise/SR hypothesis.
Collapse
Affiliation(s)
- Pratik Raul
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, ACT, Australia
- *Correspondence: Pratik Raul,
| | - Kate McNally
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, ACT, Australia
| | - Lawrence M. Ward
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Jeroen J. A. van Boxtel
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, ACT, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
- Jeroen J. A. van Boxtel,
| |
Collapse
|
3
|
Kasai S. Thermally driven single-electron stochastic resonance. NANOTECHNOLOGY 2022; 33:505203. [PMID: 36099774 DOI: 10.1088/1361-6528/ac9188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Stochastic resonance (SR) in a single-electron system is expected to allow information to be correctly carried and processed by single electrons in the presence of thermal fluctuations. Here, we comprehensively study thermally driven single-electron SR. The response of the system to a weak voltage signal is formulated by considering the single-electron tunneling rate, instead of the Kramers' rate generally used in conventional SR models. The model indicates that the response of the system is maximized at finite temperature and that the peak position is determined by the charging energy. This model quantitatively reproduces the results of a single-electron device simulator. Single-electron SR is also demonstrated using a GaAs-based single-electron system that integrates a quantum dot and a high-sensitivity charge detector. The developed model will contribute to our understanding of single-electron SR and will facilitate accurate prediction, design, and control of single-electron systems.
Collapse
Affiliation(s)
- Seiya Kasai
- Research Center for Integrated Quantum Electronics, Hokkaido University, North 13, West 8, Sapporo 060-0813, Japan
- Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Sapporo 060-0814, Japan
- Center for Human Nature, Artificial Intelligence, and Neuroscience, Hokkaido University, North 12, West 7, Sapporo 060-0812, Japan
| |
Collapse
|
4
|
Likens AD, Kent JA, Sloan CI, Wurdeman SR, Stergiou N. Stochastic Resonance Reduces Sway and Gait Variability in Individuals With Unilateral Transtibial Amputation: A Pilot Study. Front Physiol 2020; 11:573700. [PMID: 33192576 PMCID: PMC7604354 DOI: 10.3389/fphys.2020.573700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/22/2020] [Indexed: 11/23/2022] Open
Abstract
Sub-threshold (imperceptible) vibration, applied to parts of the body, impacts how people move and perceive our world. Could this idea help someone who has lost part of their limb? Sub-threshold vibration was applied to the thigh of the affected limb of 20 people with unilateral transtibial amputation. Vibration conditions tested included two noise structures: pink and white. Center of pressure (COP) excursion (range and root-mean-square displacements) during quiet standing, and speed and spatial stride measures (mean and standard deviations of step length and width) during walking were assessed. Pink noise vibration decreased COP displacements in standing, and white noise vibration decreased sound limb step length standard deviation in walking. Sub-threshold vibration positively impacted aspects of both posture and gait; however, different noise structures had different effects. The current study represents foundational work in understanding the potential benefits of incorporating stochastic resonance as an intervention for individuals with amputation.
Collapse
Affiliation(s)
- Aaron D Likens
- Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, United States
| | - Jenny A Kent
- Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, United States.,Feinberg School of Medicine, Physical Medicine and Rehabilitation, Northwestern University Prosthetics-Orthotics Center, Chicago, IL, United States
| | - C Ian Sloan
- Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, United States
| | - Shane R Wurdeman
- Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, United States.,Department of Clinical and Scientific Affairs, Hanger Clinic, Austin, TX, United States
| | - Nick Stergiou
- Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, United States.,Department of Environmental, Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
5
|
Georgarakis AM, Sonar HA, Rinderknecht MD, Popp WL, Duarte JE, Lambercy O, Paik J, Martin BJ, Riener R, Klamroth-Marganska V. Age-Dependent Asymmetry of Wrist Position Sense Is Not Influenced by Stochastic Tactile Stimulation. Front Hum Neurosci 2020; 14:65. [PMID: 32194386 PMCID: PMC7063068 DOI: 10.3389/fnhum.2020.00065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/12/2020] [Indexed: 12/26/2022] Open
Abstract
Stochastic stimulation has been shown to improve movement, balance, the sense of touch, and may also improve position sense. This stimulation can be non-invasive and may be a simple technology to enhance proprioception. In this study, we investigated whether sub-threshold stochastic tactile stimulation of mechanoreceptors reduces age-related errors in wrist position estimation. Fifteen young (24.5±1.5y) and 23 elderly (71.7±7.3y) unimpaired, right-handed adults completed a wrist position gauge-matching experiment. In each trial, the participant's concealed wrist was moved to a target position between 10 and 30° of wrist flexion or extension by a robotic manipulandum. The participant then estimated the wrist's position on a virtual gauge. During half of the trials, sub-threshold stochastic tactile stimulation was applied to the wrist muscle tendon areas. Stochastic stimulation did not significantly influence wrist position sense. In the elderly group, estimation errors decreased non-significantly when stimulation was applied compared to the trials without stimulation [mean constant error reduction Δμ(θconof)=0.8° in flexion and Δμ(θconoe)=0.7° in extension direction, p = 0.95]. This effect was less pronounced in the young group [Δμ(θcony)=0.2° in flexion and in extension direction, p = 0.99]. These improvements did not yield a relevant effect size (Cohen's d < 0.1). Estimation errors increased with target angle magnitude in both movement directions. In young participants, estimation errors were non-symmetric, with estimations in flexion [μ(θconyf)=1.8°, σ(θconyf)=7.0°] being significantly more accurate than in extension [μ(θconye)=8.3°, σ(θconye)=9.3°, p < 0.01]. This asymmetry was not present in the elderly group, where estimations in flexion [μ(θconof)=7.5°, σ(θconof)=9.8°] were similar to extension [μ(θconoe)=7.7°, σ(θconoe)=9.3°]. Hence, young and elderly participants performed equally in extension direction, whereas wrist position sense in flexion direction deteriorated with age (p < 0.01). Though unimpaired elderly adults did not benefit from stochastic stimulation, it cannot be deduced that individuals with more severe impairments of their sensory system do not profit from this treatment. While the errors in estimating wrist position are symmetric in flexion and extension in elderly adults, young adults are more accurate when estimating wrist flexion, an effect that has not been described before.
Collapse
Affiliation(s)
- Anna-Maria Georgarakis
- Sensory-Motor Systems (SMS) Lab, Department of Health Sciences and Technology (D-HEST), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland.,Reharobotics Group, Medical Faculty, Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Harshal A Sonar
- Reconfigurable Robotics Laboratory (RRL), Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mike D Rinderknecht
- Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and Technology (D-HEST), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Werner L Popp
- Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and Technology (D-HEST), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Jaime E Duarte
- Sensory-Motor Systems (SMS) Lab, Department of Health Sciences and Technology (D-HEST), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland.,Reharobotics Group, Medical Faculty, Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and Technology (D-HEST), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Jamie Paik
- Reconfigurable Robotics Laboratory (RRL), Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bernard J Martin
- Department of Industrial and Operations Engineering (IOE), Center for Ergonomics, University of Michigan, Ann Arbor, MI, United States
| | - Robert Riener
- Sensory-Motor Systems (SMS) Lab, Department of Health Sciences and Technology (D-HEST), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Verena Klamroth-Marganska
- Sensory-Motor Systems (SMS) Lab, Department of Health Sciences and Technology (D-HEST), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland.,Reharobotics Group, Medical Faculty, Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,School of Health Professions, ZHAW Zurich University of Applied Sciences, Winterthur, Switzerland
| |
Collapse
|
6
|
Qu G, Fan B, Fu X, Yu Y. The Impact of Frequency Scale on the Response Sensitivity and Reliability of Cortical Neurons to 1/f β Input Signals. Front Cell Neurosci 2019; 13:311. [PMID: 31354432 PMCID: PMC6637762 DOI: 10.3389/fncel.2019.00311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
Abstract
What type of principle features intrinsic inside of the fluctuated input signals could drive neurons with the maximal excitations is one of the crucial neural coding issues. In this article, we examined both experimentally and theoretically the cortical neuronal responsivity (including firing rate and spike timing reliability) to input signals with different intrinsic correlational statistics (e.g., white-type noise, showed 1/f0 power spectrum, pink noise 1/f, and brown noises 1/f2) and different frequency ranges. Our results revealed that the response sensitivity and reliability of cortical neurons is much higher in response to 1/f noise stimuli with long-term correlations than 1/f0 with short-term correlations for a broad frequency range, and also higher than 1/f2 for all frequency ranges. In addition, we found that neuronal sensitivity diverges to opposite directions for 1/f noise comparing with 1/f0 white noise as a function of cutoff frequency of input signal. As the cutoff frequency is progressively increased from 50 to 1,000 Hz, the neuronal responsiveness increased gradually for 1/f noise, while decreased exponentially for white noise. Computational simulations of a general cortical model revealed that, neuronal sensitivity and reliability to input signal statistics was majorly dominated by fast sodium inactivation, potassium activation, and membrane time constants.
Collapse
Affiliation(s)
| | | | | | - Yuguo Yu
- State Key Laboratory of Medical Neurobiology, School of Life Science, Human Phenome Institute, Institute of Brain Science, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Xu L, Duan F, Gao X, Abbott D, McDonnell MD. Adaptive recursive algorithm for optimal weighted suprathreshold stochastic resonance. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160889. [PMID: 28989729 PMCID: PMC5627069 DOI: 10.1098/rsos.160889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Suprathreshold stochastic resonance (SSR) is a distinct form of stochastic resonance, which occurs in multilevel parallel threshold arrays with no requirements on signal strength. In the generic SSR model, an optimal weighted decoding scheme shows its superiority in minimizing the mean square error (MSE). In this study, we extend the proposed optimal weighted decoding scheme to more general input characteristics by combining a Kalman filter and a least mean square (LMS) recursive algorithm, wherein the weighted coefficients can be adaptively adjusted so as to minimize the MSE without complete knowledge of input statistics. We demonstrate that the optimal weighted decoding scheme based on the Kalman-LMS recursive algorithm is able to robustly decode the outputs from the system in which SSR is observed, even for complex situations where the signal and noise vary over time.
Collapse
Affiliation(s)
- Liyan Xu
- Institute of Complexity Science, Qingdao University, Qingdao 266071, People's Republic of China
| | - Fabing Duan
- Institute of Complexity Science, Qingdao University, Qingdao 266071, People's Republic of China
| | - Xiao Gao
- Computational and Theoretical Neuroscience Laboratory, Institute for Telecommunications Research, School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, South Australia 5095, Australia
| | - Derek Abbott
- Centre for Biomedical Engineering (CBME) and School of Electrical & Electronic Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Mark D. McDonnell
- Computational and Theoretical Neuroscience Laboratory, Institute for Telecommunications Research, School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, South Australia 5095, Australia
- Centre for Biomedical Engineering (CBME) and School of Electrical & Electronic Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
8
|
Capacity of very noisy communication channels based on Fisher information. Sci Rep 2016; 6:27946. [PMID: 27306041 PMCID: PMC4910081 DOI: 10.1038/srep27946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/27/2016] [Indexed: 12/04/2022] Open
Abstract
We generalize the asymptotic capacity expression for very noisy communication channels to now include coloured noise. For the practical scenario of a non-optimal receiver, we consider the common case of a correlation receiver. Due to the central limit theorem and the cumulative characteristic of a correlation receiver, we model this channel noise as additive Gaussian noise. Then, the channel capacity proves to be directly related to the Fisher information of the noise distribution and the weak signal energy. The conditions for occurrence of a noise-enhanced capacity effect are discussed, and the capacity difference between this noisy communication channel and other nonlinear channels is clarified.
Collapse
|
9
|
Zhang H, Yang Y, Douglas JF. Influence of string-like cooperative atomic motion on surface diffusion in the (110) interfacial region of crystalline Ni. J Chem Phys 2015; 142:084704. [PMID: 25725748 DOI: 10.1063/1.4908136] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although we often think about crystalline materials in terms of highly organized arrays of atoms, molecules, or even colloidal particles, many of the important properties of this diverse class of materials relating to their catalytic behavior, thermodynamic stability, and mechanical properties derive from the dynamics and thermodynamics of their interfacial regions, which we find they have a dynamics more like glass-forming (GF) liquids than crystals at elevated temperatures. This is a general problem arising in any attempt to model the properties of naturally occurring crystalline materials since many aspects of the dynamics of glass-forming liquids remain mysterious. We examine the nature of this phenomenon in the "simple" case of the (110) interface of crystalline Ni, based on a standard embedded-atom model potential, and we then quantify the collective dynamics in this interfacial region using newly developed methods for characterizing the cooperative dynamics of glass-forming liquids. As in our former studies of the interfacial dynamics of grain-boundaries and the interfacial dynamics of crystalline Ni nanoparticles (NPs), we find that the interface of bulk crystalline Ni exhibits all the characteristics of glass-forming materials, even at temperatures well below the equilibrium crystal melting temperature, Tm. This perspective offers a new approach to modeling and engineering the properties of crystalline materials.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 2V4, Canada
| | - Ying Yang
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 2V4, Canada
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|