1
|
The Downregulation of Both Giant HERCs, HERC1 and HERC2, Is an Unambiguous Feature of Chronic Myeloid Leukemia, and HERC1 Levels Are Associated with Leukemic Cell Differentiation. J Clin Med 2022; 11:jcm11020324. [PMID: 35054018 PMCID: PMC8778248 DOI: 10.3390/jcm11020324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Large HERC E3 ubiquitin ligase family members, HERC1 and HERC2, are staggeringly complex proteins that can intervene in a wide range of biological processes, such as cell proliferation, DNA repair, neurodevelopment, and inflammation. Therefore, mutations or dysregulation of large HERCs is associated with neurological disorders, DNA repair defects, and cancer. Though their role in solid tumors started to be investigated some years ago, our knowledge about HERCs in non-solid neoplasm is greatly lagging behind. Chronic Myeloid Leukemia (CML) is a model onco-hematological disorder because of its unique and unambiguous relation between genotype and phenotype due to a single genetic alteration. In the present study, we ascertained that the presence of the BCR-ABL fusion gene was inversely associated with the expression of the HERC1 and HERC2 genes. Upon the achievement of remission, both HERC1 and HERC2 mRNAs raised again to levels comparable to those of the healthy donors. Additionally, our survey unveiled that their gene expression is sensitive to different Tyrosine Kinases Inhibitors (TKIs) in a time-dependent fashion. Interestingly, for the first time, we also observed a differential HERC1 expression when the leukemic cell lines were induced to differentiate towards different lineages revealing that HERC1 protein expression is associated with the differentiation process in a lineage-specific manner. Taken together, our findings suggest that HERC1 might act as a novel potential player in blood cell differentiation. Overall, we believe that our results are beneficial to initiate exploring the role/s of large HERCs in non-solid neoplasms.
Collapse
|
2
|
Yu X, Liu Z, Pan Y, Cui X, Zhao X, Li D, Xue X, Fu J. Co-expression network analysis for identification of novel biomarkers of bronchopulmonary dysplasia model. Front Pediatr 2022; 10:946747. [PMID: 36440350 PMCID: PMC9696732 DOI: 10.3389/fped.2022.946747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is the most common neonatal chronic lung disease. However, its exact molecular pathogenesis is not understood. We aimed to identify relevant gene modules that may play crucial roles in the occurrence and development of BPD by weighted gene co-expression network analysis (WGCNA). METHODS We used RNA-Seq data of BPD and healthy control rats from our previous studies, wherein data from 30 samples was collected at days 1, 3, 7, 10, and 14. Data for preprocessing analysis included 17,613 differentially expressed genes (DEGs) with false discovery rate <0.05. RESULTS We grouped the highly correlated genes into 13 modules, and constructed a network of mRNA gene associations, including the 150 most associated mRNA genes in each module. Lgals8, Srpra, Prtfdc1, and Thap11 were identified as the key hub genes. Enrichment analyses revealed Golgi vesicle transport, coated vesicle, actin-dependent ATPase activity and endoplasmic reticulum pathways associated with these genes involved in the pathological process of BPD in module. CONCLUSIONS This is a study to analyze data obtained from BPD animal model at different time-points using WGCNA, to elucidate BPD-related susceptibility modules and disease-related genes.
Collapse
Affiliation(s)
- Xuefei Yu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuqing Pan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuewei Cui
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinyi Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Bai X, Yang T, Putz AM, Wang Z, Li C, Fortin F, Harding JCS, Dyck MK, Dekkers JCM, Field CJ, Plastow GS. Investigating the genetic architecture of disease resilience in pigs by genome-wide association studies of complete blood count traits collected from a natural disease challenge model. BMC Genomics 2021; 22:535. [PMID: 34256695 PMCID: PMC8278769 DOI: 10.1186/s12864-021-07835-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background Genetic improvement for disease resilience is anticipated to be a practical method to improve efficiency and profitability of the pig industry, as resilient pigs maintain a relatively undepressed level of performance in the face of infection. However, multiple biological functions are known to be involved in disease resilience and this complexity means that the genetic architecture of disease resilience remains largely unknown. Here, we conducted genome-wide association studies (GWAS) of 465,910 autosomal SNPs for complete blood count (CBC) traits that are important in an animal’s disease response. The aim was to identify the genetic control of disease resilience. Results Univariate and multivariate single-step GWAS were performed on 15 CBC traits measured from the blood samples of 2743 crossbred (Landrace × Yorkshire) barrows drawn at 2-weeks before, and at 2 and 6-weeks after exposure to a polymicrobial infectious challenge. Overall, at a genome-wise false discovery rate of 0.05, five genomic regions located on Sus scrofa chromosome (SSC) 2, SSC4, SSC9, SSC10, and SSC12, were significantly associated with white blood cell traits in response to the polymicrobial challenge, and nine genomic regions on multiple chromosomes (SSC1, SSC4, SSC5, SSC6, SSC8, SSC9, SSC11, SSC12, SSC17) were significantly associated with red blood cell and platelet traits collected before and after exposure to the challenge. By functional enrichment analyses using Ingenuity Pathway Analysis (IPA) and literature review of previous CBC studies, candidate genes located nearby significant single-nucleotide polymorphisms were found to be involved in immune response, hematopoiesis, red blood cell morphology, and platelet aggregation. Conclusions This study helps to improve our understanding of the genetic basis of CBC traits collected before and after exposure to a polymicrobial infectious challenge and provides a step forward to improve disease resilience. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07835-4.
Collapse
Affiliation(s)
- Xuechun Bai
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Tianfu Yang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Current: ST Genetics, Navasota, TX, USA
| | - Austin M Putz
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Zhiquan Wang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Changxi Li
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Frédéric Fortin
- Centre de Développement du Porc du Québec, Inc., Quebec City, QC, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael K Dyck
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | | | | - Catherine J Field
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Graham S Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Sanghavi HM, Majumdar S. Oligomerization of THAP9 Transposase via Amino-Terminal Domains. Biochemistry 2021; 60:1822-1835. [PMID: 34033475 DOI: 10.1021/acs.biochem.1c00010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Active DNA transposases like the Drosophila P element transposase (DmTNP) undergo oligomerization as a prerequisite for transposition. Human THAP9 (hTHAP9) is a catalytically active but functionally uncharacterized homologue of DmTNP. Here we report (using co-immunoprecipitation, pull down, colocalization, and proximity ligation assays) that both full length and truncated hTHAP9 (corresponding to amino-terminal DNA binding and predicted coiled coil domains) undergo homo-oligomerization, predominantly in the nuclei of HEK293T cells. Interestingly, the oligomerization is shown to be partially mediated by DNA. However, mutating the leucines (either individually or together) or deleting the predicted coiled coil region did not significantly affect oligomerization. Thus, we highlight the importance of DNA and the amino-terminal regions of hTHAP9 for their ability to form higher-order oligomeric states. We also report that Hcf-1, THAP1, THAP10, and THAP11 are possible protein interaction partners of hTHAP9. Elucidating the functional relevance of the different putative oligomeric state(s) of hTHAP9 would help answer questions about its interaction partners as well as its unknown physiological roles.
Collapse
Affiliation(s)
- Hiral M Sanghavi
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Sharmistha Majumdar
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
5
|
Dehaene H, Praz V, Lhôte P, Lopes M, Herr W. THAP11F80L cobalamin disorder-associated mutation reveals normal and pathogenic THAP11 functions in gene expression and cell proliferation. PLoS One 2020; 15:e0224646. [PMID: 31905202 PMCID: PMC6944463 DOI: 10.1371/journal.pone.0224646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Twelve human THAP proteins share the THAP domain, an evolutionary conserved zinc-finger DNA-binding domain. Studies of different THAP proteins have indicated roles in gene transcription, cell proliferation and development. We have analyzed this protein family, focusing on THAP7 and THAP11. We show that human THAP proteins possess differing homo- and heterodimer formation properties and interaction abilities with the transcriptional co-regulator HCF-1. HEK-293 cells lacking THAP7 were viable but proliferated more slowly. In contrast, HEK-293 cells were very sensitive to THAP11 alteration. Nevertheless, HEK-293 cells bearing a THAP11 mutation identified in a patient suffering from cobalamin disorder (THAP11F80L) were viable although proliferated more slowly. Cobalamin disorder is an inborn vitamin deficiency characterized by neurodevelopmental abnormalities, most often owing to biallelic mutations in the MMACHC gene, whose gene product MMACHC is a key enzyme in the cobalamin (vitamin B12) metabolic pathway. We show that THAP11F80L selectively affected promoter binding by THAP11, having more deleterious effects on a subset of THAP11 targets, and resulting in altered patterns of gene expression. In particular, THAP11F80L exhibited a strong effect on association with the MMACHC promoter and led to a decrease in MMACHC gene transcription, suggesting that the THAP11F80L mutation is directly responsible for the observed cobalamin disorder.
Collapse
Affiliation(s)
- Harmonie Dehaene
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Viviane Praz
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Philippe Lhôte
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Maykel Lopes
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Winship Herr
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
6
|
Ziaei S, Rezaei-Tavirani M, Ardeshirylajimi A, Arefian E, Soleimani M. Induced Overexpression of THAP11 in Human Fibroblast Cells Enhances Expression of Key Pluripotency Genes. Galen Med J 2019; 8:e1308. [PMID: 34466492 PMCID: PMC8344061 DOI: 10.31661/gmj.v8i0.1308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/07/2018] [Accepted: 09/22/2018] [Indexed: 11/17/2022] Open
Abstract
Background: THAP11 is a recently discovered pluripotency factor and described as an important gene that involved in embryonic stem cells self-renewal and embryo development, which works independently with other known pluripotency factors. We aimed to overexpressed the THAP11 gene in primary fibroblast cells to determine the effects of the THAP11 on these cells. Materials and Methods: The THAP11 gene was amplified using PCR followed by ligation into pCDH vector and lentiviral particle production in HEK293T cells by using psPAX2 and pMD2.G helper vectors. The human fibroblast cells were transduced using viral particles and after confirmation overexpression, the key pluripotency factors were estimated using real-time PCR and changes in proliferation rate was measured by the 3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyltetrazolium bromide (MTT) test. Results: The overexpression of THAP11 in fibroblast cells leads to increase the expression level of Sox2, Oct4, Nanog and Klf4 as key pluripotency genes and a decrease in proliferation rate according to MTT results. Conclusion: Our results confirm that we are faced with a molecule with double features, which could be involved in pluripotency and proliferation suppressor simultaneously. It seems that the roles of THAP11 in pluripotency are so complex and attributed to other regulatory molecules.
Collapse
Affiliation(s)
- Saeid Ziaei
- Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Stem Cell Technology Research Center, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Correspondence to: Mostafa Rezaei-Tavirani, Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran Telephone Number: +98 (21) 22714248 Email Address:
| | - Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Arefian
- Stem Cell Technology Research Center, Tehran, Iran
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | |
Collapse
|
7
|
Fujita J, Freire P, Coarfa C, Benham AL, Gunaratne P, Schneider MD, Dejosez M, Zwaka TP. Ronin Governs Early Heart Development by Controlling Core Gene Expression Programs. Cell Rep 2018; 21:1562-1573. [PMID: 29117561 PMCID: PMC5695914 DOI: 10.1016/j.celrep.2017.10.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/01/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022] Open
Abstract
Ronin (THAP11), a DNA-binding protein that evolved from a primordial DNA transposon by molecular domestication, recognizes a hyperconserved promoter sequence to control developmentally and metabolically essential genes in pluripotent stem cells. However, it remains unclear whether Ronin or related THAP proteins perform similar functions in development. Here, we present evidence that Ronin functions within the nascent heart as it arises from the mesoderm and forms a four-chambered organ. We show that Ronin is vital for cardiogenesis during midgestation by controlling a set of critical genes. The activity of Ronin coincided with the recruitment of its cofactor, Hcf-1, and the elevation of H3K4me3 levels at specific target genes, suggesting the involvement of an epigenetic mechanism. On the strength of these findings, we propose that Ronin activity during cardiogenesis offers a template to understand how important gene programs are sustained across different cell types within a developing organ such as the heart. Ronin displays complex expression patterns during embryogenesis Ronin is critical for heart growth Ronin regulates genetic growth programs Ronin binding influences H3K4me3 levels at target genes
Collapse
Affiliation(s)
- Jun Fujita
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Pablo Freire
- Department of Cellular and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ashley L Benham
- Stem Cell Engineering Department, Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, TX 77225, USA
| | - Preethi Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Michael D Schneider
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Marion Dejosez
- Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Thomas P Zwaka
- Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|