1
|
Gourgoulianni N, Schäfer MA, Kapun M, Busso JP, Blanckenhorn WU. Temperature-dependent melanism and phenoloxidase activity in the dimorphic sepsid fly Sepsis thoracica. J Therm Biol 2023; 112:103473. [PMID: 36796918 DOI: 10.1016/j.jtherbio.2023.103473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023]
Abstract
Climate is changing towards both higher average temperatures and more frequent and severe heat waves. Whereas numerous studies have investigated temperature effects on animal life histories, assessments of their immune function are limited. In the size- and colour-dimorphic black scavenger (or dung) fly Sepsis thoracica (Diptera: Sepsidae), we experimentally studied how developmental temperature and larval density influence phenoloxidase (PO) activity, a key enzyme in insect pigmentation, thermoregulation, and immunity. Flies from five latitudinal European populations were raised at three developmental temperatures (18, 24, 30 °C). PO activity increased with developmental temperature differently in the sexes and the two male morphs (black and orange), altering the sigmoid relationship between melanism, i.e. colouration and fly size. PO activity further positively correlated with larval rearing density, potentially because of higher risks of pathogen infection or greater developmental stress following stronger resource competition. Populations varied somewhat in PO activity, body size and colouration, however with no clear latitudinal pattern. Overall our results indicate that morph- and sex-specific PO activity, and thus likely immune function, in S. thoracica depends on temperature and larval density, modifying the underlying putative trade-off between immunity and body size. The strong dampening of the immune system of all morphs at cool temperatures suggests low-temperature stress in this warm-adapted species common in southern Europe. Our results also support the population density dependent prophylaxis hypothesis, which predicts higher investment in immunity when facing limited resource availability and increased pathogen infection probability.
Collapse
Affiliation(s)
- Natalia Gourgoulianni
- Department of Evolutionary Biology & Environmental Studies, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | - Martin A Schäfer
- Department of Evolutionary Biology & Environmental Studies, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | - Martin Kapun
- Department of Evolutionary Biology & Environmental Studies, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland; Natural History Museum of Vienna, Austria.
| | - Juan Pablo Busso
- Department of Evolutionary Biology & Environmental Studies, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology & Environmental Studies, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
2
|
Kačániová M, Terentjeva M, Kowalczewski PŁ, Babošová M, Porhajašová JI, Hikal WM, Fedoriak M. Bacteriota and Antibiotic Resistance in Spiders. INSECTS 2022; 13:insects13080680. [PMID: 36005303 PMCID: PMC9409187 DOI: 10.3390/insects13080680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary The microbiomes of insects are known for having a great impact on their physiological properties for survival, such as nutrition, behavior, and health. In nature, spiders are one of the main insect predators, and their microbiomes have remained unclear yet. It is important to explore the microbiomes of spiders with the positive effect in the wild to gain an insight into the host–bacterial relationship. The insects have been the primary focus of microbiome studies from all arthropods. Although the research focused on the microbiome of spiders is still scarce, there is a possibility that spiders host diverse assemblages of bacteria, and some of them alter their physiology and behavior. According to our findings, there is a need for holistic microbiome studies across many organisms, which would increase our knowledge of the diversity and evolution of symbiotic relationships. Antimicrobial resistance is one of the most serious global public health threats in this century. Therefore, the knowledge and some information about insects and their ability to act as reservoirs of antibiotic-resistant microorganisms should be determined in order to ensure that they are not transferred to humans. It is important to monitor the microbiome of spiders found in human houses and the transmission of resistant microorganisms, which can be dangerous in relation to human health. Abstract Arthropods are reported to serve as vectors of transmission of pathogenic microorganisms to humans, animals, and the environment. The aims of our study were (i) to identify the external bacteriota of spiders inhabiting a chicken farm and slaughterhouse and (ii) to detect antimicrobial resistance of the isolates. In total, 102 spiders of 14 species were collected from a chicken farm, slaughterhouse, and buildings located in west Slovakia in 2017. Samples were diluted in peptone buffered water, and Tryptone Soya Agar (TSA), Triple Sugar Agar (TSI), Blood Agar (BA), and Anaerobic Agar (AA) were used for inoculation. A total of 28 genera and 56 microbial species were isolated from the samples. The most abundant species were Bacillus pumilus (28 isolates) and B. thuringensis (28 isolates). The least isolated species were Rhodotorula mucilaginosa (one isolate), Kocuria rhizophila (two isolates), Paenibacillus polymyxa (two isolates), and Staphylococcus equorum (two isolates). There were differences in microbial composition between the samples originating from the slaughterhouse, chicken farm, and buildings. The majority of the bacterial isolates resistant to antibiotics were isolated from the chicken farm. The isolation of potentially pathogenic bacteria such as Salmonella, Escherichia, and Salmonella spp., which possess multiple drug resistance, is of public health concern.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
- Correspondence:
| | - Margarita Terentjeva
- Institute of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia;
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland;
| | - Mária Babošová
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.B.); (J.I.P.)
| | - Jana Ivanič Porhajašová
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.B.); (J.I.P.)
| | - Wafaa M. Hikal
- Department of Biology, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia;
- Environmental Parasitology Laboratory, Water Pollution Research Department, Environment and Climate Change Institute, National Research Centre (NRC), 33 El–Behouth St., Dokki, Giza 12622, Egypt
| | - Mariia Fedoriak
- Department of Ecology and Biomonitoring, Institute of Biology, Chemistry and Bioresources, Yuriy Fedkovych Chernivtsi National University, 2 Kotsyubynskyi Street, 58012 Chernivtsi, Ukraine;
| |
Collapse
|
3
|
Gálvez D, Añino Y, Vega C, Bonilla E. Immune priming against bacteria in spiders and scorpions? PeerJ 2020; 8:e9285. [PMID: 32547885 PMCID: PMC7278890 DOI: 10.7717/peerj.9285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/12/2020] [Indexed: 11/20/2022] Open
Abstract
Empirical evidence of immune priming in arthropods keeps growing, both at the within- and trans-generational level. The evidence comes mostly from work on insects and it remains unclear for some other arthropods whether exposure to a non-lethal dose of a pathogen provides protection during a second exposure with a lethal dose. A poorly investigated group are arachnids, with regard to the benefits of immune priming measured as improved survival. Here, we investigated immune priming in two arachnids: the wolf spider Lycosa cerrofloresiana and the scorpion Centruroides granosus. We injected a third of the individuals with lipopolysaccharides of Escherichia coli (LPS, an immune elicitor), another third were injected with the control solution (PBS) and the other third were kept naive. Four days after the first inoculations, we challenged half of the individuals of each group with an injection of a high dose of E. coli and the other half was treated with the control solution. For scorpions, individuals that were initially injected with PBS or LPS did not differ in their survival rates against the bacterial challenge. Individuals injected with LPS showed higher survival than that of naive individuals as evidence of immune priming. Individuals injected with PBS tended to show higher survival rates than naive individuals, but the difference was not significant—perhaps suggesting a general immune upregulation caused by the wounding done by the needle. For spiders, we did not observe evidence of priming, the bacterial challenge reduced the survival of naive, PBS and LPS individuals at similar rates. Moreover; for scorpions, we performed antibacterial assays of hemolymph samples from the three priming treatments (LPS, PBS and naive) and found that the three treatments reduced bacterial growth but without differences among treatments. As non-model organisms, with some unique differences in their immunological mechanisms as compared to the most studied arthropods (insects), arachnids provide an unexplored field to elucidate the evolution of immune systems.
Collapse
Affiliation(s)
- Dumas Gálvez
- Programa Centroamericano de Maestría en Entomología, Universidad de Panamá, Panama, Panama.,COIBA AIP, Panama, Panama
| | - Yostin Añino
- Museo de Invertebrados G.B. Fairchild, Universidad de Panamá, Panama, Panama
| | - Carlos Vega
- Escuela de Biología, Universidad de Panamá, Panama, Panama
| | | |
Collapse
|
4
|
Keiser CN, Shearer TA, DeMarco AE, Brittingham HA, Knutson KA, Kuo C, Zhao K, Pruitt JN. Cuticular bacteria appear detrimental to social spiders in mixed but not monoculture exposure. Curr Zool 2016; 62:377-384. [PMID: 29491926 PMCID: PMC5829440 DOI: 10.1093/cz/zow015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/22/2015] [Indexed: 12/15/2022] Open
Abstract
Much of an animal’s health status, life history, and behavior are dictated by
interactions with its endogenous and exogenous bacterial communities. Unfortunately,
interactions between hosts and members of their resident bacterial community are often
ignored in animal behavior and behavioral ecology. Here, we aim to identify the nature of
host–microbe interactions in a nonmodel organism, the African social spider
Stegodyphus dumicola. We collected and identified bacteria from the
cuticles of spiders in situ and then exposed spiders to bacterial
monocultures cultures via topical application or injection. We also topically inoculated
spiders with a concomitant “cocktail” of bacteria and measured the behavior of spiders
daily for 24 days after inoculation. Lastly, we collected and identified bacteria from the
cuticles of prey items in the capture webs of spiders, and then fed spiders domestic
crickets which had been injected with these bacteria. We also injected 1 species of
prey-borne bacteria into the hemolymph of spiders. Only Bacillus
thuringiensis caused increased mortality when injected into the hemolymph of
spiders, whereas no bacterial monocultures caused increased mortality when applied
topically, relative to control solutions. However, a bacterial cocktail of cuticular
bacteria caused weight loss and mortality when applied topically, yet did not detectibly
alter spider behavior. Consuming prey injected with prey-borne bacteria was associated
with an elongated lifespan in spiders. Thus, indirect evidence from multiple experiments
suggests that the effects of these bacteria on spider survivorship appear contingent on
their mode of colonization and whether they are applied in monoculture or within a mixed
cocktail. We urge that follow-up studies should test these host–microbe interactions
across different social contexts to determine the role that microbes play in colony
performance.
Collapse
Affiliation(s)
- Carl N Keiser
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Taylor A Shearer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Alexander E DeMarco
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Hayley A Brittingham
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Karen A Knutson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Candice Kuo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Katherine Zhao
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Jonathan N Pruitt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| |
Collapse
|