1
|
Thomas A, Sumughan S, Dellacecca ER, Shivde RS, Lancki N, Mukhatayev Z, Vaca CC, Han F, Barse L, Henning SW, Zamora-Pineda J, Akhtar S, Gupta N, Zahid JO, Zack SR, Ramesh P, Jaishankar D, Lo AS, Moss J, Picken MM, Darling TN, Scholtens DM, Dilling DF, Junghans RP, Le Poole IC. Benign tumors in TSC are amenable to treatment by GD3 CAR T cells in mice. JCI Insight 2021; 6:e152014. [PMID: 34806651 PMCID: PMC8663788 DOI: 10.1172/jci.insight.152014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Mutations underlying disease in tuberous sclerosis complex (TSC) give rise to tumors with biallelic mutations in TSC1 or TSC2 and hyperactive mammalian target of rapamycin complex 1 (mTORC1). Benign tumors might exhibit de novo expression of immunogens, targetable by immunotherapy. As tumors may rely on ganglioside D3 (GD3) expression for mTORC1 activation and growth, we compared GD3 expression in tissues from patients with TSC and controls. GD3 was overexpressed in affected tissues from patients with TSC and also in aging Tsc2+/- mice. As GD3 overexpression was not accompanied by marked natural immune responses to the target molecule, we performed preclinical studies with GD3 chimeric antigen receptor (CAR) T cells. Polyfunctional CAR T cells were cytotoxic toward GD3-overexpressing targets. In mice challenged with Tsc2-/- tumor cells, CAR T cells substantially and durably reduced the tumor burden, correlating with increased T cell infiltration. We also treated aged Tsc2+/- heterozygous (>60 weeks) mice that carry spontaneous Tsc2-/- tumors with GD3 CAR or untransduced T cells and evaluated them at endpoint. Following CAR T cell treatment, the majority of mice were tumor free while all control animals carried tumors. The outcomes demonstrate a strong treatment effect and suggest that targeting GD3 can be successful in TSC.
Collapse
Affiliation(s)
- Ancy Thomas
- Department of Dermatology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center
| | | | | | | | - Nicola Lancki
- Quantitative Data Sciences Core, Robert H. Lurie Comprehensive Cancer Center; and
| | | | | | - Fei Han
- Department of Dermatology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center
| | - Levi Barse
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Jesus Zamora-Pineda
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Suhail Akhtar
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Nikhilesh Gupta
- Robert H. Lurie Comprehensive Cancer Center
- Illinois Mathematics and Science Academy, Aurora, Illinois, USA
| | - Jasmine O. Zahid
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Stephanie R. Zack
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | | | | | - Agnes S.Y. Lo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Maria M. Picken
- Department of Pathology, Loyola University, Maywood, Illinois, USA
| | - Thomas N. Darling
- Department of Dermatology, School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Denise M. Scholtens
- Quantitative Data Sciences Core, Robert H. Lurie Comprehensive Cancer Center; and
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel F. Dilling
- Department of Medicine, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Richard P. Junghans
- Department of Hematology/Oncology, School of Medicine, Boston University, Boston, Massachusetts, USA
| | - I. Caroline Le Poole
- Department of Dermatology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
2
|
Mühlebner A, van Scheppingen J, de Neef A, Bongaarts A, Zimmer TS, Mills JD, Jansen FE, Spliet WGM, Krsek P, Zamecnik J, Coras R, Blumcke I, Feucht M, Scholl T, Gruber VE, Hainfellner JA, Söylemezoğlu F, Kotulska K, Lagae L, Jansen AC, Kwiatkowski DJ, Jozwiak S, Curatolo P, Aronica E. Myelin Pathology Beyond White Matter in Tuberous Sclerosis Complex (TSC) Cortical Tubers. J Neuropathol Exp Neurol 2021; 79:1054-1064. [PMID: 32954437 PMCID: PMC7559237 DOI: 10.1093/jnen/nlaa090] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a monogenetic disease that arises due to mutations in either the TSC1 or TSC2 gene and affects multiple organ systems. One of the hallmark manifestations of TSC are cortical malformations referred to as cortical tubers. These tubers are frequently associated with treatment-resistant epilepsy. Some of these patients are candidates for epilepsy surgery. White matter abnormalities, such as loss of myelin and oligodendroglia, have been described in a small subset of resected tubers but mechanisms underlying this phenomenon are unclear. Herein, we analyzed a variety of neuropathologic and immunohistochemical features in gray and white matter areas of resected cortical tubers from 46 TSC patients using semi-automated quantitative image analysis. We observed divergent amounts of myelin basic protein as well as numbers of oligodendroglia in both gray and white matter when compared with matched controls. Analyses of clinical data indicated that reduced numbers of oligodendroglia were associated with lower numbers on the intelligence quotient scale and that lower amounts of myelin-associated oligodendrocyte basic protein were associated with the presence of autism-spectrum disorder. In conclusion, myelin pathology in cortical tubers extends beyond the white matter and may be linked to cognitive dysfunction in TSC patients.
Collapse
Affiliation(s)
- Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jackelien van Scheppingen
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Andrew de Neef
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anika Bongaarts
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Till S Zimmer
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - James D Mills
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Floor E Jansen
- Department of Pediatric Neurology, Brain Center University Medical Center
| | - Wim G M Spliet
- Department of Pathology, University Medical Center Utrecht (WGMS) Utrecht, The Netherlands
| | | | | | - Roland Coras
- Second Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic; Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Ingmar Blumcke
- Second Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic; Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | | | | | | | | | - Figen Söylemezoğlu
- Medical University of Vienna, Vienna, Austria; Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Lieven Lagae
- Department of Development and Regeneration-Section Pediatric Neurology, University Hospitals KU Leuven, Leuven
| | - Anna C Jansen
- Pediatric Neurology Unit-UZ Brussel, Brussels Belgium
| | | | - Sergiusz Jozwiak
- Department of Neurology and Epileptology, The Children's Memorial Health Institute.,Department of Child Neurology, Medical University of Warsaw Warsaw, Poland
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|