1
|
Shi P, Han J, Zhang Y, Li G, Zhou X. IMI-driver: Integrating multi-level gene networks and multi-omics for cancer driver gene identification. PLoS Comput Biol 2024; 20:e1012389. [PMID: 39186807 PMCID: PMC11379397 DOI: 10.1371/journal.pcbi.1012389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/06/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024] Open
Abstract
The identification of cancer driver genes is crucial for early detection, effective therapy, and precision medicine of cancer. Cancer is caused by the dysregulation of several genes at various levels of regulation. However, current techniques only capture a limited amount of regulatory information, which may hinder their efficacy. In this study, we present IMI-driver, a model that integrates multi-omics data into eight biological networks and applies Multi-view Collaborative Network Embedding to embed the gene regulation information from the biological networks into a low-dimensional vector space to identify cancer drivers. We apply IMI-driver to 29 cancer types from The Cancer Genome Atlas (TCGA) and compare its performance with nine other methods on nine benchmark datasets. IMI-driver outperforms the other methods, demonstrating that multi-level network integration enhances prediction accuracy. We also perform a pan-cancer analysis using the genes identified by IMI-driver, which confirms almost all our selected candidate genes as known or potential drivers. Case studies of the new positive genes suggest their roles in cancer development and progression.
Collapse
Affiliation(s)
- Peiting Shi
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Junmin Han
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yinghao Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Guanpu Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xionghui Zhou
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, People's Republic of China
- Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Agriculture and Rural Affairs, People's Republic of China
| |
Collapse
|
2
|
Xu X, Wang H, Zhang QY, Meng XY, Li XX, Zhang HY. Dissecting Mitochondrial Mechanisms of Alzheimer's Disease Using Gene Dependency Network and Its Implications for Discovering Nutrients Combatting the Disease. J Alzheimers Dis 2023; 95:1709-1722. [PMID: 37718803 DOI: 10.3233/jad-230366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the leading cause of dementia, with its prevalence increasing as the global population ages. AD is a multifactorial and intricate neurodegenerative disease with pathological changes varying from person to person. Because the mechanism of AD is highly controversial, effective treatments remain a distant prospect. Currently, one of the most promising hypotheses posits mitochondrial dysfunction as an early event in AD diagnosis and a potential therapeutic target. OBJECTIVE Here, we adopted a systems medicine strategy to explore the mitochondria-related mechanisms of AD. Then, its implications for discovering nutrients combatting the disease were demonstrated. METHODS We employed conditional mutual information (CMI) to construct AD gene dependency networks. Furthermore, the GeneRank algorithm was applied to prioritize the gene importance of AD patients and identify potential anti-AD nutrients targeting crucial genes. RESULTS The results suggested that two highly interconnected networks of mitochondrial ribosomal proteins (MRPs) play an important role in the regulation of AD pathology. The close association between mitochondrial ribosome dysfunction and AD was identified. Additionally, we proposed seven nutrients with potential preventive and ameliorative effects on AD, five of which have been supported by experimental reports. CONCLUSIONS Our study explored the important regulatory role of MRP genes in AD, which has significant implications for AD prevention and treatment.
Collapse
Affiliation(s)
- Xuan Xu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
- College of Life Sciences, Anhui Medical University, Hefei, China
| | - Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qing-Ye Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xiang-Yu Meng
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
- Health Science Center, Hubei Minzu University, Enshi, China
| | - Xin-Xing Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Cui ZJ, Gao M, Quan Y, Lv BM, Tong XY, Dai TF, Zhou XH, Zhang HY. Systems Pharmacology-Based Precision Therapy and Drug Combination Discovery for Breast Cancer. Cancers (Basel) 2021; 13:cancers13143586. [PMID: 34298802 PMCID: PMC8305788 DOI: 10.3390/cancers13143586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is a common disease and one of the main causes of death in females worldwide. In the omics era, researchers have used various high-throughput sequencing technologies to accumulate massive amounts of biomedical data and reveal an increasing number of disease-related mutations/genes. It is a major challenge to use these data effectively to find drugs that may protect human health. In this study, we combined the GeneRank algorithm and gene dependency network to propose a precision drug discovery strategy that can recommend drugs for individuals and screen existing drugs that could be used to treat different BC subtypes. We used this strategy to screen four BC subtype-specific drug combinations and verified the potential activity of combining gefitinib and irinotecan in triple-negative breast cancer (TNBC) through in vivo and in vitro experiments. The results of cell and animal experiments demonstrated that the combination of gefitinib and irinotecan can significantly inhibit the growth of TNBC tumour cells. The results also demonstrated that this systems pharmacology-based precision drug discovery strategy effectively identified important disease-related genes in individuals and special groups, which supports its efficiency, high reliability, and practical application value in drug discovery.
Collapse
Affiliation(s)
- Ze-Jia Cui
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (Z.-J.C.); (M.G.); (Y.Q.); (B.-M.L.); (X.-Y.T.)
| | - Min Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (Z.-J.C.); (M.G.); (Y.Q.); (B.-M.L.); (X.-Y.T.)
- Lab of Epigenetics and Advanced Health Technology, Space Science and Technology Institute (Shenzhen), Shenzhen 518117, China
| | - Yuan Quan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (Z.-J.C.); (M.G.); (Y.Q.); (B.-M.L.); (X.-Y.T.)
| | - Bo-Min Lv
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (Z.-J.C.); (M.G.); (Y.Q.); (B.-M.L.); (X.-Y.T.)
| | - Xin-Yu Tong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (Z.-J.C.); (M.G.); (Y.Q.); (B.-M.L.); (X.-Y.T.)
| | | | - Xiong-Hui Zhou
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (Z.-J.C.); (M.G.); (Y.Q.); (B.-M.L.); (X.-Y.T.)
- Correspondence: (X.-H.Z.); (H.-Y.Z.); Tel.: +86-27-8728-5085 (H.-Y.Z.)
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (Z.-J.C.); (M.G.); (Y.Q.); (B.-M.L.); (X.-Y.T.)
- Correspondence: (X.-H.Z.); (H.-Y.Z.); Tel.: +86-27-8728-5085 (H.-Y.Z.)
| |
Collapse
|
4
|
Guo WF, Zhang SW, Feng YH, Liang J, Zeng T, Chen L. Network controllability-based algorithm to target personalized driver genes for discovering combinatorial drugs of individual patients. Nucleic Acids Res 2021; 49:e37. [PMID: 33434272 PMCID: PMC8053130 DOI: 10.1093/nar/gkaa1272] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/02/2020] [Accepted: 12/22/2020] [Indexed: 12/27/2022] Open
Abstract
Multiple driver genes in individual patient samples may cause resistance to individual drugs in precision medicine. However, current computational methods have not studied how to fill the gap between personalized driver gene identification and combinatorial drug discovery for individual patients. Here, we developed a novel structural network controllability-based personalized driver genes and combinatorial drug identification algorithm (CPGD), aiming to identify combinatorial drugs for an individual patient by targeting personalized driver genes from network controllability perspective. On two benchmark disease datasets (i.e. breast cancer and lung cancer datasets), performance of CPGD is superior to that of other state-of-the-art driver gene-focus methods in terms of discovery rate among prior-known clinical efficacious combinatorial drugs. Especially on breast cancer dataset, CPGD evaluated synergistic effect of pairwise drug combinations by measuring synergistic effect of their corresponding personalized driver gene modules, which are affected by a given targeting personalized driver gene set of drugs. The results showed that CPGD performs better than existing synergistic combinatorial strategies in identifying clinical efficacious paired combinatorial drugs. Furthermore, CPGD enhanced cancer subtyping by computationally providing personalized side effect signatures for individual patients. In addition, CPGD identified 90 drug combinations candidates from SARS-COV2 dataset as potential drug repurposing candidates for recently spreading COVID-19.
Collapse
Affiliation(s)
- Wei-Feng Guo
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xian 710072, China.,School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xian 710072, China
| | - Yue-Hua Feng
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xian 710072, China
| | - Jing Liang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Tao Zeng
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy Science, Shanghai 200031, China
| | - Luonan Chen
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy Science, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
5
|
Pheno-RNA, a method to associate genes with a specific phenotype, identifies genes linked to cellular transformation. Proc Natl Acad Sci U S A 2020; 117:28925-28929. [PMID: 33144504 DOI: 10.1073/pnas.2014165117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cellular transformation is associated with dramatic changes in gene expression, but it is difficult to determine which regulated genes are oncogenically relevant. Here we describe Pheno-RNA, a general approach to identifying candidate genes associated with a specific phenotype. Specifically, we generate a "phenotypic series" by treating a nontransformed breast cell line with a wide variety of molecules that induce cellular transformation to various extents. By performing transcriptional profiling across this phenotypic series, the expression profile of every gene can be correlated with the strength of the transformed phenotype. We identify ∼200 genes whose expression profiles are very highly correlated with the transformation phenotype, strongly suggesting their importance in transformation. Within biological categories linked to cancer, some genes show high correlations with the transformed phenotype, but others do not. Many genes whose expression profiles are highly correlated with transformation have never been associated with cancer, suggesting the involvement of heretofore unknown genes in cancer.
Collapse
|
6
|
Li JN, Zhong R, Zhou XH. Prediction of Bone Metastasis in Breast Cancer Based on Minimal Driver Gene Set in Gene Dependency Network. Genes (Basel) 2019; 10:E466. [PMID: 31213036 PMCID: PMC6627827 DOI: 10.3390/genes10060466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/02/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022] Open
Abstract
Bone is the most frequent organ for breast cancer metastasis, and thus it is essential to predict the bone metastasis of breast cancer. In our work, we constructed a gene dependency network based on the hypothesis that the relation between one gene and the risk of bone metastasis might be affected by another gene. Then, based on the structure controllability theory, we mined the driver gene set which can control the whole network in the gene dependency network, and the signature genes were selected from them. Survival analysis showed that the signature could distinguish the bone metastasis risks of cancer patients in the test data set and independent data set. Besides, we used the signature genes to construct a centroid classifier. The results showed that our method is effective and performed better than published methods.
Collapse
Affiliation(s)
- Jia-Nuo Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Rui Zhong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiong-Hui Zhou
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Zhou XH, Chu XY, Xue G, Xiong JH, Zhang HY. Identifying cancer prognostic modules by module network analysis. BMC Bioinformatics 2019; 20:85. [PMID: 30777030 PMCID: PMC6380061 DOI: 10.1186/s12859-019-2674-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/08/2019] [Indexed: 02/08/2023] Open
Abstract
Background The identification of prognostic genes that can distinguish the prognostic risks of cancer patients remains a significant challenge. Previous works have proven that functional gene sets were more reliable for this task than the gene signature. However, few works have considered the cross-talk among functional gene sets, which may result in neglecting important prognostic gene sets for cancer. Results Here, we proposed a new method that considers both the interactions among modules and the prognostic correlation of the modules to identify prognostic modules in cancers. First, dense sub-networks in the gene co-expression network of cancer patients were detected. Second, cross-talk between every two modules was identified by a permutation test, thus generating the module network. Third, the prognostic correlation of each module was evaluated by the resampling method. Then, the GeneRank algorithm, which takes the module network and the prognostic correlations of all the modules as input, was applied to prioritize the prognostic modules. Finally, the selected modules were validated by survival analysis in various data sets. Our method was applied in three kinds of cancers, and the results show that our method succeeded in identifying prognostic modules in all the three cancers. In addition, our method outperformed state-of-the-art methods. Furthermore, the selected modules were significantly enriched with known cancer-related genes and drug targets of cancer, which may indicate that the genes involved in the modules may be drug targets for therapy. Conclusions We proposed a useful method to identify key modules in cancer prognosis and our prognostic genes may be good candidates for drug targets. Electronic supplementary material The online version of this article (10.1186/s12859-019-2674-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiong-Hui Zhou
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xin-Yi Chu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Gang Xue
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiang-Hui Xiong
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, People's Republic of China.,Lab of Epigenetics and Health Tracking Technology, Space Institute of Southern China, Shenzhen, People's Republic of China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
8
|
PheWAS-Based Systems Genetics Methods for Anti-Breast Cancer Drug Discovery. Genes (Basel) 2019; 10:genes10020154. [PMID: 30781719 PMCID: PMC6409623 DOI: 10.3390/genes10020154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 11/21/2022] Open
Abstract
Breast cancer is a high-risk disease worldwide. For such complex diseases that are induced by multiple pathogenic genes, determining how to establish an effective drug discovery strategy is a challenge. In recent years, a large amount of genetic data has accumulated, particularly in the genome-wide identification of disorder genes. However, understanding how to use these data efficiently for pathogenesis elucidation and drug discovery is still a problem because the gene–disease links that are identified by high-throughput techniques such as phenome-wide association studies (PheWASs) are usually too weak to have biological significance. Systems genetics is a thriving area of study that aims to understand genetic interactions on a genome-wide scale. In this study, we aimed to establish two effective strategies for identifying breast cancer genes based on the systems genetics algorithm. As a result, we found that the GeneRank-based strategy, which combines the prognostic phenotype-based gene-dependent network with the phenotypic-related PheWAS data, can promote the identification of breast cancer genes and the discovery of anti-breast cancer drugs.
Collapse
|
9
|
Wang JY, Chen LL, Zhou XH. Identifying prognostic signature in ovarian cancer using DirGenerank. Oncotarget 2017; 8:46398-46413. [PMID: 28615526 PMCID: PMC5542276 DOI: 10.18632/oncotarget.18189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/26/2017] [Indexed: 12/27/2022] Open
Abstract
Identifying the prognostic genes in cancer is essential not only for the treatment of cancer patients, but also for drug discovery. However, it's still a big challenge to select the prognostic genes that can distinguish the risk of cancer patients across various data sets because of tumor heterogeneity. In this situation, the selected genes whose expression levels are statistically related to prognostic risks may be passengers. In this paper, based on gene expression data and prognostic data of ovarian cancer patients, we used conditional mutual information to construct gene dependency network in which the nodes (genes) with more out-degrees have more chances to be the modulators of cancer prognosis. After that, we proposed DirGenerank (Generank in direct netowrk) algorithm, which concerns both the gene dependency network and genes' correlations to prognostic risks, to identify the gene signature that can predict the prognostic risks of ovarian cancer patients. Using ovarian cancer data set from TCGA (The Cancer Genome Atlas) as training data set, 40 genes with the highest importance were selected as prognostic signature. Survival analysis of these patients divided by the prognostic signature in testing data set and four independent data sets showed the signature can distinguish the prognostic risks of cancer patients significantly. Enrichment analysis of the signature with curated cancer genes and the drugs selected by CMAP showed the genes in the signature may be drug targets for therapy. In summary, we have proposed a useful pipeline to identify prognostic genes of cancer patients.
Collapse
Affiliation(s)
- Jian-Yong Wang
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Ling-Ling Chen
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Xiong-Hui Zhou
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|