1
|
Manisha Y, Srinivasan M, Jobichen C, Rosenshine I, Sivaraman J. Sensing for survival: specialised regulatory mechanisms of Type III secretion systems in Gram-negative pathogens. Biol Rev Camb Philos Soc 2024; 99:837-863. [PMID: 38217090 DOI: 10.1111/brv.13047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
For centuries, Gram-negative pathogens have infected the human population and been responsible for numerous diseases in animals and plants. Despite advancements in therapeutics, Gram-negative pathogens continue to evolve, with some having developed multi-drug resistant phenotypes. For the successful control of infections caused by these bacteria, we need to widen our understanding of the mechanisms of host-pathogen interactions. Gram-negative pathogens utilise an array of effector proteins to hijack the host system to survive within the host environment. These proteins are secreted into the host system via various secretion systems, including the integral Type III secretion system (T3SS). The T3SS spans two bacterial membranes and one host membrane to deliver effector proteins (virulence factors) into the host cell. This multifaceted process has multiple layers of regulation and various checkpoints. In this review, we highlight the multiple strategies adopted by these pathogens to regulate or maintain virulence via the T3SS, encompassing the regulation of small molecules to sense and communicate with the host system, as well as master regulators, gatekeepers, chaperones, and other effectors that recognise successful host contact. Further, we discuss the regulatory links between the T3SS and other systems, like flagella and metabolic pathways including the tricarboxylic acid (TCA) cycle, anaerobic metabolism, and stringent cell response.
Collapse
Affiliation(s)
- Yadav Manisha
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Mahalashmi Srinivasan
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, 91120, Israel
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
2
|
The Regulatory Circuit Underlying Downregulation of a Type III Secretion System in Yersinia enterocolitica by Transcription Factor OmpR. Int J Mol Sci 2022; 23:ijms23094758. [PMID: 35563149 PMCID: PMC9100119 DOI: 10.3390/ijms23094758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022] Open
Abstract
In a previous study, differential proteomic analysis was used to identify membrane proteins of the human enteropathogen Yersinia enterocolitica, whose levels are influenced by OmpR, the transcriptional regulator in the two-component EnvZ/OmpR system. Interestingly, this analysis demonstrated that at 37 °C, OmpR negatively affects the level of over a dozen Ysc-Yop proteins, which constitute a type III secretion system (T3SS) that is essential for the pathogenicity of Y. enterocolitica. Here, we focused our analysis on the role of OmpR in the expression and secretion of Yops (translocators and effectors). Western blotting with anti-Yops antiserum and specific anti-YopD, -YopE and -YopH antibodies, confirmed that the production of Yops is down-regulated by OmpR with the greatest negative effect on YopD. The RT-qPCR analysis demonstrated that, while OmpR had a negligible effect on the activity of regulatory genes virF and yscM1, it highly repressed the expression of yopD. OmpR was found to bind to the promoter of the lcrGVsycD-yopBD operon, suggesting a direct regulatory effect. In addition, we demonstrated that the negative regulatory influence of OmpR on the Ysc-Yop T3SS correlated with its positive role in the expression of flhDC, the master regulator of the flagellar-associated T3SS.
Collapse
|
3
|
Gurung JM, Amer AAA, Chen S, Diepold A, Francis MS. Type III secretion by Yersinia pseudotuberculosis is reliant upon an authentic N-terminal YscX secretor domain. Mol Microbiol 2022; 117:886-906. [PMID: 35043994 PMCID: PMC9303273 DOI: 10.1111/mmi.14880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
YscX was discovered as an essential part of the Yersinia type III secretion system about 20 years ago. It is required for substrate secretion and is exported itself. Despite this central role, its precise function and mode of action remains unknown. In order to address this knowledge gap, this present study refocused attention on YscX to build on the recent advances in the understanding of YscX function. Our experiments identified a N-terminal secretion domain in YscX promoting its secretion, with the first five codons constituting a minimal signal capable of promoting secretion of the signalless β-lactamase reporter. Replacing the extreme YscX N-terminus with known secretion signals of other Ysc-Yop substrates revealed that the YscX N-terminal segment contains non-redundant information needed for YscX function. Further, both in cis deletion of the YscX N-terminus in the virulence plasmid and ectopic expression of epitope tagged YscX variants again lead to stable YscX production but not type III secretion of Yop effector proteins. Mislocalisation of the needle components, SctI and SctF, accompanied this general defect in Yops secretion. Hence, a coupling exists between YscX secretion permissiveness and the assembly of an operational secretion system.
Collapse
Affiliation(s)
- Jyoti M Gurung
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Ayad A A Amer
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Shiyun Chen
- Wuhan Institute of Virology, The Chinese Academy of Sciences, Wuhan, China
| | - Andreas Diepold
- Max Planck Institute for Terrestrial Microbiology, Department of Ecophysiology, Marburg, Germany
| | - Matthew S Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
4
|
Fei K, Chao HJ, Hu Y, Francis MS, Chen S. CpxR regulates the Rcs phosphorelay system in controlling the Ysc-Yop type III secretion system in Yersinia pseudotuberculosis. MICROBIOLOGY-SGM 2021; 167. [PMID: 33295859 DOI: 10.1099/mic.0.000998] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The CpxRA two-component regulatory system and the Rcs phosphorelay system are both employed by the Enterobacteriaceae family to preserve bacterial envelope integrity and function when growing under stress. Although both systems regulate several overlapping physiological processes, evidence demonstrating a molecular connection between Cpx and Rcs signalling outputs is scarce. Here, we show that CpxR negatively regulates the transcription of the rcsB gene in the Rcs phosphorelay system in Yersinia pseudotuberculosis. Interestingly, transcription of rcsB is under the control of three promoters, which were all repressed by CpxR. Critically, synthetic activation of Cpx signalling through mislocalization of the NlpE lipoprotein to the inner membrane resulted in an active form of CpxR that repressed activity of rcsB promoters. On the other hand, a site-directed mutation of the phosphorylation site at residue 51 in CpxR generated an inactive non-phosphorylated variant that was unable to regulate output from these rcsB promoters. Importantly, CpxR-mediated inhibition of rcsB transcription in turn restricted activation of the Ysc-Yop type III secretion system (T3SS). Moreover, active CpxR blocks zinc-mediated activation of Rcs signalling and the subsequent activation of lcrF transcription. Our results demonstrate a novel regulatory cascade linking CpxR-RcsB-LcrF to control production of the Ysc-Yop T3SS.
Collapse
Affiliation(s)
- Keke Fei
- University of Chinese Academy of Sciences, Beijing, PR China.,Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, PR China
| | - Hong-Jun Chao
- Present address: School of Biological & pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, PR China.,Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, PR China
| | - Yangbo Hu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, PR China
| | - Matthew S Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, PR China
| |
Collapse
|
5
|
LcrQ Coordinates with the YopD-LcrH Complex To Repress lcrF Expression and Control Type III Secretion by Yersinia pseudotuberculosis. mBio 2021; 12:e0145721. [PMID: 34154409 PMCID: PMC8262909 DOI: 10.1128/mbio.01457-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human-pathogenic Yersinia species employ a plasmid-encoded type III secretion system (T3SS) to negate immune cell function during infection. A critical element in this process is the coordinated regulation of T3SS gene expression, which involves both transcriptional and posttranscriptional mechanisms. LcrQ is one of the earliest identified negative regulators of Yersinia T3SS, but its regulatory mechanism is still unclear. In a previous study, we showed that LcrQ antagonizes the activation role played by the master transcriptional regulator LcrF. In this study, we confirm that LcrQ directly interacts with LcrH, the chaperone of YopD, to facilitate the negative regulatory role of the YopD-LcrH complex in repressing lcrF expression at the posttranscriptional level. Negative regulation is strictly dependent on the YopD-LcrH complex, more so than on LcrQ. The YopD-LcrH complex helps to retain cytoplasmic levels of LcrQ to facilitate the negative regulatory effect. Interestingly, RNase E and its associated protein RhlB participate in this negative regulatory loop through a direct interaction with LcrH and LcrQ. Hence, we present a negative regulatory loop that physically connects LcrQ to the posttranscriptional regulation of LcrF, and this mechanism incorporates RNase E involved in mRNA decay.
Collapse
|
6
|
Liu L, Huang S, Fei K, Zhou W, Chen S, Hu Y. Characterization of the binding motif for the T3SS master regulator LcrF in Yersinia pseudotuberculosis. FEMS Microbiol Lett 2021; 368:6168405. [PMID: 33705525 DOI: 10.1093/femsle/fnab031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/09/2021] [Indexed: 01/14/2023] Open
Abstract
LcrF is the master regulator that positively regulates the Ysc type III secretion system (T3SS) in Yersinia and shares a high similarity with the DNA-binding domain of the T3SS master regulator ExsA in Pseudomonas aeruginosa. Based on these features, bioinformatics analysis has predicted a putative LcrF-binding site in its target promoters. Here, we experimentally characterized its binding motif. An adenine-rich LcrF-binding region in the lcrG promoter sequence, a typical regulatory target of LcrF, was first confirmed. To obtain detailed information, this binding region was cloned into a synthetized promoter and mutations in this region were further constructed. We demonstrated that the 5'-AAAAA-n5-GnCT-3' sequence is required for LcrF regulation and this motif is strictly located 4-bp upstream of a noncanonical promoter, in which the -35 and -10 elements are separated by a 21-bp spacer. Consistently, the putative binding motif was found in promoters of nine T3SS related operons or genes positively regulated by LcrF. Transcriptome analysis further confirmed that LcrF specifically activates T3SS genes in Yersinia. Collectively, our data suggest that LcrF has evolved to be a specific T3SS activator with a stringent sequence requirement for transcriptional regulation.
Collapse
Affiliation(s)
- Luyi Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Shaojia Huang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071 Wuhan, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Keke Fei
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071 Wuhan, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Wei Zhou
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071 Wuhan, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Shiyun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Yangbo Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071 Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071 Wuhan, China
| |
Collapse
|
7
|
Volk M, Vollmer I, Heroven AK, Dersch P. Transcriptional and Post-transcriptional Regulatory Mechanisms Controlling Type III Secretion. Curr Top Microbiol Immunol 2019; 427:11-33. [PMID: 31218505 DOI: 10.1007/82_2019_168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Type III secretion systems (T3SSs) are utilized by numerous Gram-negative bacteria to efficiently interact with host cells and manipulate their function. Appropriate expression of type III secretion genes is achieved through the integration of multiple control elements and regulatory pathways that ultimately coordinate the activity of a central transcriptional activator usually belonging to the AraC/XylS family. Although several regulatory elements are conserved between different species and families, each pathogen uses a unique set of control factors and mechanisms to adjust and optimize T3SS gene expression to the need and lifestyle of the pathogen. This is reflected by the complex set of sensory systems and diverse transcriptional, post-transcriptional and post-translational control strategies modulating T3SS expression in response to environmental and intrinsic cues. Whereas some pathways regulate solely the T3SS, others coordinately control expression of one or multiple T3SSs together with other virulence factors and fitness traits on a global scale. Over the past years, several common regulatory themes emerged, e.g., environmental control by two-component systems and carbon metabolism regulators or coupling of T3SS induction with host cell contact/translocon-effector secretion. One of the remaining challenges is to resolve the understudied post-transcriptional regulation of T3SS and the dynamics of the control process.
Collapse
Affiliation(s)
- Marcel Volk
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Ines Vollmer
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Brunswick, Germany.
- Institute for Infectiology, University Münster, Münster, Germany.
| |
Collapse
|
8
|
Fang H, Liu L, Zhang Y, Yang H, Yan Y, Ding X, Han Y, Zhou D, Yang R. BfvR, an AraC-Family Regulator, Controls Biofilm Formation and pH6 Antigen Production in Opposite Ways in Yersinia pestis Biovar Microtus. Front Cell Infect Microbiol 2018; 8:347. [PMID: 30333962 PMCID: PMC6176095 DOI: 10.3389/fcimb.2018.00347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 09/11/2018] [Indexed: 11/13/2022] Open
Abstract
Biofilm formation is critical for blocking flea foregut and hence for transmission of Y. pestis by flea biting. In this study, we identified the regulatory role of the AraC-family transcriptional regulator BfvR (YPO1737 in strain CO92) in biofilm formation and virulence of Yersinia pestis biovar Microtus. Crystal violet staining, Caenorhabditis elegans biofilm assay, colony morphology assay, intracellular c-di-GMP concentration determination, and BALB/c mice challenge were employed to reveal that BfvR enhanced Y. pestis biofilm formation while repressed its virulence in mice. Further molecular biological assays demonstrated that BfvR directly stimulated the expression of hmsHFRS, waaAE-coaD, and hmsCDE, which, in turn, affected the production of exopolysaccharide, LPS, and c-di-GMP, respectively. In addition, BfvR directly and indirectly repressed psaABC and psaEF transcription, respectively. We concluded that the modulation of biofilm- and virulence-related genes by BfvR led to increased biofilm formation and reduced virulence of Y. pestis biovar Microtus.
Collapse
Affiliation(s)
- Haihong Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Division of Biology, Beijing Academy, Beijing, China
| | - Lei Liu
- Department of Blood Transfusion, Wuhan General Hospital of PLA, Wuhan, China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaojuan Ding
- Department of Microbiology, Anhui Medical University, Hefei, China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
9
|
Characterization of a Minimal Type of Promoter Containing the -10 Element and a Guanine at the -14 or -13 Position in Mycobacteria. J Bacteriol 2017; 199:JB.00385-17. [PMID: 28784819 DOI: 10.1128/jb.00385-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/03/2017] [Indexed: 11/20/2022] Open
Abstract
Three key promoter elements, i.e., -10, -35, and T-15G-14N, are recognized by the σ subunit of RNA polymerase. Among them, promoters with the -10 element and either -35 or T-15G-14N are known to initiate transcription efficiently, but recent systematic analyses have identified a large group of promoters in Mycobacterium tuberculosis that contain only a -10 consensus. How these promoters initiate transcription remains poorly understood. Here, we show that promoters containing the -10 element and an upstream G located at the -14 or -13 position can successfully initiate transcription in mycobacteria. Importantly, this new type of promoter is active in the absence of other promoter consensuses, suggesting that it is a minimal promoter type. Mutation of the upstream G in promoters decreased the efficiencies of their binding with RNA polymerase and their abilities to initiate transcription in both in vitro and in vivo analyses. A glutamic acid in σ region 3.0 is essential for recognizing G-14 and G-13 and is conserved in both principal and principal-like σ factors in mycobacteria, indicating that recognition of this minimal type of promoter might be a common mechanism for transcription initiation. Consistently, more than 70% of the identified promoters in M. tuberculosis contained G-14 or G-13 upstream of the conserved -10 element, and thousands of promoters in representative mycobacterial species have been predicted using the -10 consensus and G-14 or G-13 Altogether, our study presents a universal mechanism for transcription initiation from a minimal promoter in mycobacteria, which might also be applicable to other bacteria.IMPORTANCE In contrast to the detailed information for recognizing classic promoters in the model organism Escherichia coli, very little is known about how transcription is initiated in the human pathogen Mycobacterium tuberculosis In this study, we characterized a new type of promoter in mycobacteria that requires only a -10 consensus and an upstream G-14 or G-13 Residues important for recognizing the -10 element and the upstream G are conserved in σA and σB from mycobacterial species. According to such features, thousands of promoters in mycobacteria can be predicted using the -10 consensus and G-14 or G-13, which suggests that transcription from this new type of promoter might be widespread. Our findings provide insightful information for characterizing promoters in mycobacteria.
Collapse
|
10
|
Hu Y, Wang Z, Feng L, Chen Z, Mao C, Zhu Y, Chen S. σ(E) -dependent activation of RbpA controls transcription of the furA-katG operon in response to oxidative stress in mycobacteria. Mol Microbiol 2016; 102:107-20. [PMID: 27353316 DOI: 10.1111/mmi.13449] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2016] [Indexed: 01/08/2023]
Abstract
Mycobacterium tuberculosis adopts various strategies to cope with oxidative stress during infection. Transcriptional regulators, including σ factors, make important contributions to this stress response, but how these proteins cooperate with each other is largely unknown. In this study, the role of RbpA and its cooperation with σ factors in response to oxidative stress are investigated. Knock down expression of rbpA in Mycobacterium smegmatis attenuated bacterial survival in the presence of H2 O2 . Additionally, transcription of the rbpA gene was induced by H2 O2 in a σ(E) -dependent manner. After induction, RbpA interacts with the principal sigma factor, σ(A) , to control the transcription of furA-katG operon, which encodes an H2 O2 scavenging enzyme. Moreover, this regulation is responsible for the role of σ(E) in oxidative response because bacterial survival was attenuated and transcription of the furA-katG operon was down-regulated with H2 O2 treatment in sigE deletion mutant (ΔsigE), and over-expression of RbpA in ΔsigE strain restored all of these phenotypes. Taken together, our study first illustrated a mechanism for σ(E) in response to oxidative stress through regulation of rbpA transcription. This study was also the first to demonstrate that RbpA is required for the full response to oxidative stress by cooperating with the principal σ(A) .
Collapse
Affiliation(s)
- Yangbo Hu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhongwei Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, 10086, China
| | - Lipeng Feng
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, 10086, China
| | - Zhenkang Chen
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, 10086, China
| | - Chunyou Mao
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, 10086, China
| | - Yan Zhu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, 10086, China
| | - Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
11
|
Nieckarz M, Raczkowska A, Dębski J, Kistowski M, Dadlez M, Heesemann J, Rossier O, Brzostek K. Impact of OmpR on the membrane proteome of Yersinia enterocolitica in different environments: repression of major adhesin YadA and heme receptor HemR. Environ Microbiol 2016; 18:997-1021. [PMID: 26627632 DOI: 10.1111/1462-2920.13165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/26/2015] [Accepted: 11/29/2015] [Indexed: 01/22/2023]
Abstract
Enteropathogenic Yersinia enterocolitica is able to grow within or outside the mammalian host. Previous transcriptomic studies have indicated that the regulator OmpR plays a role in the expression of hundreds of genes in enterobacteria. Here, we have examined the impact of OmpR on the production of Y. enterocolitica membrane proteins upon changes in temperature, osmolarity and pH. Proteomic analysis indicated that the loss of OmpR affects the production of 120 proteins, a third of which are involved in uptake/transport, including several that participate in iron or heme acquisition. A set of proteins associated with virulence was also affected. The influence of OmpR on the abundance of adhesin YadA and heme receptor HemR was examined in more detail. OmpR was found to repress YadA production and bind to the yadA promoter, suggesting a direct regulatory effect. In contrast, the repression of hemR expression by OmpR appears to be indirect. These findings provide new insights into the role of OmpR in remodelling the cell surface and the adaptation of Y. enterocolitica to different environmental niches, including the host.
Collapse
Affiliation(s)
- Marta Nieckarz
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| | - Adrianna Raczkowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| | - Janusz Dębski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Michał Kistowski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Michał Dadlez
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, Warsaw, 02-106, Poland.,Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Jürgen Heesemann
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Pettenkoferstrasse 9a, Munich, 80336, Germany
| | - Ombeline Rossier
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Pettenkoferstrasse 9a, Munich, 80336, Germany
| | - Katarzyna Brzostek
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| |
Collapse
|
12
|
Abstract
Many Gram-negative pathogens express a type III secretion (T3SS) system to enable growth and survival within a host. The three human-pathogenic Yersinia species, Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica, encode the Ysc T3SS, whose expression is controlled by an AraC-like master regulator called LcrF. In this review, we discuss LcrF structure and function as well as the environmental cues and pathways known to regulate LcrF expression. Similarities and differences in binding motifs and modes of action between LcrF and the Pseudomonas aeruginosa homolog ExsA are summarized. In addition, we present a new bioinformatics analysis that identifies putative LcrF binding sites within Yersinia target gene promoters.
Collapse
|
13
|
McShan AC, De Guzman RN. The bacterial type III secretion system as a target for developing new antibiotics. Chem Biol Drug Des 2015; 85:30-42. [PMID: 25521643 DOI: 10.1111/cbdd.12422] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 01/14/2023]
Abstract
Antibiotic resistance in pathogens requires new targets for developing novel antibacterials. The bacterial type III secretion system (T3SS) is an attractive target for developing antibacterials as it is essential in the pathogenesis of many Gram-negative bacteria. The T3SS consists of structural proteins, effectors, and chaperones. Over 20 different structural proteins assemble into a complex nanoinjector that punctures a hole on the eukaryotic cell membrane to allow the delivery of effectors directly into the host cell cytoplasm. Defects in the assembly and function of the T3SS render bacteria non-infective. Two major classes of small molecules, salicylidene acylhydrazides and thiazolidinones, have been shown to inhibit multiple genera of bacteria through the T3SS. Many additional chemically and structurally diverse classes of small molecule inhibitors of the T3SS have been identified as well. While specific targets within the T3SS of a few inhibitors have been suggested, the vast majority of specific protein targets within the T3SS remain to be identified or characterized. Other T3SS inhibitors include polymers, proteins, and polypeptides mimics. In addition, T3SS activity is regulated by its interaction with biologically relevant molecules, such as bile salts and sterols, which could serve as scaffolds for drug design.
Collapse
Affiliation(s)
- Andrew C McShan
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | | |
Collapse
|
14
|
Wilharm G, Heider C. Interrelationship between type three secretion system and metabolism in pathogenic bacteria. Front Cell Infect Microbiol 2014; 4:150. [PMID: 25386411 PMCID: PMC4209828 DOI: 10.3389/fcimb.2014.00150] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/07/2014] [Indexed: 11/13/2022] Open
Abstract
Before the advent of molecular biology methods, studies of pathogens were dominated by analyses of their metabolism. Development of molecular biology techniques then enabled the identification and functional characterisation of the fascinating toolbox of virulence factors. Increasing, genomic and proteomic approaches form the basis for a more systemic view on pathogens' functions in the context of infection. Re-emerging interest in the metabolism of pathogens and hosts further expands our view of infections. There is increasing evidence that virulence functions and metabolism of pathogens are extremely intertwined. Type three secretion systems (T3SSs) are major virulence determinants of many Gram-negative pathogens and it is the objective of this review to illustrate the intertwined relationship between T3SSs and the metabolism of the pathogens deploying them.
Collapse
|
15
|
Li Y, Hu Y, Francis MS, Chen S. RcsB positively regulates the Yersinia Ysc-Yop type III secretion system by activating expression of the master transcriptional regulator LcrF. Environ Microbiol 2014; 17:1219-33. [PMID: 25039908 DOI: 10.1111/1462-2920.12556] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/30/2014] [Indexed: 11/28/2022]
Abstract
The Rcs phosphorelay is a complex signaling pathway used by the family Enterobacteriaceae to sense, respond and adapt to environmental changes during free-living or host-associated lifestyles. In this study, we show that the Rcs phosphorelay pathway positively regulates the virulence plasmid encoded Ysc-Yop type III secretion system (T3SS) in the enteropathogen Yesinia pseudotuberculosis. Both the overexpression of the wild-type Rcs regulator RcsB or the constitutive active RscB(D56E) variant triggered more abundant Ysc-Yop synthesis and secretion, whereas the non-phosphorylatable mutant RcsB(D56Q) negated this. Congruently, enhanced Yops expression and secretion occurred in an in cis rscB(D56E) mutant but not in an isogenic rscB(D56Q) mutant. Screening for regulatory targets of RcsB identified the virG-lcrF operon that encodes for LcrF, the Ysc-Yop T3SS master regulator. Protein-DNA binding assays confirmed that RcsB directly bound to this operon promoter, which subsequently caused stimulated lcrF transcription. Moreover, active RcsB enhanced the ability of bacteria to deliver Yop effectors into immune cells during cell contact, and this promoted an increase in bacterial viability. Taken together, our study demonstrates the role of the Rcs system in regulating the Ysc-Yop T3SS in Yersinia and reports on RcsB being the first transcriptional activator known to directly control lcrF transcription.
Collapse
Affiliation(s)
- Yunlong Li
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | | | | | | |
Collapse
|