1
|
Blandón LM, Marín MA, Quintero M, Jutinico-Shubach LM, Montoya-Giraldo M, Santos-Acevedo M, Gómez-León J. Diversity of cultivable bacteria from deep-sea sediments of the Colombian Caribbean and their potential in bioremediation. Antonie van Leeuwenhoek 2022; 115:421-431. [PMID: 35066712 DOI: 10.1007/s10482-021-01706-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/28/2021] [Indexed: 11/26/2022]
Abstract
The diversity of deep-sea cultivable bacteria was studied in seven sediment samples of the Colombian Caribbean. Three hundred and fifty two marine bacteria were isolated according to its distinct morphological character on the solid media, then DNA sequences of the 16S rRNA were amplified to identify the isolated strains. The identified bacterial were arranged in three phylogenetic groups, Firmicutes, Proteobacteria, and Actinobacteria, with 34 different OTUs defined at ≥ 97% of similarity and 70 OTUs at ≥ 98.65%, being the 51% Firmicutes, 34% Proteobacteria and 15% Actinobacteria. Bacillus and Fictibacillus were the dominant genera in Firmicutes, Halomonas and Pseudomonas in Proteobacteria and Streptomyces and Micromonospora in Actinobacteria. In addition, the strains were tested for biosurfactants and lipolytic enzymes production, with 120 biosurfactant producing strains (mainly Firmicutes) and, 56 lipolytic enzymes producing strains (Proteobacteria). This report contributes to the understanding of the diversity of the marine deep-sea cultivable bacteria from the Colombian Caribbean, and their potential application as bioremediation agents.
Collapse
Affiliation(s)
- Lina Marcela Blandón
- Marine Bioprospecting Line, Marine and Coastal Research Institute "José Benito Vives de Andréis"- INVEMAR, Calle 25 No. 2-55, Playa Salguero, Santa Marta D.T.C.H., Colombia
| | - Mario Alejandro Marín
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, SP, 13083-970, Brazil
| | - Marynes Quintero
- Marine Bioprospecting Line, Marine and Coastal Research Institute "José Benito Vives de Andréis"- INVEMAR, Calle 25 No. 2-55, Playa Salguero, Santa Marta D.T.C.H., Colombia
| | - Laura Marcela Jutinico-Shubach
- Marine Bioprospecting Line, Marine and Coastal Research Institute "José Benito Vives de Andréis"- INVEMAR, Calle 25 No. 2-55, Playa Salguero, Santa Marta D.T.C.H., Colombia
| | - Manuela Montoya-Giraldo
- Marine Bioprospecting Line, Marine and Coastal Research Institute "José Benito Vives de Andréis"- INVEMAR, Calle 25 No. 2-55, Playa Salguero, Santa Marta D.T.C.H., Colombia
| | - Marisol Santos-Acevedo
- Marine Bioprospecting Line, Marine and Coastal Research Institute "José Benito Vives de Andréis"- INVEMAR, Calle 25 No. 2-55, Playa Salguero, Santa Marta D.T.C.H., Colombia
| | - Javier Gómez-León
- Marine Bioprospecting Line, Marine and Coastal Research Institute "José Benito Vives de Andréis"- INVEMAR, Calle 25 No. 2-55, Playa Salguero, Santa Marta D.T.C.H., Colombia.
| |
Collapse
|
2
|
Patiño AD, Montoya-Giraldo M, Quintero M, López-Parra LL, Blandón LM, Gómez-León J. Dereplication of antimicrobial biosurfactants from marine bacteria using molecular networking. Sci Rep 2021; 11:16286. [PMID: 34381106 PMCID: PMC8357792 DOI: 10.1038/s41598-021-95788-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Biosurfactants are amphiphilic surface-active molecules of microbial origin principally produced by hydrocarbon-degrading bacteria; in addition to the bioremediation properties, they can also present antimicrobial activity. The present study highlights the chemical characterization and the antimicrobial activities of biosurfactants produced by deep-sea marine bacteria from the genera Halomonas, Bacillus, Streptomyces, and Pseudomonas. The biosurfactants were extracted and chemically characterized through Chromatography TLC, FT-IR, LC/ESI-MS/MS, and a metabolic analysis was done through molecular networking. Six biosurfactants were identified by dereplication tools from GNPS and some surfactin isoforms were identified by molecular networking. The half-maximal inhibitory concentration (IC50) of biosurfactant from Halomonas sp. INV PRT125 (7.27 mg L-1) and Halomonas sp. INV PRT124 (8.92 mg L-1) were most effective against the pathogenic yeast Candida albicans ATCC 10231. For Methicillin-resistant Staphylococcus aureus ATCC 43300, the biosurfactant from Bacillus sp. INV FIR48 was the most effective with IC50 values of 25.65 mg L-1 and 21.54 mg L-1 for C. albicans, without hemolytic effect (< 1%), and non-ecotoxic effect in brine shrimp larvae (Artemia franciscana), with values under 150 mg L-1, being a biosurfactant promising for further study. The extreme environments as deep-sea can be an important source for the isolation of new biosurfactants-producing microorganisms with environmental and pharmaceutical use.
Collapse
Affiliation(s)
- Albert D Patiño
- Marine Bioprospecting Line, Marine and Coastal Research Institute "José Benito Vives de Andréis"-INVEMAR, Calle 25 No. 2-55, Playa Salguero, Santa Marta D.T.C.H., Santa Marta, Colombia
| | - Manuela Montoya-Giraldo
- Marine Bioprospecting Line, Marine and Coastal Research Institute "José Benito Vives de Andréis"-INVEMAR, Calle 25 No. 2-55, Playa Salguero, Santa Marta D.T.C.H., Santa Marta, Colombia
| | - Marynes Quintero
- Marine Bioprospecting Line, Marine and Coastal Research Institute "José Benito Vives de Andréis"-INVEMAR, Calle 25 No. 2-55, Playa Salguero, Santa Marta D.T.C.H., Santa Marta, Colombia
| | - Lizbeth L López-Parra
- Grupo de Investigación en Electroquímica y Medio Ambiente (GIEMA), Universidad Santiago de Cali, Calle 5 # 62-00, Santiago de Cali, Valle del Cauca, Colombia
| | - Lina M Blandón
- Marine Bioprospecting Line, Marine and Coastal Research Institute "José Benito Vives de Andréis"-INVEMAR, Calle 25 No. 2-55, Playa Salguero, Santa Marta D.T.C.H., Santa Marta, Colombia.
| | - Javier Gómez-León
- Marine Bioprospecting Line, Marine and Coastal Research Institute "José Benito Vives de Andréis"-INVEMAR, Calle 25 No. 2-55, Playa Salguero, Santa Marta D.T.C.H., Santa Marta, Colombia
| |
Collapse
|
3
|
Auscavitch SR, Lunden JJ, Barkman A, Quattrini AM, Demopoulos AWJ, Cordes EE. Distribution of deep-water scleractinian and stylasterid corals across abiotic environmental gradients on three seamounts in the Anegada Passage. PeerJ 2020; 8:e9523. [PMID: 32821533 PMCID: PMC7397984 DOI: 10.7717/peerj.9523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/20/2020] [Indexed: 01/04/2023] Open
Abstract
In the Caribbean Basin the distribution and diversity patterns of deep-sea scleractinian corals and stylasterid hydrocorals are poorly known compared to their shallow-water relatives. In this study, we examined species distribution and community assembly patterns of scleractinian and stylasterid corals on three high-profile seamounts within the Anegada Passage, a deep-water throughway linking the Caribbean Sea and western North Atlantic. Using remotely operated vehicle surveys conducted on the E/V Nautilus by the ROV Hercules in 2014, we characterized coral assemblages and seawater environmental variables between 162 and 2,157 m on Dog Seamount, Conrad Seamount, and Noroît Seamount. In all, 13 morphospecies of scleractinian and stylasterid corals were identified from video with stylasterids being numerically more abundant than both colonial and solitary scleractinians. Cosmopolitan framework-forming species including Madrepora oculata and Solenosmilia variabilis were present but occurred in patchy distributions among the three seamounts. Framework-forming species occurred at or above the depth of the aragonite saturation horizon with stylasterid hydrocorals being the only coral taxon observed below Ωarag values of 1. Coral assemblage variation was found to be strongly associated with depth and aragonite saturation state, while other environmental variables exerted less influence. This study enhances our understanding of the factors that regulate scleractinian and stylasterid coral distribution in an underreported marginal sea and establishes a baseline for monitoring future environmental changes due to ocean acidification and deoxygenation in the tropical western Atlantic.
Collapse
Affiliation(s)
| | - Jay J Lunden
- Department of Biology, Temple University, Philadelphia, PA, USA
| | | | - Andrea M Quattrini
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | | | - Erik E Cordes
- Department of Biology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Hernandez-Avila I, Ocaña FA, Pech D. Testing marine regional-scale hypotheses along the Yucatan continental shelf using soft-bottom macrofauna. PeerJ 2020; 8:e8227. [PMID: 31915571 PMCID: PMC6942678 DOI: 10.7717/peerj.8227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/16/2019] [Indexed: 11/28/2022] Open
Abstract
Different hypotheses related to the regional-scale configuration of the Yucatan Continental Shelf (YCS) between the Gulf of Mexico (GoM) and the Caribbean Sea have been proposed. Hypotheses regarding its regional boundaries include: (i) an ecoregional boundary at Catoche Cape, dividing the Western Caribbean and the Southern GoM ecoregions; and (ii) a boundary within the Southern GoM ecoregion at 89°W, separating the West and Mid-Yucatan areas. We tested the hypothesis of no variation in benthic macrofaunal assemblages between regions delimited by the former boundaries using the species and functional traits of soft-bottom macrofauna. We considered that the depth and temporal environmental dynamics might interact with regional variations, generating complex benthic community patterns. The data were collected over five years (2010–2012, 2015–2016) at 86 stations (N = 1, 017 samples, 10–270 m depth), comprising 1,327 species with 45 combinations of functional traits. The variation in species composition and functional trait assemblages were both consistent with the occurrence of three separate regions in the Yucatan Peninsula (West Yucatan, Mid-Yucatan and Western Caribbean). This regional configuration was consistent with changes in assemblage structure and depth zonation as well as temporal variation. Along with spatial and temporal variation, diversity diminished with depth and different regions exhibited contrasting patterns in this regard. Our results suggest that the spatial and temporal variation of soft-bottom macrofauna at YCS demonstrate the complex organization of a carbonate shelf encompassing different regions, which may represent transitional regions between the Caribbean and the GoM.
Collapse
Affiliation(s)
- Ivan Hernandez-Avila
- Laboratorio de Biodiversidad Marina y Cambio Climático (BIOMARCCA), El Colegio de la Frontera Sur, Campeche, Mexico.,Facultad de Ciencias Naturales, Universidad Autónoma del Carmen, Ciudad del Carmen, Campeche, Mexico
| | - Frank A Ocaña
- Laboratorio de Biodiversidad Marina y Cambio Climático (BIOMARCCA), El Colegio de la Frontera Sur, Campeche, Mexico
| | - Daniel Pech
- Laboratorio de Biodiversidad Marina y Cambio Climático (BIOMARCCA), El Colegio de la Frontera Sur, Campeche, Mexico
| |
Collapse
|
5
|
Variation in species diversity of deep-water megafauna assemblages in the Caribbean across depth and ecoregions. PLoS One 2018; 13:e0201269. [PMID: 30067813 PMCID: PMC6070233 DOI: 10.1371/journal.pone.0201269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/11/2018] [Indexed: 12/14/2022] Open
Abstract
Diversity patterns of the deep-sea megafauna in the Caribbean Basin and the Guiana ecoregion were analyzed in order to test the hypothesis of species richness variation as a function of depth and the hypothesis of non-differences between ecoregions by analyzing spatial patterns of five taxa and a merged assemblage. Collections of five taxa (corals, sea stars, sea urchins, sea lilies and gastropods) were obtained from seven oceanographic expeditions aboard the R/V Pillsbury at 310 stations between 60 and 7500 m depth. Data were sorted according to depth zones and ecoregions and were analyzed in order to estimate species richness, changes in species composition and distinction of β-diversity by species turnover or by nestedness. The observed patterns of diversity were consistent between taxa and their assemblage: Species richness increased from the continental shelf (60-200 m deep) to the slope (200-2000 m deep), followed by a decrease at the continental rise-abyssal zone. We detected marked changes in species composition according to depth ranges. Changes in species composition in relation to ecoregions were also detected. In general, the Caribbean Basin lacks important physical barriers, causing high deep-sea ecosystem connectivity; however, variation in composition could be related to changes in environmental conditions associated with productivity and/or continental influences.
Collapse
|