1
|
Ghosh A, Rogers KL, Gallant SC, Kim YH, Rager JE, Gilmour MI, Randell SH, Jaspers I. Effects of simulated smoke condensate generated from combustion of selected military burn pit contents on human airway epithelial cells. Part Fibre Toxicol 2024; 21:41. [PMID: 39380034 PMCID: PMC11460082 DOI: 10.1186/s12989-024-00604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Exposure to military burn pit smoke during deployment is associated with different respiratory and non-respiratory diseases. However, information linking smoke exposure to human pulmonary health is lacking. This study examined the effects of simulated burn pit smoke condensates on human airway epithelial cells (HAECs) from twelve donors (smokers/non-smokers, biological female/male) cultured at an air-liquid interface and exposed to condensates from three simulated burn pit waste materials (cardboard, plywood, and plastic) incinerated at two combustion conditions: smoldering and flaming. Cellular gene expression was analyzed using bulk RNA sequencing, and basolateral media cytokine levels were assessed using multiplex immunoassay. RESULTS Flaming smoke condensates caused more significant differentially expressed genes (DEGs) with plywood flaming smoke being the most potent in altering gene expression and modulating cytokine release. Cardboard and plywood flaming condensates primarily activated detoxification pathways, whereas plastic flaming affected genes related to anti-microbial and inflammatory responses. Correlation analysis between smoke condensate chemicals and gene expression to understand the underlying mechanism revealed crucial role of oxygenated polycyclic aromatic hydrocarbons (PAHs) and aluminum, molybdenum, and silicon elements; IL6 expression was positively correlated with most PAHs. Stratification of data based on HAEC donor demographics suggests that these affect gene expression changes. Enrichment analysis indicated similarity with several deployment-related presumptive and reported diseases, including asthma, emphysema, and cancer of different organs. CONCLUSIONS This study highlights that simulated burn pit smoke exposure of HAECs causes gene expression changes indicative of deployment-related diseases with more pronounced effects seen in smokers and females. Future studies are needed to further characterize how sex and smoking status affect deployment-related diseases.
Collapse
Affiliation(s)
- Arunava Ghosh
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, School of Medicine, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA
| | - Keith L Rogers
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC, 27599-7310, USA
| | - Samuel C Gallant
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Yong Ho Kim
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Julia E Rager
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, School of Medicine, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC, 27599-7310, USA
- Department of Environmental Sciences and Engineering (ESE), Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M Ian Gilmour
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Scott H Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Ilona Jaspers
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, School of Medicine, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA.
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC, 27599-7310, USA.
- Department of Environmental Sciences and Engineering (ESE), Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
2
|
Hou J, Lu K, Chen P, Wang P, Li J, Yang J, Liu Q, Xue Q, Tang Z, Pei H. Comprehensive viewpoints on heart rate variability at high altitude. Clin Exp Hypertens 2023; 45:2238923. [PMID: 37552638 DOI: 10.1080/10641963.2023.2238923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVES Hypoxia is a physiological state characterized by reduced oxygen levels in organs and tissues. It is a common clinicopathological process and a major cause of health problems in highland areas. Heart rate variability (HRV) is a measure of the balance in autonomic innervation to the heart. It provides valuable information on the regulation of the cardiovascular system by neurohumoral factors, and changes in HRV reflect the complex interactions between multiple systems. In this review, we provide a comprehensive overview of the relationship between high-altitude hypoxia and HRV. We summarize the different mechanisms of diseases caused by hypoxia and explore the changes in HRV across various systems. Additionally, we discuss relevant pharmaceutical interventions. Overall, this review aims to provide research ideas and assistance for in-depth studies on HRV. By understanding the intricate relationship between high-altitude hypoxia and HRV, we can gain insights into the underlying mechanisms and potential therapeutic approaches to mitigate the effects of hypoxia on cardiovascular and other systems. METHODS The relevant literature was collected systematically from scientific database, including PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Baidu Scholar, as well as other literature sources, such as classic books of hypoxia. RESULTS There is a close relationship between heart rate variability and high-altitude hypoxia. Heart rate variability is an indicator that evaluates the impact of hypoxia on the cardiovascular system and other related systems. By improving the observation of HRV, we can estimate the progress of cardiovascular diseases and predict the impact on other systems related to cardiovascular health. At the same time, changes in heart rate variability can be used to observe the efficacy of preventive drugs for altitude related diseases. CONCLUSIONS HRV can be used to assess autonomic nervous function under various systemic conditions, and can be used to predict and monitor diseases caused by hypoxia at high altitude. Investigating the correlation between high altitude hypoxia and heart rate variability can help make HRV more rapid, accurate, and effective for the diagnosis of plateau-related diseases.
Collapse
Affiliation(s)
- Jun Hou
- Department of Cardiology, Chengdu Third People's Hospital, Affiliated Hospital of Southwest Jiao Tong University, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
| | - Keji Lu
- School of Medical and Life Sciences, Chengdu University of TCM, Chengdu, China
| | - Peiwen Chen
- School of Medical and Life Sciences, Chengdu University of TCM, Chengdu, China
| | - Peng Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Jing Li
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Jiali Yang
- Department of Cardiology, Chengdu Third People's Hospital, Affiliated Hospital of Southwest Jiao Tong University, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
| | - Qing Liu
- Department of Medical Engineering, The 950th Hospital of PLA, Yecheng, Xinjiang, China
| | - Qiang Xue
- Department of Cardiology Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Zhaobing Tang
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Haifeng Pei
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
3
|
Adam J, Rupprecht S, Künstler ECS, Hoyer D. Heart rate variability as a marker and predictor of inflammation, nosocomial infection, and sepsis - A systematic review. Auton Neurosci 2023; 249:103116. [PMID: 37651781 DOI: 10.1016/j.autneu.2023.103116] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/11/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE The autonomic nervous system interacts with the immune system via the inflammatory response. Heart rate variability (HRV), a marker of autonomic activity, is associated with inflammation, and nosocomial infections/sepsis, and has clinical implications for the monitoring of at-risk patients. Due to the vagal tone's influence on anti-inflammatory immune response, this association may predominately be reflected by vagally-mediated HRV indices. However, HRV's predictive significance on inflammation/infection remains unclear. METHODS 843 studies examining the associations/prognostic value of HRV indices on inflammation, and nosocomial infection/sepsis were screened in this systematic review. According to inclusion and exclusion criteria, 68 associative studies and 14 prediction studies were included. RESULTS HRV and pro-inflammatory state were consistently associated in healthy subjects and patient groups. Pro-inflammatory state was related to reduced total power HRV including vagally- and non-vagally-mediated HRV indices. Similar, compared to controls, HRV reductions were observed during nosocomial infections/sepsis. Only limited evidence supports the predictive value of HRV in the development of nosocomial infections/sepsis. Reduced very low frequency power HRV showed the highest predictive value in adults, even with different clinical conditions. In neonates, an increased heart rate characteristic score, combining reduced total power HRV, decreased complexity, and vagally-dominated asymmetry, predicted sepsis. CONCLUSIONS Pro-inflammatory state is related to an overall reduction in HRV rather than a singular reduction in vagally-mediated HRV indices, reflecting the complex autonomic-regulatory changes occurring during inflammation. The potential benefit of using continuous HRV monitoring for detecting nosocomial infection-related states, and the implications for clinical outcome, need further clarification.
Collapse
Affiliation(s)
- Josephine Adam
- Department of Neurology, Jena University Hospital, Jena, Germany.
| | - Sven Rupprecht
- Department of Neurology, Jena University Hospital, Jena, Germany; Interdisciplinary Centre for Sleep and Ventilatory Medicine, Jena University Hospital, Jena, Germany
| | - Erika C S Künstler
- Department of Neurology, Jena University Hospital, Jena, Germany; Interdisciplinary Centre for Sleep and Ventilatory Medicine, Jena University Hospital, Jena, Germany
| | - Dirk Hoyer
- Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
4
|
Rojas GA, Saavedra N, Morales C, Saavedra K, Lanas F, Salazar LA. Modulation of the Cardiovascular Effects of Polycyclic Aromatic Hydrocarbons: Physical Exercise as a Protective Strategy. TOXICS 2023; 11:844. [PMID: 37888695 PMCID: PMC10610936 DOI: 10.3390/toxics11100844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) present in air pollution increases cardiovascular risk. On the contrary, physical exercise is a widely used therapeutic approach to mitigate cardiovascular risk, but its efficacy in an environment of air pollution, particularly with PAHs, remains unclear. This study investigates the effects of exercise on inflammation, endothelial dysfunction, and REDOX imbalance due to PAH exposure using a mouse model. Twenty male BALB/c mice were subjected to a mixture of PAHs (phenanthrene, fluoranthene, pyrene) in conjunction with aerobic exercise. The investigation evaluated serum levels of inflammatory cytokines, gene expression linked to inflammatory markers, endothelial dysfunction, and REDOX imbalance in aortic tissues. Furthermore, the study evaluated the expression of the ICAM-1 and VCAM-1 proteins. Exercise led to notable changes in serum inflammatory cytokines, as well as the modulation of genes associated with endothelial dysfunction and REDOX imbalance in aortic tissue. In turn, exercise produced a modulation in the protein expression of ICAM-1 and VCAM-1. The findings implicate the potential of exercise to counter PAH-induced damage, as demonstrated by changes in markers. In conclusion, exercise could mitigate the adverse effects related to exposure to PAHs present in air pollution, as evidenced by changes in inflammatory markers, endothelial dysfunction, and REDOX imbalance.
Collapse
Affiliation(s)
- Gabriel A. Rojas
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
- PhD Program in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco 4811230, Chile
- Escuela Kinesiología, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Nicolás Saavedra
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
| | - Cristian Morales
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
- PhD Program in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco 4811230, Chile
- Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Temuco 4811230, Chile
| | - Kathleen Saavedra
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
| | - Fernando Lanas
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Luis A. Salazar
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
| |
Collapse
|
5
|
Rojas GA, Saavedra N, Saavedra K, Hevia M, Morales C, Lanas F, Salazar LA. Polycyclic Aromatic Hydrocarbons (PAHs) Exposure Triggers Inflammation and Endothelial Dysfunction in BALB/c Mice: A Pilot Study. TOXICS 2022; 10:toxics10090497. [PMID: 36136462 PMCID: PMC9504903 DOI: 10.3390/toxics10090497] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 05/19/2023]
Abstract
The particulate matter present in air pollution is a complex mixture of solid and liquid particles that vary in size, origin, and composition, among which are polycyclic aromatic hydrocarbons (PAHs). Although exposure to PAHs has become an important risk factor for cardiovascular disease, the mechanisms by which these compounds contribute to increased cardiovascular risk have not been fully explored. The aim of the present study was to evaluate the effects of PAH exposure on systemic pro-inflammatory cytokines and markers of endothelial dysfunction. An intervention was designed using a murine model composed of twenty BALB/c male mice separated into controls and three groups exposed to a mixture of phenanthrene, fluoranthene, and pyrene using three different concentrations. The serum levels of the inflammatory cytokines and gene expression of adhesion molecules located on endothelial cells along with inflammatory markers related to PAH exposure in aortic tissue were determined. Furthermore, the expression of the ICAM-1 and VCAM-1 proteins was evaluated. The data showed significant differences in IL-6 and IFN-γ in the serum. In the gene expression, significant differences for ICAM-1, VCAM-1, and E-Selectin were observed. The results suggest that phenanthrene, fluoranthene, and pyrene, present in air pollution, stimulate the increase in serum inflammatory cytokines and the expression of markers of endothelial dysfunction in the murine model studied, both relevant characteristics associated with the onset of disease atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Gabriel A. Rojas
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Faculty of Health, School of Kinesiology, Universidad Santo Tomás, Valdivia 5090000, Chile
| | - Nicolás Saavedra
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Kathleen Saavedra
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Montserrat Hevia
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Cristian Morales
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Fernando Lanas
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis A. Salazar
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Correspondence:
| |
Collapse
|
6
|
Yu J, Fang Q, Liu M, Zhang X. Polycyclic aromatic hydrocarbons associated long non-coding RNAs and heart rate variability in coke oven workers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47035-47045. [PMID: 33886053 DOI: 10.1007/s11356-021-13967-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Epidemiological studies have showed that polycyclic aromatic hydrocarbons (PAHs) were associated with heart rate variability (HRV), but the role of long non-coding RNAs (lncRNAs) in the association is unknown. We aimed to identify PAHs-related lncRNAs and assess their associations with HRV among coke oven workers. Differential lncRNAs expression between 12 exposed workers and 12 controls was tested by Human 8X60k LncRNA Arrays in discovery stage, then selected NR_024564 was validated in 353 workers using droplet digital RT-PCR. Microarray results showed that 1234 lncRNAs were downregulated with 805 lncRNAs upregulated in exposed group (≥ 2-fold change). In validation stage, no significant association was observed between NR_024564 and PAH exposure or HRV in total subjects, while urinary 2-hydroxyfluorene (2-OHFlu) was inversely related to root mean square successive difference (RMSSD). However, in current smokers, NR_024564 was inversely related to urinary 2-OHFlu, 2-hydroxyphenanthrene, 1-hydroxypyrene (1-OHP), and total PAHs metabolites (ΣOH-PAHs), of which 1-OHP accounted for the strongest estimation for interaction with smoking status (Pinteraction = 0.011). Also, the positive associations of NR_024564 with RMSSD and high frequency power showed an interaction with smoking status (Pinteraction = 0.034 and 0.023, respectively). Also, urinary 2-OHFlu and ΣOH-PAHs were inversely associated with RMSSD in current smokers. In addition, elevated NR_024564 was dose-responsive related to increased RMSSD in above high-PAHs groups among smokers (all Ptrend < 0.05). Our results revealed that NR_024564 and its interactions with smoking status might act as novel mechanisms regulating the adverse effects of PAHs on HRV.
Collapse
Affiliation(s)
- Jie Yu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Qin Fang
- Department of Medical Affairs, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, 519000, Guangdong, China
| | - Miao Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China.
| |
Collapse
|
7
|
Yang L, Chen L, Li D, Xu H, Chen J, Min X, He M, Wu T, Zhong J, Yang H, Chen J. Effect of GLP-1/GLP-1R on the Polarization of Macrophages in the Occurrence and Development of Atherosclerosis. Mediators Inflamm 2021; 2021:5568159. [PMID: 33854404 PMCID: PMC8019627 DOI: 10.1155/2021/5568159] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
AIMS To investigate the effect of GLP-1/GLP-1R on the polarization of macrophages in the occurrence and development of atherosclerosis. METHODS Totally, 49 patients with coronary heart disease (CHD) and 52 cases of health control (HC) were recruited, all subjects accept coronary angiography gold standard inspection. One or more major coronary arteries (LM, LAD, LCx, and RCA) stenosis degree in 50% of patients as CHD group; the rest of the stenosis less than 50% or not seen obvious stenosis are assigned to the HC group. Flow cytometry were used to detect the percentage of (CD14+) M macrophages, (CD14+CD80+) M1 macrophages, (CD14+CD206+) M2 macrophages, and their surface GLP-1R expression differences in the two groups, using BD cytokine kit to detect the levels of IL-8, IL-1β, IL-6, IL-10, TNF, and IL-12p70. RESULTS GLP-1R expression on the surface of total macrophages and M2 macrophages was different between the CHD group and the HC group (P < 0.05). There was no difference in the percentage of total, M1 or M2 macrophages (P > 0.05). Concentration of IL-8 in the HC group was higher than that in the CHD group (P < 0.05). There is no significant difference in the cytokine IL-1β, IL-6, IL-10, TNF, and IL-12p70 in the two groups (P > 0.05). After controlling for potential confounders including age, gender, smoking status (S.S.), drinking status (D.S.), HR, SBP, DBP, PP, TC, TG, HDL-C, LDL-C, GHbA1c, M, M1, M2, GLP-1R_M, GLP-1R_M1, GLP-1R_M2, IL-8, IL-1β, IL-6, IL-10, TNF, and IL-12p70 by multiple linear regression, decreasing Gensini Score was significantly associated with increased percentage of M1 macrophage. CONCLUSION GLP-1R agonist is independent of the hypoglycemic effect of T2DM and has protective effect on cardiovascular system. GLP-1R may regulate the polarization of macrophages toward M2, thus playing a protective role in the progression of coronary atherosclerosis.
Collapse
Affiliation(s)
- Li Yang
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Long Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Dongfeng Li
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Hao Xu
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Jishun Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Xinwen Min
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Meian He
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangchun Wu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Handong Yang
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Jun Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
8
|
Gorlova S, Ichiba T, Nishimaru H, Takamura Y, Matsumoto J, Hori E, Nagashima Y, Tatsuse T, Ono T, Nishijo H. Non-restorative Sleep Caused by Autonomic and Electroencephalography Parameter Dysfunction Leads to Subjective Fatigue at Wake Time in Shift Workers. Front Neurol 2019; 10:66. [PMID: 30804882 PMCID: PMC6370690 DOI: 10.3389/fneur.2019.00066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 01/17/2019] [Indexed: 01/06/2023] Open
Abstract
Sleep is a physiological state that plays important role in the recovery of fatigue. However, the relationship between the physiological status of sleep and subjective fatigue remains unknown. In the present study, we hypothesized that the non-recovery of fatigue at wake time due to non-restorative sleep might be ascribed to changes in specific parameters of electroencephalography (EEG) and heart rate variability (HRV) in poor sleepers. Twenty healthy female shift-working nurses participated in the study. Subjective fatigue was assessed using the visual analog scale (VAS) at bedtime and wake time. During sleep on the night between 2 consecutive day shifts, the EEG powers at the frontal pole, HRV based on electrocardiograms, and distal-proximal gradient of skin temperature were recorded and analyzed. The results indicated that the subjects with high fatigue on the VAS at wake time exhibited (1) a decrease in deep non-rapid eye movement (NREM) (stageN3) sleep duration in the first sleep cycle; (2) a decrease in REM latency; (3) a decrease in ultra-slow and delta EEG powers, particularly from 30 to 65 min after sleep onset; (4) a decrease in the total power of HRV, particularly from 0 to 30 min after sleep onset; (5) an increase in the very low frequency component of HRV; and (6) a smaller increase in the distal-proximal gradient of skin temperature, than those of the subjects with low fatigue levels. The correlational and structural equation modeling analyses of these parameters suggested that an initial decrease in the total power of HRV from 0 to 30 min after sleep onset might inhibit the recovery from fatigue during sleep (i.e., increase the VAS score at wake time) via its effects on the ultra-slow and delta powers from 30 to 65 min after sleep onset, stageN3 duration in the first sleep cycle, REM latency, and distal-proximal gradient of skin temperature. These findings suggest an important role of these physiological factors in recovery from fatigue during sleep, and that interventions to modify these physiological factors might ameliorate fatigue at wake time.
Collapse
Affiliation(s)
- Sofya Gorlova
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | | - Hiroshi Nishimaru
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yusaku Takamura
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Etsuro Hori
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | | - Tsuyoshi Tatsuse
- Department of Epidemiology and Health Policy, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Taketoshi Ono
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
9
|
Baldissera FG, Dos Santos AB, Sulzbacher MM, Goettems-Fiorin PB, Frizzo MN, Ludwig MS, Rhoden CR, Heck TG. Subacute exposure to residual oil fly ash (ROFA) increases eHSP70 content and extracellular-to-intracellular HSP70 ratio: a relation with oxidative stress markers. Cell Stress Chaperones 2018; 23:1185-1192. [PMID: 29934712 PMCID: PMC6237679 DOI: 10.1007/s12192-018-0924-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 05/29/2018] [Accepted: 06/12/2018] [Indexed: 01/28/2023] Open
Abstract
The purpose of this study was to evaluate whether exposure to particles induces an imbalance in 70-kDa heat shock proteins (HSP70). Since intracellularly (iHSP70) it has anti-inflammatory roles whereas extracellularly (eHSP70) it has pro-inflammatory roles, we evaluate the effect of residual oil fly ash (ROFA) exposure on eHSP70-to-iHSP70 ratio (H index), a biomarker of inflammatory status that is related to oxidative stress in plasma and lymphoid tissue. Wistar rats that received ROFA suspension for three consecutive days (750 μg) showed an increase in plasma eHSP70 levels (mainly the 72-kDa inducible form). Also, ROFA promoted alterations on plasma oxidative stress (increased protein carbonyl groups and superoxide dismutase activity, and decrease sulfhydryl groups). There was an increase in H index of the plasma/thymus with no changes in circulating leukocyte level, iHSP70, or oxidative stress markers in lymphoid tissues. Our results support the hypothesis that eHSP70 content and H index represent inflammatory and oxidative biomarkers.
Collapse
Affiliation(s)
- Fernanda Giesel Baldissera
- Postgraduation Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Analú Bender Dos Santos
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Research Group in Physiology, Department of Life Sciences, Regional University of the Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Universitário, Ijuí, Rio Grande do Sul, 98700-000, Brazil
| | - Maicon Machado Sulzbacher
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Research Group in Physiology, Department of Life Sciences, Regional University of the Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Universitário, Ijuí, Rio Grande do Sul, 98700-000, Brazil
| | - Pauline Brendler Goettems-Fiorin
- Postgraduation Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Research Group in Physiology, Department of Life Sciences, Regional University of the Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Universitário, Ijuí, Rio Grande do Sul, 98700-000, Brazil
| | - Matias Nunes Frizzo
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Research Group in Physiology, Department of Life Sciences, Regional University of the Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Universitário, Ijuí, Rio Grande do Sul, 98700-000, Brazil
| | - Mirna Stela Ludwig
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Research Group in Physiology, Department of Life Sciences, Regional University of the Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Universitário, Ijuí, Rio Grande do Sul, 98700-000, Brazil
| | - Claudia Ramos Rhoden
- Postgraduation Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Research Group in Physiology, Department of Life Sciences, Regional University of the Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Universitário, Ijuí, Rio Grande do Sul, 98700-000, Brazil.
| |
Collapse
|
10
|
Exercise Training under Exposure to Low Levels of Fine Particulate Matter: Effects on Heart Oxidative Stress and Extra-to-Intracellular HSP70 Ratio. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9067875. [PMID: 29387296 PMCID: PMC5745714 DOI: 10.1155/2017/9067875] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/19/2017] [Indexed: 01/09/2023]
Abstract
Fine particulate matter (PM2.5) promotes heart oxidative stress (OS) and evokes anti-inflammatory responses observed by increased intracellular 70 kDa heat shock proteins (iHSP70). Furthermore, PM2.5 increases the levels of these proteins in extracellular fluids (eHSP70), which have proinflammatory roles. We investigated whether moderate and high intensity training under exposure to low levels of PM2.5 modifies heart OS and the eHSP70 to iHSP70 ratio (H-index), a biomarker of inflammatory status. Male mice (n = 32), 30 days old, were divided into six groups for 12 weeks: control (CON), moderate (MIT) and high intensity training (HIT), exposure to 5 μg of PM2.5 daily (PM2.5), and moderate and high intensity training exposed to PM2.5 (MIT + PM2.5 and HIT + PM2.5 groups). The CON and PM2.5 groups remained sedentary. The MIT + PM2.5 group showed higher heart lipid peroxidation levels than the MIT and PM2.5 groups. HIT and HIT + PM2.5 showed higher heart lipid peroxidation levels and lower eHSP70 and H-index levels compared to sedentary animals. No alterations were found in heart antioxidant enzyme activity or iHSP70 levels. Moderate exercise training under exposure to low levels of PM2.5 induces heart OS but does not modify eHSP70 to iHSP70 ratio (H-index). High intensity exercise training promotes anti-inflammatory profile despite exposure to low levels of PM2.5.
Collapse
|
11
|
Heck TG, Scomazzon SP, Nunes PR, Schöler CM, da Silva GS, Bittencourt A, Faccioni-Heuser MC, Krause M, Bazotte RB, Curi R, Homem de Bittencourt PI. Acute exercise boosts cell proliferation and the heat shock response in lymphocytes: correlation with cytokine production and extracellular-to-intracellular HSP70 ratio. Cell Stress Chaperones 2017; 22:271-291. [PMID: 28251488 PMCID: PMC5352601 DOI: 10.1007/s12192-017-0771-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 12/23/2022] Open
Abstract
Exercise stimulates immune responses, but the appropriate "doses" for such achievements are unsettled. Conversely, in metabolic tissues, exercise improves the heat shock (HS) response, a universal cytoprotective response to proteostasis challenges that are centred on the expression of the 70-kDa family of intracellular heat shock proteins (iHSP70), which are anti-inflammatory. Concurrently, exercise triggers the export of HSP70 towards the extracellular milieu (eHSP70), where they work as pro-inflammatory cytokines. As the HS response is severely compromised in chronic degenerative diseases of inflammatory nature, we wondered whether acute exercise bouts of different intensities could alter the HS response of lymphocytes from secondary lymphoid organs and whether this would be related to immunoinflammatory responses. Adult male Wistar rats swam for 20 min at low, moderate, high or strenuous intensities as per an overload in tail base. Controls remained at rest under the same conditions. Afterwards, mesenteric lymph node lymphocytes were assessed for the potency of the HS response (42 °C for 2 h), NF-κB binding activity, mitogen-stimulated proliferation and cytokine production. Exercise stimulated cell proliferation in an "inverted-U" fashion peaking at moderate load, which was paralleled by suppression of NF-κB activation and nuclear location, and followed by enhanced HS response in relation to non-exercised animals. Comparative levels of eHSP70 to iHSP70 (H-index) matched IL-2/IL-10 ratios. We conclude that exercise, in a workload-dependent way, stimulates immunoinflammatory performance of lymphocytes of tissues far from the circulation and this is associated with H-index of stress response, which is useful to assess training status and immunosurveillance balance.
Collapse
Affiliation(s)
- Thiago Gomes Heck
- Physiology Research Group, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of the Northwestern Rio Grande do Sul State, Rua do Comércio, 3000, Ijuí, RS, 98700-000, Brazil.
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil.
| | - Sofia Pizzato Scomazzon
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Patrícia Renck Nunes
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil
| | - Cinthia Maria Schöler
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil
| | - Gustavo Stumpf da Silva
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil
| | - Aline Bittencourt
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil
| | - Maria Cristina Faccioni-Heuser
- Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mauricio Krause
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil
| | - Roberto Barbosa Bazotte
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, PR, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Rua Galvão Bueno, 868 - 13° Andar, Bloco B, Sala 1302, Liberdade, São Paulo, SP, 01506-000, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
12
|
Boudet G, Walther G, Courteix D, Obert P, Lesourd B, Pereira B, Chapier R, Vinet A, Chamoux A, Naughton G, Poirier P, Dutheil F. Paradoxical dissociation between heart rate and heart rate variability following different modalities of exercise in individuals with metabolic syndrome: The RESOLVE study. Eur J Prev Cardiol 2016; 24:281-296. [PMID: 27856807 DOI: 10.1177/2047487316679523] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Aims To analyse the effects of different modalities of exercise training on heart rate variability (HRV) in individuals with metabolic syndrome (MetS). Methods and results Eighty MetS participants (aged 50-70 years) were housed and managed in an inpatient medical centre for 21 days, including weekends. Physical activity and food intake/diet were intensively monitored. Participants were randomly assigned into three training groups, differing only by intensity of exercise: moderate-endurance-moderate-resistance ( re), high-resistance-moderate-endurance ( Re), and moderate-resistance-high-endurance ( rE). HRV was recorded before and after the intervention by 24-hour Holter electrocardiogram. Although mean 24-hour heart rate decreased more in Re than re (-11.6 ± 1.6 vs. -4.8 ± 2.1%; P = 0.010), low frequency/high frequency decreased more in re than Re (-20.4 ± 5.5% vs. + 20.4 ± 9.1%; P = 0.002) and rE (-20.4 ± 5.5% vs. -0.3 ± 11.1%; P = 0.003). Very low frequency increased more in Re than re (+121.2 ± 35.7 vs. 42.9 ± 11.3%; P = 0.004). For all HRV parameters, rE ranged between re and Re values. Low frequency/high frequency changes were linked with visceral fat loss only in re (coefficient 5.9, 95% CI 1.9-10.0; P = 0.004). By day 21, HRV parameters of MetS groups (heart rate -8.6 ± 1.0%, standard deviation of R-R intervals + 34.0 ± 6.6%, total power + 63.3 ± 11.1%; P < 0.001) became closer to values of 50 aged-matched healthy controls. Conclusions A 3-week residential programme with intensive volumes of physical activity (15-20 hours per week) enhanced HRV in individuals with MetS. Participants with moderate intensity of training had greater improvements in sympathovagal balance, whereas those with high intensity in resistance training had greater decreases in heart rate and greater increases in very low frequency. Modality-specific relationships were observed between enhanced HRV and visceral fat loss. Clinical Trial Registration URL: http://www.clinicaltrials.gov . Unique identifier: NCT00917917.
Collapse
Affiliation(s)
- Gil Boudet
- 1 University Clermont Auvergne, Laboratory of Metabolic Adaptations to Exercise in Physiological and Pathological conditions (AME2P, EA3533), France.,2 University Hospital of Clermont Ferrand (CHU), Preventive and Occupational Medicine, France
| | | | - Daniel Courteix
- 1 University Clermont Auvergne, Laboratory of Metabolic Adaptations to Exercise in Physiological and Pathological conditions (AME2P, EA3533), France
| | | | - Bruno Lesourd
- 1 University Clermont Auvergne, Laboratory of Metabolic Adaptations to Exercise in Physiological and Pathological conditions (AME2P, EA3533), France
| | - Bruno Pereira
- 4 University Hospital of Clermont Ferrand (CHU), Clinical Research and Innovation Direction, France
| | - Robert Chapier
- 1 University Clermont Auvergne, Laboratory of Metabolic Adaptations to Exercise in Physiological and Pathological conditions (AME2P, EA3533), France
| | - Agnès Vinet
- 3 University of Avignon, LaPEC EA4278, France
| | - Alain Chamoux
- 2 University Hospital of Clermont Ferrand (CHU), Preventive and Occupational Medicine, France
| | - Geraldine Naughton
- 5 Australian Catholic University, School of Exercise Science, Faculty of Health, Australia
| | - Paul Poirier
- 6 Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Canada.,7 Faculté de Pharmacie, Université Laval, Canada
| | - Frédéric Dutheil
- 1 University Clermont Auvergne, Laboratory of Metabolic Adaptations to Exercise in Physiological and Pathological conditions (AME2P, EA3533), France.,2 University Hospital of Clermont Ferrand (CHU), Preventive and Occupational Medicine, France.,5 Australian Catholic University, School of Exercise Science, Faculty of Health, Australia.,8 CNRS, UMR 6024, Physiological and Psychosocial Stress, University Clermont Auvergne, France
| |
Collapse
|
13
|
Yang B, Deng Q, Zhang W, Feng Y, Dai X, Feng W, He X, Huang S, Zhang X, Li X, Lin D, He M, Guo H, Sun H, Yuan J, Lu J, Hu FB, Zhang X, Wu T. Exposure to Polycyclic Aromatic Hydrocarbons, Plasma Cytokines, and Heart Rate Variability. Sci Rep 2016; 6:19272. [PMID: 26758679 PMCID: PMC4725366 DOI: 10.1038/srep19272] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/07/2015] [Indexed: 01/06/2023] Open
Abstract
Epidemiological studies have suggested associations between polycyclic aromatic hydrocarbons (PAHs) and heart rate variability (HRV). However, the roles of plasma cytokines in these associations are limited. In discovery stage of this study, we used Human Cytokine Antibody Arrays to examine differences in the concentrations of 280 plasma cytokines between 8 coke-oven workers and 16 community residents. We identified 19 cytokines with significant different expression (fold change ≥2 or ≤-2, and q-value <5%) between exposed workers and controls. 4 cytokines were selected to validate in 489 coke-oven workers by enzyme-linked immunosorbent assays in validation stage. We found OH-PAHs were inversely associated with brain-derived neurotrophic factor (BDNF) (p < 0.05), and interquartile range (IQR) increases in OH-PAHs were associated with >16% BDNF decreases. Additionally, OH-PAHs were positively associated with activated leukocyte cell adhesion molecule (ALCAM) and C-reactive protein (CRP) (p < 0.05), and IQR increases in OH-PAHs were associated with >20% increases in CRP. We also found significant associations between these cytokines and HRV (p < 0.05), and IQR increases in BDNF and CRP were associated with >8% decreases in HRV. Our results indicated PAH exposure was associated with plasma cytokines, and higher cytokines were associated with decreased HRV, but additional human and potential mechanistic studies are needed.
Collapse
Affiliation(s)
- Binyao Yang
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Institute for Chemical Carcinogenesis, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qifei Deng
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wangzhen Zhang
- Institute of Industrial Health, Wuhan Iron and Steel Corporation, Wuhan, Hubei, China
| | - Yingying Feng
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiayun Dai
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Feng
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaosheng He
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Suli Huang
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao Zhang
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaohai Li
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dafeng Lin
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meian He
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huizhen Sun
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Yuan
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiachun Lu
- The Institute for Chemical Carcinogenesis, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Frank B. Hu
- Department of Epidemiology, Harvard School of Public Health, Boston, USA
- Department of Nutrition, Harvard School of Public Health, Boston, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, USA
| | - Xiaomin Zhang
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tangchun Wu
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
14
|
Ludwig MS, Minguetti-Câmara VC, Heck TG, Scomazzon SP, Nunes PR, Bazotte RB, Homem de Bittencourt PI. Short-term but not long-term hypoglycaemia enhances plasma levels and hepatic expression of HSP72 in insulin-treated rats: an effect associated with increased IL-6 levels but not with IL-10 or TNF-α. Mol Cell Biochem 2014; 397:97-107. [PMID: 25096025 DOI: 10.1007/s11010-014-2176-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/24/2014] [Indexed: 01/24/2023]
Abstract
The inducible expression of the 70-kDa heat shock proteins (HSP70) is associated with homeostatically stressful situations. Stresses involving sympathetic nervous system (SNS) activation, including α1-adrenergic agonists and physical exercise, are capable of inducing HSP70 expression and release of the HSP70 inducible form, HSP72. However, whether hypoglycaemia is capable of influencing HSP70 status under a stressful situation such as insulin-induced hypoglycaemia (IIH), which also involves SNS activation, is unsettled. Hence, we decided to investigate whether the predominant signal for HSP70 expression and delivery into the blood comes from either low glucose, high insulin, or both during short-term IIH (STIIH) and long-term IIH (LTIIH). Our data indicated that low glucose level (up to 1.56 ± 0.14 mM), but not insulin, is the triggering factor responsible for a dramatic rise in HSP72 plasma concentrations (from 0.15 ± 0.01 in fed state to 0.77 ± 0.13 ng/mL during hypoglycaemic episodes). This was observed in parallel with up to 7-fold increases in interleukin-6 (IL-6) but not interleukin-10 (IL-10) or tumour necrosis factor-α (TNF-α) at STIIH. Together, the observations may suggest that HSP72 is released under hypoglycaemic conditions as a part of the homeostatic stress response, whereas at long-term, both hypoglycaemia and insulin may influence HSP72 expression in the liver, but not in kidneys. Secreted extracellular HSP72 (eHSP72) may be purely a danger signal to all the tissues of the body for the enhancement of immune and metabolic surveillance state or actively participates in glycaemic control under stressful situations.
Collapse
Affiliation(s)
- Mirna Stela Ludwig
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, ICBS, 2° andar, Porto Alegre, RS, 90050-170, Brazil
| | | | | | | | | | | | | |
Collapse
|