1
|
Mohammadshirazi A, Apicella R, Zylberberg BA, Mazzone GL, Taccola G. Suprapontine Structures Modulate Brainstem and Spinal Networks. Cell Mol Neurobiol 2023:10.1007/s10571-023-01321-z. [PMID: 36732488 DOI: 10.1007/s10571-023-01321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023]
Abstract
Several spinal motor output and essential rhythmic behaviors are controlled by supraspinal structures, although their contribution to neuronal networks for respiration and locomotion at birth still requires better characterization. As preparations of isolated brainstem and spinal networks only focus on local circuitry, we introduced the in vitro central nervous system (CNS) from neonatal rodents to simultaneously record a stable respiratory rhythm from both cervical and lumbar ventral roots (VRs).Electrical pulses supplied to multiple sites of brainstem evoked distinct VR responses with staggered onset in the rostro-caudal direction. Stimulation of ventrolateral medulla (VLM) resulted in higher events from homolateral VRs. Stimulating a lumbar dorsal root (DR) elicited responses even from cervical VRs, albeit small and delayed, confirming functional ascending pathways. Oximetric assessments detected optimal oxygen levels on brainstem and cortical surfaces, and histological analysis of internal brain structures indicated preserved neuron viability without astrogliosis. Serial ablations showed precollicular decerebration reducing respiratory burst duration and frequency and diminishing the area of lumbar DR and VR potentials elicited by DR stimulation, while pontobulbar transection increased the frequency and duration of respiratory bursts. Keeping legs attached allows for expressing a respiratory rhythm during hindlimb stimulation. Trains of pulses evoked episodes of fictive locomotion (FL) when delivered to VLM or to a DR, the latter with a slightly better FL than in isolated cords.In summary, suprapontine centers regulate spontaneous respiratory rhythms, as well as electrically evoked reflexes and spinal network activity. The current approach contributes to clarifying modulatory brain influences on the brainstem and spinal microcircuits during development. Novel preparation of the entire isolated CNS from newborn rats unveils suprapontine modulation on brainstem and spinal networks. Preparation views (A) with and without legs attached (B). Successful fictive respiration occurs with fast dissection from P0-P2 rats (C). Decerebration speeds up respiratory rhythm (D) and reduces spinal reflexes derived from both ventral and dorsal lumbar roots (E).
Collapse
Affiliation(s)
- Atiyeh Mohammadshirazi
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.,Applied Neurophysiology and Neuropharmacology Lab, Istituto di Medicina Fisica e Riabilitazione (IMFR), Via Gervasutta 48, Udine, UD, Italy
| | - Rosamaria Apicella
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.,Applied Neurophysiology and Neuropharmacology Lab, Istituto di Medicina Fisica e Riabilitazione (IMFR), Via Gervasutta 48, Udine, UD, Italy
| | - Benjamín A Zylberberg
- Instituto de Investigaciones en Medicina Traslacional (IIMT)-CONICET - Universidad Austral, Av. Pte. Perón 1500, Pilar, Buenos Aires, Argentina
| | - Graciela L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT)-CONICET - Universidad Austral, Av. Pte. Perón 1500, Pilar, Buenos Aires, Argentina
| | - Giuliano Taccola
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy. .,Applied Neurophysiology and Neuropharmacology Lab, Istituto di Medicina Fisica e Riabilitazione (IMFR), Via Gervasutta 48, Udine, UD, Italy.
| |
Collapse
|
2
|
Stochastic spinal neuromodulation tunes the intrinsic logic of spinal neural networks. Exp Neurol 2022; 355:114138. [DOI: 10.1016/j.expneurol.2022.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
|
3
|
Boulain M, Khsime I, Sourioux M, Thoby-Brisson M, Barrière G, Simmers J, Morin D, Juvin L. Synergistic interaction between sensory inputs and propriospinal signalling underlying quadrupedal locomotion. J Physiol 2021; 599:4477-4496. [PMID: 34412148 DOI: 10.1113/jp281861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/05/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Stimulation of hindlimb afferent fibres can both stabilize and increase the activity of fore- and hindlimb motoneurons during fictive locomotion. The increase in motoneuron activity is at least partially due to the production of doublets of action potentials in a subpopulation of motoneurons. These results were obtained using an in vitro brainstem/spinal cord preparation of neonatal rat. ABSTRACT Quadrupedal locomotion relies on a dynamic coordination between central pattern generators (CPGs) located in the cervical and lumbar spinal cord, and controlling the fore- and hindlimbs, respectively. It is assumed that this CPG interaction is achieved through separate closed-loop processes involving propriospinal and sensory pathways. However, the functional consequences of a concomitant involvement of these different influences on the degree of coordination between the fore- and hindlimb CPGs is still largely unknown. Using an in vitro brainstem/spinal cord preparation of neonatal rat, we found that rhythmic, bilaterally alternating stimulation of hindlimb sensory input pathways elicited coordinated hindlimb and forelimb CPG activity. During pharmacologically induced fictive locomotion, lumbar dorsal root (DR) stimulation entrained and stabilized an ongoing cervico-lumbar locomotor-like rhythm and increased the amplitude of both lumbar and cervical ventral root bursting. The increase in cervical burst amplitudes was correlated with the occurrence of doublet action potential firing in a subpopulation of motoneurons, enabling the latter to transition between low and high frequency discharge according to the intensity of DR stimulation. Moreover, our data revealed that propriospinal and sensory pathways act synergistically to strengthen cervico-lumbar interactions. Indeed, split-bath experiments showed that fully coordinated cervico-lumbar fictive locomotion was induced by combining pharmacological stimulation of either the lumbar or cervical CPGs with lumbar DR stimulation. This study thus highlights the powerful interactions between sensory and propriospinal pathways which serve to ensure the coupling of the fore- and hindlimb CPGs for effective quadrupedal locomotion.
Collapse
Affiliation(s)
- Marie Boulain
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, CNRS, Université de Bordeaux, CNRS, EPHE, INCIA, UMR5287 F-33000, Bordeaux, France
| | - Inès Khsime
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, CNRS, Université de Bordeaux, CNRS, EPHE, INCIA, UMR5287 F-33000, Bordeaux, France
| | - Mélissa Sourioux
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, CNRS, Université de Bordeaux, CNRS, EPHE, INCIA, UMR5287 F-33000, Bordeaux, France
| | - Muriel Thoby-Brisson
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, CNRS, Université de Bordeaux, CNRS, EPHE, INCIA, UMR5287 F-33000, Bordeaux, France
| | - Grégory Barrière
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, CNRS, Université de Bordeaux, CNRS, EPHE, INCIA, UMR5287 F-33000, Bordeaux, France
| | - John Simmers
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, CNRS, Université de Bordeaux, CNRS, EPHE, INCIA, UMR5287 F-33000, Bordeaux, France
| | - Didier Morin
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, CNRS, Université de Bordeaux, CNRS, EPHE, INCIA, UMR5287 F-33000, Bordeaux, France
| | - Laurent Juvin
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, CNRS, Université de Bordeaux, CNRS, EPHE, INCIA, UMR5287 F-33000, Bordeaux, France
| |
Collapse
|
4
|
Coslovich T, Della Mora A, D'Angelo G, Ortolani F, Taccola G. Histamine H 3 Receptors Expressed in Ventral Horns Modulate Spinal Motor Output. Cell Mol Neurobiol 2021; 41:185-190. [PMID: 32211996 PMCID: PMC11448551 DOI: 10.1007/s10571-020-00831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/16/2020] [Indexed: 11/29/2022]
Abstract
Motoneuron activity is modulated by histamine receptors. While H1 and H2 receptors have been widely explored, H3 histamine receptors (H3Rs) have not been sufficiently characterized. This paper targets the effects of the selective activation of H3Rs and their expression on the membranes of large ventral horn cells. The application of selective pharmacological agents to spinal cords isolated from neonatal rats was used to identify the presence of functional H3Rs on the membrane of physiologically identified lumbar motoneurons. Intra and extracellular recordings revealed that H3R agonist, α-methylhistamine, depolarized both single motoneurons and ventral roots, even in the presence of tetrodotoxin, an effect prevented by H3R antagonist, thioperamide. Finally, immunohistochemistry located the expression of H3Rs on a subpopulation of large cells in lamina IX. This study identifies H3Rs as a new exploitable pharmacological target against motor disturbances.
Collapse
Affiliation(s)
- Tamara Coslovich
- Neuroscience Department, International School for Advanced Studies (SISSA), via Bonomea 265, 34136, Trieste, TS, Italy
- SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory), Istituto di Medicina Fisica e Riabilitazione (IMFR), via Gervasutta 48, Udine, UD, Italy
| | - Alberto Della Mora
- Department of Experimental Clinical Medicine, University of Udine, Piazzale Kolbe 3, Udine, Italy
| | - Giuseppe D'Angelo
- Neuroscience Department, International School for Advanced Studies (SISSA), via Bonomea 265, 34136, Trieste, TS, Italy
- SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory), Istituto di Medicina Fisica e Riabilitazione (IMFR), via Gervasutta 48, Udine, UD, Italy
| | - Fulvia Ortolani
- Department of Experimental Clinical Medicine, University of Udine, Piazzale Kolbe 3, Udine, Italy
| | - Giuliano Taccola
- Neuroscience Department, International School for Advanced Studies (SISSA), via Bonomea 265, 34136, Trieste, TS, Italy.
- SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory), Istituto di Medicina Fisica e Riabilitazione (IMFR), via Gervasutta 48, Udine, UD, Italy.
| |
Collapse
|
5
|
Howard CW, Toossi A, Mushahwar VK. Variety Is the Spice of Life: Positive and Negative Effects of Noise in Electrical Stimulation of the Nervous System. Neuroscientist 2020; 27:529-543. [DOI: 10.1177/1073858420951155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Noisy stimuli may hold the key for optimal electrical stimulation of the nervous system. Possible mechanisms of noise’s impact upon neuronal function are discussed, including intracellular, extracellular, and systems-level mechanisms. Specifically, channel resonance, stochastic resonance, high conductance states, and network binding are investigated. These mechanisms are examined and possible directions of growth for the field are discussed, with examples of applications provided from the fields of deep brain stimulation or spinal cord injury. Together, this review highlights the theoretical basis and evidence base for the use of noise to enhance current stimulation paradigms of the nervous system.
Collapse
Affiliation(s)
- Calvin W. Howard
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - Amirali Toossi
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Vivian K. Mushahwar
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Wee CL, Nikitchenko M, Wang WC, Luks-Morgan SJ, Song E, Gagnon JA, Randlett O, Bianco IH, Lacoste AMB, Glushenkova E, Barrios JP, Schier AF, Kunes S, Engert F, Douglass AD. Zebrafish oxytocin neurons drive nocifensive behavior via brainstem premotor targets. Nat Neurosci 2019; 22:1477-1492. [PMID: 31358991 PMCID: PMC6820349 DOI: 10.1038/s41593-019-0452-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/18/2019] [Indexed: 01/06/2023]
Abstract
Animals have evolved specialized neural circuits to defend themselves from pain- and injury-causing stimuli. Using a combination of optical, behavioral and genetic approaches in the larval zebrafish, we describe a novel role for hypothalamic oxytocin (OXT) neurons in the processing of noxious stimuli. In vivo imaging revealed that a large and distributed fraction of zebrafish OXT neurons respond strongly to noxious inputs, including the activation of damage-sensing TRPA1 receptors. OXT population activity reflects the sensorimotor transformation of the noxious stimulus, with some neurons encoding sensory information and others correlating more strongly with large-angle swims. Notably, OXT neuron activation is sufficient to generate this defensive behavior via the recruitment of brainstem premotor targets, whereas ablation of OXT neurons or loss of the peptide attenuates behavioral responses to TRPA1 activation. These data highlight a crucial role for OXT neurons in the generation of appropriate defensive responses to noxious input.
Collapse
Affiliation(s)
- Caroline L Wee
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Program in Neuroscience, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Maxim Nikitchenko
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Wei-Chun Wang
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Sasha J Luks-Morgan
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Erin Song
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - James A Gagnon
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Owen Randlett
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Isaac H Bianco
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Alix M B Lacoste
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Elena Glushenkova
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Joshua P Barrios
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - Samuel Kunes
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.
| | - Adam D Douglass
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
7
|
Coslovich T, Brumley MR, D'Angelo G, Della Mora A, Swann HE, Ortolani F, Taccola G. Histamine modulates spinal motoneurons and locomotor circuits. J Neurosci Res 2017; 96:889-900. [PMID: 29114923 DOI: 10.1002/jnr.24195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/01/2017] [Accepted: 10/16/2017] [Indexed: 12/20/2022]
Abstract
Spinal motoneurons and locomotor networks are regulated by monoamines, among which, the contribution of histamine has yet to be fully addressed. The present study investigates histaminergic regulation of spinal activity, combining intra- and extracellular electrophysiological recordings from neonatal rat spinal cord in vitro preparations. Histamine dose-dependently and reversibly generated motoneuron depolarization and action potential firing. Histamine (20 µM) halved the area of dorsal root reflexes and always depolarized motoneurons. The majority of cells showed a transitory repolarization, while 37% showed a sustained depolarization maintained with intense firing. Extracellularly, histamine depolarized ventral roots (VRs), regardless of blockage of ionotropic glutamate receptors. Initial, transient glutamate-mediated bursting was synchronous among VRs, with some bouts of locomotor activity in a subgroup of preparations. After washout, the amplitude of spontaneous tonic discharges increased. No desensitization or tachyphylaxis appeared after long perfusion or serial applications of histamine. On the other hand, histamine induced single motoneuron and VR depolarization, even in the presence of tetrodotoxin (TTX). During chemically induced fictive locomotion (FL), histamine depolarized VRs. Histamine dose-dependently increased rhythm periodicity and reduced cycle amplitude until near suppression. This study demonstrates that histamine induces direct motoneuron membrane depolarization and modulation of locomotor output, indicating new potential targets for locomotor neurorehabilitation.
Collapse
Affiliation(s)
- Tamara Coslovich
- Neuroscience Department, International School for Advanced Studies (SISSA), via Bonomea 265 Trieste, (TS), Italy.,SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory), Istituto di Medicina Fisica e Riabilitazione (IMFR), via Gervasutta 48 Udine (UD), Italy
| | | | - Giuseppe D'Angelo
- Neuroscience Department, International School for Advanced Studies (SISSA), via Bonomea 265 Trieste, (TS), Italy.,SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory), Istituto di Medicina Fisica e Riabilitazione (IMFR), via Gervasutta 48 Udine (UD), Italy
| | - Alberto Della Mora
- Department of Experimental Clinical Medicine, University of Udine, Piazzale Kolbe 3 Udine, Italy
| | | | - Fulvia Ortolani
- Department of Experimental Clinical Medicine, University of Udine, Piazzale Kolbe 3 Udine, Italy
| | - Giuliano Taccola
- Neuroscience Department, International School for Advanced Studies (SISSA), via Bonomea 265 Trieste, (TS), Italy.,SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory), Istituto di Medicina Fisica e Riabilitazione (IMFR), via Gervasutta 48 Udine (UD), Italy
| |
Collapse
|
8
|
Modulation of Rhythmic Activity in Mammalian Spinal Networks Is Dependent on Excitability State. eNeuro 2017; 4:eN-NWR-0368-16. [PMID: 28144626 PMCID: PMC5272924 DOI: 10.1523/eneuro.0368-16.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 11/21/2022] Open
Abstract
Neuromodulators play an important role in activating rhythmically active motor networks; however, what remains unclear are the network interactions whereby neuromodulators recruit spinal motor networks to produce rhythmic activity. Evidence from invertebrate systems has demonstrated that the effect of neuromodulators depends on the pre-existing state of the network. We explored how network excitation state affects the ability of dopamine to evoke rhythmic locomotor activity in the neonatal mouse isolated spinal cord. We found that dopamine can evoke unique patterns of motor activity that are dependent on the excitability state of motor networks. Different patterns of motor activity ranging from tonic, nonrhythmic activity to multirhythmic, nonlocomotor activity to locomotor activity were produced by altering global motor network excitability through manipulations of the extracellular potassium and bath NMDA concentration. A similar effect was observed when network excitation was manipulated during an unstable multirhythm evoked by a low concentration (15 µm) of 5-HT, suggesting that our results are not neuromodulator specific. Our data show in vertebrate systems that modulation is a two-way street and that modulatory actions are largely influenced by the network state. The level of network excitation can account for variability between preparations and is an additional factor to be considered when circuit elements are removed from the network.
Collapse
|
9
|
Dose F, Taccola G. Two Distinct Stimulus Frequencies Delivered Simultaneously at Low Intensity Generate Robust Locomotor Patterns. Neuromodulation 2016; 19:563-75. [PMID: 26968869 DOI: 10.1111/ner.12402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/21/2015] [Accepted: 12/29/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Explore the primary characteristics of afferent noisy stimuli, which optimally activate locomotor patterns at low intensity. MATERIALS AND METHODS Intracellular and extracellular electrophysiological traces were derived from single motoneurons and from ventral roots, respectively. From these recordings, we obtained noisy stimulating protocols, delivered to a dorsal root (DR) of an isolated neonatal rat spinal cord, while recording fictive locomotion (FL) from ventral roots. RESULTS We decreased complexity of efficient noisy stimulating protocols down to single cell spikes. Then, we identified four main components within the power spectrum of these signals and used them to construct a basic multifrequency protocol of rectangular impulses, able to induce FL. Further disassembling generated the minimum stimulation paradigm that activated FL, which consisted of a pair of 35 and 172 Hz frequency pulse trains, strongly effective at low intensity when delivered either jointly to one lumbosacral DR or as single simultaneous trains to two distinct DRs. This simplified pulse schedule always activated a locomotor rhythm, even when delivered for a very short time (500 ms). One prerequisite for the two-frequency protocol to activate FL at low intensity when applied to sacrocaudal afferents was the ability to induce ascending volleys of greater amplitude. CONCLUSION Multifrequency protocols can support future studies in defining the most effective characteristics for electrical stimulation to reactivate stepping following motor injury.
Collapse
Affiliation(s)
- Francesco Dose
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, TS, Italy.,SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory), Istituto di Medicina Fisica e Riabilitazione (IMFR), Udine, UD, Italy
| | - Giuliano Taccola
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, TS, Italy.,SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory), Istituto di Medicina Fisica e Riabilitazione (IMFR), Udine, UD, Italy
| |
Collapse
|
10
|
Gümüs B, Kuyucu E, Erbas O, Kazimoglu C, Oltulu F, Bora OA. Effect of oxytocin administration on nerve recovery in the rat sciatic nerve damage model. J Orthop Surg Res 2015; 10:161. [PMID: 26466786 PMCID: PMC4607250 DOI: 10.1186/s13018-015-0301-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/25/2015] [Indexed: 01/28/2023] Open
Abstract
Background Growth factors such as nerve growth factor (NGF) and insulin-like growth factor-1 (IGF-1) have been shown to play a role in the healing process of nerve injury. Recent researches have also shown that oxytocin administration activates these growth factors of importance for the healing of nerve tissue. The objective of the present study was to evaluate the effects of oxytocin on peripheral nerve regeneration in rats. Methods Twenty-four male Sprague-Dawley rats were underwent transection damage model on the right sciatic nerve and defective damage model on the left sciatic nerve. The animals were assigned to one of two groups: control group or treatment group (received 80 mg/kg oxytocin intraperitoneally for 12 weeks). The sciatic nerve was examined, both functionally (on the basis of climbing platform test) and histologically (on the basis of axon count), 3, 6, 9, and 12 weeks after the injury. Also, stereomicroscopic and electrophysiological evaluations were carried out. Results Significantly greater improvements in electrophysiological recordings and improved functional outcome measures were presented in the treatment group at 12-week follow-up. Stereomicroscopic examinations disclosed prominent increases in vascularization on proximal cut edges in the oxytocin group in comparison with the control group. Higher axon counts were also found in this group. Conclusion Intraperitoneal oxytocin administration resulted in accelerated functional, histological, and electrophysiological recovery after different sciatic injury models in rats.
Collapse
Affiliation(s)
- Bilal Gümüs
- Department of Orthopaedics and Traumatology, Izmir Ataturk Training and Research Hospital, Izmir, Turkey
| | - Ersin Kuyucu
- Department of Orthopaedics and Traumatology, Izmir Ataturk Training and Research Hospital, Izmir, Turkey. .,Orthopaedics & Traumatology, Istanbul Medipol University, TEM Avrupa Göztepe çıkışı, No: 1 Bağcılar, Istanbul, Turkey.
| | - Oytun Erbas
- Department of Physiology, Ege University, Izmir, Turkey
| | - Cemal Kazimoglu
- Department of Orthopedics, Katip Celebi University Hospital, Izmir, Turkey
| | - Fatih Oltulu
- Department of Histology and Embryology, Ege University, Izmir, Turkey
| | - Osman Arslan Bora
- Department of Orthopaedics and Traumatology, Izmir Ataturk Training and Research Hospital, Izmir, Turkey
| |
Collapse
|
11
|
Neuromodulation by oxytocin and vasopressin in the central nervous system as a basis for their rapid behavioral effects. Curr Opin Neurobiol 2014; 29:187-93. [DOI: 10.1016/j.conb.2014.09.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/21/2014] [Accepted: 09/27/2014] [Indexed: 01/05/2023]
|