1
|
Takenaka M, Pflieger ME, Hori T, Iwama Y, Matsumoto J, Setogawa T, Shirasawa A, Nishimaru H, Nishijo H. Detectability in Scalp EEGs of Epileptic Spikes Emitted from Brain Electrical Sources of Different Sizes and Locations: A Simulation Study Using Realistic Head Models of Elderly Adults. Clin EEG Neurosci 2025:15500594251323625. [PMID: 40017115 DOI: 10.1177/15500594251323625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Background. Epilepsy is prevalent in the elderly, whose brain morphologies and skull electrical characteristics differ from those of younger adults. Here, using a multivariate definition of signal-to-noise ratio (SNR), we explored the detectability of epileptic spikes in scalp EEG measurements in elderly by forward simulations of hypersynchronous spikes generated at 78 cortical regions of interest (ROIs) in the presence of background noise. Methods. Simulated electric potentials were measured at 18, 35, and 70 standard 10-20 electrode positions using three reference methods: infinity reference (INF), common average reference (CAR), and average mastoid reference (M1M2). MRIs of six elderly subjects were used to construct finite element method (FEM) models with age-adjusted skull conductivities. Results. SNRs of epileptic spikes increased with increasing sizes of the brain electrical source areas, although medial and deep brain regions such as the hippocampus showed lower SNRs, consistent with clinical findings. The SNRs were greater in the 70-channel dataset than in the 18-channel and 35-channel datasets, especially for ROIs located closer to the head surface. In addition, the SNRs were lower for the CAR and M1M2 references than for the ideal INF reference. Moreover, we found comparable results in the standard FEM heads with age-adjusted skull conductivities. Conclusions. The results provide insights for evaluating scalp EEG data in elderly patients with suspected epilepsy, and suggest that age-adjusted skull conductivity is an important factor for forward models in elderly adults, and that the standard FEM head with age-adjusted skull conductivity can be used when MRIs are not available.
Collapse
Affiliation(s)
- Makoto Takenaka
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | | | - Tomokatsu Hori
- Department of Neurosurgery, Moriyama Neurological Center Hospital, Tokyo, Japan
| | - Yudai Iwama
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| | - Tsuyoshi Setogawa
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| | | | - Hiroshi Nishimaru
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
- Faculty of Human Sciences, University of East Asia, Shimonoseki, Japan
| |
Collapse
|
2
|
Walker MR, Fernández-Corazza M, Turovets S, Beltrachini L. Electrical impedance tomography meets reduced order modelling: a framework for faster and more reliable electrical conductivity estimations. J Neural Eng 2025; 22:016018. [PMID: 39819747 DOI: 10.1088/1741-2552/adab20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/15/2025] [Indexed: 01/19/2025]
Abstract
Objective.Inclusion of individualised electrical conductivities of head tissues is crucial for the accuracy of electrical source imaging techniques based on electro/magnetoencephalography and the efficacy of transcranial electrical stimulation. Parametric electrical impedance tomography (pEIT) is a method to cheaply and non-invasively estimate them using electrode arrays on the scalp to apply currents and measure the resulting potential distribution. Conductivities are then estimated by iteratively fitting a forward model to the measurements, incurring a prohibitive computational cost that is generally lowered at the expense of accuracy. Reducing the computational cost associated with the forward solutions would improve the accessibility of this method and unlock new capabilities.Approach.We introduce reduced order modelling (ROM) to massively speed up the calculations of these solutions for arbitrary conductivity values.Main results.We demonstrate this new ROM-pEIT framework using a realistic head model with six tissue compartments, with minimal errors in both the approximated numerical solutions and conductivity estimations. We show that the computational complexity required to reach a multi-parameter estimation with a negligible relative error is reduced by more than an order of magnitude when using this framework. Furthermore, we illustrate the benefits of this new framework in a number of practical cases, including its application to real pEIT data from three subjects.Significance.Results suggest that this framework can transform the use of pEIT for seeking personalised head conductivities, making it a valuable tool for researchers and clinicians.
Collapse
Affiliation(s)
- Matthew R Walker
- Matthew Walker and Leandro Beltrachini are with Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Mariano Fernández-Corazza
- Mariano Fernández-Corazza is with the LEICI Institute of Research in Electronics, Control and Signal Processing, National University of La Plata, CONICET, Argentina
| | - Sergei Turovets
- Sergei Turovets is with NeuroInformatics Center,University of Oregon, Eugene, OR, United States of America
| | - Leandro Beltrachini
- Matthew Walker and Leandro Beltrachini are with Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| |
Collapse
|
3
|
Vorwerk J, Wolters CH, Baumgarten D. Global sensitivity of EEG source analysis to tissue conductivity uncertainties. Front Hum Neurosci 2024; 18:1335212. [PMID: 38532791 PMCID: PMC10963400 DOI: 10.3389/fnhum.2024.1335212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/22/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction To reliably solve the EEG inverse problem, accurate EEG forward solutions based on a detailed, individual volume conductor model of the head are essential. A crucial-but often neglected-aspect in generating a volume conductor model is the choice of the tissue conductivities, as these may vary from subject to subject. In this study, we investigate the sensitivity of EEG forward and inverse solutions to tissue conductivity uncertainties for sources distributed over the whole cortex surface. Methods We employ a detailed five-compartment head model distinguishing skin, skull, cerebrospinal fluid, gray matter, and white matter, where we consider uncertainties of skin, skull, gray matter, and white matter conductivities. We use the finite element method (FEM) to calculate EEG forward solutions and goal function scans (GFS) as inverse approach. To be able to generate the large number of EEG forward solutions, we employ generalized polynomial chaos (gPC) expansions. Results For sources up to a depth of 4 cm, we find the strongest influence on the signal topography of EEG forward solutions for the skull conductivity and a notable effect for the skin conductivity. For even deeper sources, e.g., located deep in the longitudinal fissure, we find an increasing influence of the white matter conductivity. The conductivity variations translate to varying source localizations particularly for quasi-tangential sources on sulcal walls, whereas source localizations of quasi-radial sources on the top of gyri are less affected. We find a strong correlation between skull conductivity and the variation of source localizations and especially the depth of the reconstructed source for quasi-tangential sources. We furthermore find a clear but weaker correlation between depth of the reconstructed source and the skin conductivity. Discussion Our results clearly show the influence of tissue conductivity uncertainties on EEG source analysis. We find a particularly strong influence of skull and skin conductivity uncertainties.
Collapse
Affiliation(s)
- Johannes Vorwerk
- Institute of Electrical and Biomedical Engineering, UMIT TIROL—Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| | - Carsten H. Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Daniel Baumgarten
- Institute of Electrical and Biomedical Engineering, UMIT TIROL—Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| |
Collapse
|
4
|
Lahtinen J, Koulouri A, Rampp S, Wellmer J, Wolters C, Pursiainen S. Standardized hierarchical adaptive Lp regression for noise robust focal epilepsy source reconstructions. Clin Neurophysiol 2024; 159:24-40. [PMID: 38244372 DOI: 10.1016/j.clinph.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/02/2023] [Accepted: 12/02/2023] [Indexed: 01/22/2024]
Abstract
OBJECTIVE To investigate the ability of standardization to reduce source localization errors and measurement noise uncertainties for hierarchical Bayesian algorithms with L1- and L2-norms as priors in electroencephalography and magnetoencephalography of focal epilepsy. METHODS Description of the standardization methodology relying on the Hierarchical Bayesian framework, referred to as the Standardized Hierarchical Adaptive Lp-norm Regularization (SHALpR). The performance was tested using real data from two focal epilepsy patients. Simulated data that resembled the available real data was constructed for further localization and noise robustness investigation. RESULTS The proposed algorithms were compared to their non-standardized counterparts, Standardized low-resolution brain electromagnetic tomography, Standardized Shrinking LORETA-FOCUSS, and Dynamic statistical parametric maps. Based on the simulations, the standardized Hierarchical adaptive algorithm using L2-norm was noise robust for 10 dB signal-to-noise ratio (SNR), whereas the L1-norm prior worked robustly also with 5 dB SNR. The accuracy of the standardized L1-normed methodology to localize focal activity was under 1 cm for both patients. CONCLUSIONS Numerical results of the proposed methodology display improved localization and noise robustness. The proposed methodology also outperformed the compared methods when dealing with real data. SIGNIFICANCE The proposed standardized methodology, especially when employing the L1-norm, could serve as a valuable assessment tool in surgical decision-making.
Collapse
Affiliation(s)
- Joonas Lahtinen
- Faculty of Information Technology and Communication Sciences, Tampere University, Tampere 33720, Finland.
| | - Alexandra Koulouri
- Faculty of Information Technology and Communication Sciences, Tampere University, Tampere 33720, Finland.
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital Halle (Saale), Halle 06097, Germany; Department of Neurosurgery, University Hospital Erlangen, Erlangen 91054, Germany; Department of Neuroradiology, University Hospital Erlangen, Erlangen 91054, Germany.
| | - Jörg Wellmer
- Ruhr-Epileptology, Department of Neurology, University Hospital Knappschaftskrankenhaus, Ruhr-University, Bochum44892, Germany.
| | - Carsten Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster 48149, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster 48149, Germany.
| | - Sampsa Pursiainen
- Faculty of Information Technology and Communication Sciences, Tampere University, Tampere 33720, Finland.
| |
Collapse
|
5
|
Hirata A, Niitsu M, Phang CR, Kodera S, Kida T, Rashed EA, Fukunaga M, Sadato N, Wasaka T. High-resolution EEG source localization in personalized segmentation-free head model with multi-dipole fitting. Phys Med Biol 2024; 69:055013. [PMID: 38306964 DOI: 10.1088/1361-6560/ad25c3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/02/2024] [Indexed: 02/04/2024]
Abstract
Objective. Electroencephalograms (EEGs) are often used to monitor brain activity. Several source localization methods have been proposed to estimate the location of brain activity corresponding to EEG readings. However, only a few studies evaluated source localization accuracy from measured EEG using personalized head models in a millimeter resolution. In this study, based on a volume conductor analysis of a high-resolution personalized human head model constructed from magnetic resonance images, a finite difference method was used to solve the forward problem and to reconstruct the field distribution.Approach. We used a personalized segmentation-free head model developed using machine learning techniques, in which the abrupt change of electrical conductivity occurred at the tissue interface is suppressed. Using this model, a smooth field distribution was obtained to address the forward problem. Next, multi-dipole fitting was conducted using EEG measurements for each subject (N= 10 male subjects, age: 22.5 ± 0.5), and the source location and electric field distribution were estimated.Main results.For measured somatosensory evoked potential for electrostimulation to the wrist, a multi-dipole model with lead field matrix computed with the volume conductor model was found to be superior than a single dipole model when using personalized segmentation-free models (6/10). The correlation coefficient between measured and estimated scalp potentials was 0.89 for segmentation-free head models and 0.71 for conventional segmented models. The proposed method is straightforward model development and comparable localization difference of the maximum electric field from the target wrist reported using fMR (i.e. 16.4 ± 5.2 mm) in previous study. For comparison, DUNEuro based on sLORETA was (EEG: 17.0 ± 4.0 mm). In addition, somatosensory evoked magnetic fields obtained by Magnetoencephalography was 25.3 ± 8.5 mm using three-layer sphere and sLORETA.Significance. For measured EEG signals, our procedures using personalized head models demonstrated that effective localization of the somatosensory cortex, which is located in a non-shallower cortex region. This method may be potentially applied for imaging brain activity located in other non-shallow regions.
Collapse
Affiliation(s)
- Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Masamune Niitsu
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Chun Ren Phang
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Sachiko Kodera
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Tetsuo Kida
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Japan
| | - Essam A Rashed
- Graduate School of Information Science, University of Hyogo, Kobe 650-0047, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Norihiro Sadato
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Toshiaki Wasaka
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| |
Collapse
|
6
|
Piastra MC, Oostenveld R, Homölle S, Han B, Chen Q, Oostendorp T. How to assess the accuracy of volume conduction models? A validation study with stereotactic EEG data. Front Hum Neurosci 2024; 18:1279183. [PMID: 38410258 PMCID: PMC10894995 DOI: 10.3389/fnhum.2024.1279183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/25/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction Volume conduction models of the human head are used in various neuroscience fields, such as for source reconstruction in EEG and MEG, and for modeling the effects of brain stimulation. Numerous studies have quantified the accuracy and sensitivity of volume conduction models by analyzing the effects of the geometrical and electrical features of the head model, the sensor model, the source model, and the numerical method. Most studies are based on simulations as it is hard to obtain sufficiently detailed measurements to compare to models. The recording of stereotactic EEG during electric stimulation mapping provides an opportunity for such empirical validation. Methods In the study presented here, we used the potential distribution of volume-conducted artifacts that are due to cortical stimulation to evaluate the accuracy of finite element method (FEM) volume conduction models. We adopted a widely used strategy for numerical comparison, i.e., we fixed the geometrical description of the head model and the mathematical method to perform simulations, and we gradually altered the head models, by increasing the level of detail of the conductivity profile. We compared the simulated potentials at different levels of refinement with the measured potentials in three epilepsy patients. Results Our results show that increasing the level of detail of the volume conduction head model only marginally improves the accuracy of the simulated potentials when compared to in-vivo sEEG measurements. The mismatch between measured and simulated potentials is, throughout all patients and models, maximally 40 microvolts (i.e., 10% relative error) in 80% of the stimulation-recording combination pairs and it is modulated by the distance between recording and stimulating electrodes. Discussion Our study suggests that commonly used strategies used to validate volume conduction models based solely on simulations might give an overly optimistic idea about volume conduction model accuracy. We recommend more empirical validations to be performed to identify those factors in volume conduction models that have the highest impact on the accuracy of simulated potentials. We share the dataset to allow researchers to further investigate the mismatch between measurements and FEM models and to contribute to improving volume conduction models.
Collapse
Affiliation(s)
- Maria Carla Piastra
- Clinical Neurophysiology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede, Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- NatMEG, Karolinska Institutet, Stockholm, Sweden
| | - Simon Homölle
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Biao Han
- School of Psychology, South China Normal University, Guangzhou, China
| | - Qi Chen
- School of Psychology, South China Normal University, Guangzhou, China
| | - Thom Oostendorp
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
7
|
Radecke JO, Sprenger A, Stöckler H, Espeter L, Reichhardt MJ, Thomann LS, Erdbrügger T, Buschermöhle Y, Borgwardt S, Schneider TR, Gross J, Wolters CH, Lencer R. Normative tDCS over V5 and FEF reveals practice-induced modulation of extraretinal smooth pursuit mechanisms, but no specific stimulation effect. Sci Rep 2023; 13:21380. [PMID: 38049419 PMCID: PMC10695990 DOI: 10.1038/s41598-023-48313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
The neural networks subserving smooth pursuit eye movements (SPEM) provide an ideal model for investigating the interaction of sensory processing and motor control during ongoing movements. To better understand core plasticity aspects of sensorimotor processing for SPEM, normative sham, anodal or cathodal transcranial direct current stimulation (tDCS) was applied over visual area V5 and frontal eye fields (FEF) in sixty healthy participants. The identical within-subject paradigm was used to assess SPEM modulations by practice. While no specific tDCS effects were revealed, within- and between-session practice effects indicate plasticity of top-down extraretinal mechanisms that mainly affect SPEM in the absence of visual input and during SPEM initiation. To explore the potential of tDCS effects, individual electric field simulations were computed based on calibrated finite element head models and individual functional localization of V5 and FEF location (using functional MRI) and orientation (using combined EEG/MEG) was conducted. Simulations revealed only limited electric field target intensities induced by the applied normative tDCS montages but indicate the potential efficacy of personalized tDCS for the modulation of SPEM. In sum, results indicate the potential susceptibility of extraretinal SPEM control to targeted external neuromodulation (e.g., personalized tDCS) and intrinsic learning protocols.
Collapse
Affiliation(s)
- Jan-Ole Radecke
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany.
| | - Andreas Sprenger
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
- Department of Neurology, University of Lübeck, 23562, Lübeck, Germany
- Institute of Psychology II, University of Lübeck, 23562, Lübeck, Germany
| | - Hannah Stöckler
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
| | - Lisa Espeter
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
| | - Mandy-Josephine Reichhardt
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
- Institute of Psychology II, University of Lübeck, 23562, Lübeck, Germany
| | - Lara S Thomann
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
| | - Tim Erdbrügger
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, 48149, Münster, Germany
| | - Yvonne Buschermöhle
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
| | - Till R Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
- Institute for Translational Psychiatry, University of Münster, 48149, Münster, Germany
| |
Collapse
|
8
|
Chikara RK, Jahromi S, Tamilia E, Madsen JR, Stufflebeam SM, Pearl PL, Papadelis C. Electromagnetic source imaging predicts surgical outcome in children with focal cortical dysplasia. Clin Neurophysiol 2023; 153:88-101. [PMID: 37473485 PMCID: PMC10528204 DOI: 10.1016/j.clinph.2023.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/25/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE To evaluate the diagnostic accuracy of electromagnetic source imaging (EMSI) in localizing spikes and predict surgical outcome in children with drug resistant epilepsy (DRE) due to focal cortical dysplasia (FCD). METHODS We retrospectively analyzed magnetoencephalography (MEG) and high-density (HD-EEG) data from 23 children with FCD-associated DRE who underwent intracranial EEG and surgery. We localized spikes using equivalent current dipole (ECD) fitting, dipole clustering, and dynamical statistical parametric mapping (dSPM) on EMSI, electric source imaging (ESI), and magnetic source imaging (MSI). We calculated the distance from the seizure onset zone (DSOZ) and resection (DRES). We estimated receiver operating characteristic (ROC) curves with Youden's index (J) to predict outcome. RESULTS EMSI presented shorter DSOZ (15.18 ± 9.06 mm) and DRES (8.56 ± 6.24 mm) compared to ESI (DSOZ: 25.04 ± 16.20 mm, p < 0.009; DRES: 18.88 ± 17.30 mm, p < 0.03) and MSI (DSOZ: 23.37 ± 8.98 mm, p < 0.03; DRES: 15.51 ± 10.11 mm, p < 0.02) for clustering in patients with good outcome. Clustering showed shorter DSOZ and DRES compared to ECD fitting and dSPM (p < 0.05). EMSI had higher performance as outcome predictor (J = 70.63%) compared to ESI (J = 41.27%) and MSI (J = 33.33%) for clustering. CONCLUSIONS EMSI provides superior localization and improved predictive performance than individual modalities. SIGNIFICANCE EMSI can help the surgical planning and facilitate the localization of epileptogenic foci.
Collapse
Affiliation(s)
- Rupesh Kumar Chikara
- Jane and John Justin Institute for Mind Health, Neuroscience Research, Cook Children's Health Care System, Fort Worth, TX, USA; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Saeed Jahromi
- Jane and John Justin Institute for Mind Health, Neuroscience Research, Cook Children's Health Care System, Fort Worth, TX, USA; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Eleonora Tamilia
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph R Madsen
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steve M Stufflebeam
- Athinoula Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christos Papadelis
- Jane and John Justin Institute for Mind Health, Neuroscience Research, Cook Children's Health Care System, Fort Worth, TX, USA; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA; School of Medicine, Texas Christian University, Fort Worth, TX, USA.
| |
Collapse
|
9
|
Nielsen JD, Puonti O, Xue R, Thielscher A, Madsen KH. Evaluating the Influence of Anatomical Accuracy and Electrode Positions on EEG Forward Solutions. Neuroimage 2023:120259. [PMID: 37392808 DOI: 10.1016/j.neuroimage.2023.120259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 06/01/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
Generating realistic volume conductor models for forward calculations in electroencephalography (EEG) is not trivial and several factors contribute to the accuracy of such models, two of which are its anatomical accuracy and the accuracy with which electrode positions are known. Here, we investigate effects of anatomical accuracy by comparing forward solutions from SimNIBS, a tool which allows state-of-the-art anatomical modeling, with well-established pipelines in MNE-Python and FieldTrip. We also compare different ways of specifying electrode locations when digitized positions are not available such as transformation of measured positions from standard space and transformation of a manufacturer layout. Substantial effects of anatomical accuracy were seen throughout the entire brain both in terms of field topography and magnitude with SimNIBS generally being more accurate than the pipelines in MNE-Python and FieldTrip. Topographic and magnitude effects were particularly pronounced for MNE-Python which uses a three-layer boundary element method (BEM) model. We attribute these mainly to the coarse representation of the anatomy used in this model, in particular differences in skull and cerebrospinal fluid (CSF). Effects of electrode specification method were evident in occipital and posterior areas when using a transformed manufacturer layout whereas transforming measured positions from standard space generally resulted in smaller errors. We suggest modeling the anatomy of the volume conductor as accurately possible and we hope to facilitate this by making it easy to export simulations from SimNIBS to MNE-Python and FieldTrip for further analysis. Likewise, if digitized electrode positions are not available, a set of measured positions on a standard head template may be preferable to those specified by the manufacturer.
Collapse
Affiliation(s)
- Jesper Duemose Nielsen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark; Sino-Danish Centre for Education and Research, Aarhus, Denmark.
| | - Oula Puonti
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark
| | - Rong Xue
- University of Chinese Academic of Sciences, Beijing, China; State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Brain Disorders, Beijing, China
| | - Axel Thielscher
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark
| | - Kristoffer Hougaard Madsen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark
| |
Collapse
|
10
|
Liu C, Downey RJ, Mu Y, Richer N, Hwang J, Shah VA, Sato SD, Clark DJ, Hass CJ, Manini TM, Seidler RD, Ferris DP. Comparison of EEG Source Localization Using Simplified and Anatomically Accurate Head Models in Younger and Older Adults. IEEE Trans Neural Syst Rehabil Eng 2023; 31:2591-2602. [PMID: 37252873 PMCID: PMC10336858 DOI: 10.1109/tnsre.2023.3281356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Accuracy of electroencephalography (EEG) source localization relies on the volume conduction head model. A previous analysis of young adults has shown that simplified head models have larger source localization errors when compared with head models based on magnetic resonance images (MRIs). As obtaining individual MRIs may not always be feasible, researchers often use generic head models based on template MRIs. It is unclear how much error would be introduced using template MRI head models in older adults that likely have differences in brain structure compared to young adults. The primary goal of this study was to determine the error caused by using simplified head models without individual-specific MRIs in both younger and older adults. We collected high-density EEG during uneven terrain walking and motor imagery for 15 younger (22±3 years) and 21 older adults (74±5 years) and obtained [Formula: see text]-weighted MRI for each individual. We performed equivalent dipole fitting after independent component analysis to obtain brain source locations using four forward modeling pipelines with increasing complexity. These pipelines included: 1) a generic head model with template electrode positions or 2) digitized electrode positions, 3) individual-specific head models with digitized electrode positions using simplified tissue segmentation, or 4) anatomically accurate segmentation. We found that when compared to the anatomically accurate individual-specific head models, performing dipole fitting with generic head models led to similar source localization discrepancies (up to 2 cm) for younger and older adults. Co-registering digitized electrode locations to the generic head models reduced source localization discrepancies by ∼ 6 mm. Additionally, we found that source depths generally increased with skull conductivity for the representative young adult but not as much for the older adult. Our results can help inform a more accurate interpretation of brain areas in EEG studies when individual MRIs are unavailable.
Collapse
|
11
|
Medani T, Garcia-Prieto J, Tadel F, Antonakakis M, Erdbrügger T, Höltershinken M, Mead W, Schrader S, Joshi A, Engwer C, Wolters CH, Mosher JC, Leahy RM. Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity. Neuroimage 2023; 267:119851. [PMID: 36599389 PMCID: PMC9904282 DOI: 10.1016/j.neuroimage.2022.119851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 11/28/2022] [Accepted: 12/31/2022] [Indexed: 01/02/2023] Open
Abstract
Human brain activity generates scalp potentials (electroencephalography - EEG), intracranial potentials (iEEG), and external magnetic fields (magnetoencephalography - MEG). These electrophysiology (e-phys) signals can often be measured simultaneously for research and clinical applications. The forward problem involves modeling these signals at their sensors for a given equivalent current dipole configuration within the brain. While earlier researchers modeled the head as a simple set of isotropic spheres, today's magnetic resonance imaging (MRI) data allow for a detailed anatomic description of brain structures and anisotropic characterization of tissue conductivities. We present a complete pipeline, integrated into the Brainstorm software, that allows users to automatically generate an individual and accurate head model based on the subject's MRI and calculate the electromagnetic forward solution using the finite element method (FEM). The head model generation is performed by integrating the latest tools for MRI segmentation and FEM mesh generation. The final head model comprises the five main compartments: white-matter, gray-matter, CSF, skull, and scalp. The anisotropic brain conductivity model is based on the effective medium approach (EMA), which estimates anisotropic conductivity tensors from diffusion-weighted imaging (DWI) data. The FEM electromagnetic forward solution is obtained through the DUNEuro library, integrated into Brainstorm, and accessible with either a user-friendly graphical interface or scripting. With tutorials and example data sets available in an open-source format on the Brainstorm website, this integrated pipeline provides access to advanced FEM tools for electromagnetic modeling to a broader neuroscience community.
Collapse
Affiliation(s)
- Takfarinas Medani
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, United States.
| | - Juan Garcia-Prieto
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States; Harvard Medical School, Boston, Massachusetts, United States.
| | - Francois Tadel
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Marios Antonakakis
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany; School of Electrical and Computer Engineering, Technical University of Crete, Greece
| | - Tim Erdbrügger
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Malte Höltershinken
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Wayne Mead
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sophie Schrader
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany; Department of Applied Mathematics, University of Münster, Germany
| | - Anand Joshi
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Christian Engwer
- Department of Applied Mathematics, University of Münster, Germany
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - John C Mosher
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Richard M Leahy
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
12
|
Validating EEG, MEG and Combined MEG and EEG Beamforming for an Estimation of the Epileptogenic Zone in Focal Cortical Dysplasia. Brain Sci 2022; 12:brainsci12010114. [PMID: 35053857 PMCID: PMC8796031 DOI: 10.3390/brainsci12010114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
MEG and EEG source analysis is frequently used for the presurgical evaluation of pharmacoresistant epilepsy patients. The source localization of the epileptogenic zone depends, among other aspects, on the selected inverse and forward approaches and their respective parameter choices. In this validation study, we compare the standard dipole scanning method with two beamformer approaches for the inverse problem, and we investigate the influence of the covariance estimation method and the strength of regularization on the localization performance for EEG, MEG, and combined EEG and MEG. For forward modelling, we investigate the difference between calibrated six-compartment and standard three-compartment head modelling. In a retrospective study, two patients with focal epilepsy due to focal cortical dysplasia type IIb and seizure freedom following lesionectomy or radiofrequency-guided thermocoagulation (RFTC) used the distance of the localization of interictal epileptic spikes to the resection cavity resp. RFTC lesion as reference for good localization. We found that beamformer localization can be sensitive to the choice of the regularization parameter, which has to be individually optimized. Estimation of the covariance matrix with averaged spike data yielded more robust results across the modalities. MEG was the dominant modality and provided a good localization in one case, while it was EEG for the other. When combining the modalities, the good results of the dominant modality were mostly not spoiled by the weaker modality. For appropriate regularization parameter choices, the beamformer localized better than the standard dipole scan. Compared to the importance of an appropriate regularization, the sensitivity of the localization to the head modelling was smaller, due to similar skull conductivity modelling and the fixed source space without orientation constraint.
Collapse
|
13
|
McLoughlin G, Gyurkovics M, Aydin Ü. What Has Been Learned from Using EEG Methods in Research of ADHD? Curr Top Behav Neurosci 2022; 57:415-444. [PMID: 35637406 DOI: 10.1007/7854_2022_344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrophysiological recording methods, including electroencephalography (EEG) and magnetoencephalography (MEG), have an unparalleled capacity to provide insights into the timing and frequency (spectral) composition of rapidly changing neural activity associated with various cognitive processes. The current chapter provides an overview of EEG studies examining alterations in brain activity in ADHD, measured both at rest and during cognitive tasks. While EEG resting state studies of ADHD indicate no universal alterations in the disorder, event-related studies reveal consistent deficits in attentional and inhibitory control and consequently inform the proposed cognitive models of ADHD. Similar to other neuroimaging measures, EEG research indicates alterations in multiple neural circuits and cognitive functions. EEG methods - supported by the constant refinement of analytic strategies - have the potential to contribute to improved diagnostics and interventions for ADHD, underlining their clinical utility.
Collapse
Affiliation(s)
- Gráinne McLoughlin
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Máté Gyurkovics
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ümit Aydin
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
14
|
McCann HM, Beltrachini L. Impact of skull sutures, spongiform bone distribution, and aging skull conductivities on the EEG forward and inverse problems. J Neural Eng 2021; 19. [PMID: 34915464 DOI: 10.1088/1741-2552/ac43f7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/16/2021] [Indexed: 11/11/2022]
Abstract
Source imaging is a principal objective for electroencephalography (EEG), the solutions of which require forward problem (FP) computations characterising the electric potential distribution on the scalp due to known sources. Additionally, the EEG-FP is dependent upon realistic, anatomically correct volume conductors and accurate tissue conductivities, where the skull is particularly important. Skull conductivity, however, deviates according to bone composition and the presence of adult sutures. The presented study therefore analyses the effect the presence of adult sutures and differing bone composition have on the EEG-FP and inverse problem (IP) solutions. Utilising a well-established head atlas, detailed head models were generated including compact and spongiform bone and adult sutures. The true skull conductivity was considered as inhomogeneous according to spongiform bone proportion and sutures. The EEG-FP and EEG-IP were solved and compared to results employing homogeneous skull models, with varying conductivities and omitting sutures, as well as using a hypothesised aging skull conductivity model. Significant localised FP errors, with relative error up to 85%, were revealed, particularly evident along suture lines and directly related to the proportion of spongiform bone. This remained evident at various ages. Similar EEG-IP inaccuracies were found, with the largest (maximum 4.14 cm) across suture lines. It is concluded that modelling the skull as an inhomogeneous layer that varies according to spongiform bone proportion and includes differing suture conductivity is imperative for accurate EEG-FP and source localisation calculations. Their omission can result in significant errors, relevant for EEG research and clinical diagnosis.
Collapse
Affiliation(s)
- Hannah May McCann
- School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, CF10 3AT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Leandro Beltrachini
- School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, CF10 3AT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
15
|
Individually optimized multi-channel tDCS for targeting somatosensory cortex. Clin Neurophysiol 2021; 134:9-26. [PMID: 34923283 DOI: 10.1016/j.clinph.2021.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/19/2021] [Accepted: 10/13/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) is a non-invasive neuro-modulation technique that delivers current through the scalp by a pair of patch electrodes (2-Patch). This study proposes a new multi-channel tDCS (mc-tDCS) optimization method, the distributed constrained maximum intensity (D-CMI) approach. For targeting the P20/N20 somatosensory source at Brodmann area 3b, an integrated combined magnetoencephalography (MEG) and electroencephalography (EEG) source analysis is used with individualized skull conductivity calibrated realistic head modeling. METHODS Simulated electric fields (EF) for our new D-CMI method and the already known maximum intensity (MI), alternating direction method of multipliers (ADMM) and 2-Patch methods were produced and compared for the individualized P20/N20 somatosensory target for 10 subjects. RESULTS D-CMI and MI showed highest intensities parallel to the P20/N20 target compared to ADMM and 2-Patch, with ADMM achieving highest focality. D-CMI showed a slight reduction in intensity compared to MI while reducing side effects and skin level sensations by current distribution over multiple stimulation electrodes. CONCLUSION Individualized D-CMI montages are preferred for our follow up somatosensory experiment to provide a good balance between high current intensities at the target and reduced side effects and skin sensations. SIGNIFICANCE An integrated combined MEG and EEG source analysis with D-CMI montages for mc-tDCS stimulation potentially can improve control, reproducibility and reduce sensitivity differences between sham and real stimulations.
Collapse
|
16
|
Laohathai C, Ebersole JS, Mosher JC, Bagić AI, Sumida A, Von Allmen G, Funke ME. Practical Fundamentals of Clinical MEG Interpretation in Epilepsy. Front Neurol 2021; 12:722986. [PMID: 34721261 PMCID: PMC8551575 DOI: 10.3389/fneur.2021.722986] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022] Open
Abstract
Magnetoencephalography (MEG) is a neurophysiologic test that offers a functional localization of epileptic sources in patients considered for epilepsy surgery. The understanding of clinical MEG concepts, and the interpretation of these clinical studies, are very involving processes that demand both clinical and procedural expertise. One of the major obstacles in acquiring necessary proficiency is the scarcity of fundamental clinical literature. To fill this knowledge gap, this review aims to explain the basic practical concepts of clinical MEG relevant to epilepsy with an emphasis on single equivalent dipole (sECD), which is one the most clinically validated and ubiquitously used source localization method, and illustrate and explain the regional topology and source dynamics relevant for clinical interpretation of MEG-EEG.
Collapse
Affiliation(s)
- Christopher Laohathai
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School at UTHealth, Houston, TX, United States
- Department of Neurology, Saint Louis University, Saint Louis, MO, United States
| | - John S. Ebersole
- Northeast Regional Epilepsy Group, Atlantic Health Neuroscience Institute, Summit, NJ, United States
| | - John C. Mosher
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Anto I. Bagić
- University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), Department of Neurology, University of Pittsburgh Medical Center, Pittsburg, PA, United States
| | - Ai Sumida
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Gretchen Von Allmen
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Michael E. Funke
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School at UTHealth, Houston, TX, United States
| |
Collapse
|
17
|
Demoulin G, Pruvost-Robieux E, Marchi A, Ramdani C, Badier JM, Bartolomei F, Gavaret M. Impact of skull-to-brain conductivity ratio for high resolution EEG source localization. Biomed Phys Eng Express 2021; 7. [PMID: 34298528 DOI: 10.1088/2057-1976/ac177f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/23/2021] [Indexed: 11/12/2022]
Abstract
Objective. To measure the impact of skull-to-brain conductivity ratios on interictal spikes source localizations, using high resolution EEG (HR EEG). In previous studies, two ratios were mainly employed: 1/80 and 1/40. Consequences of the employed ratios on source localization results are poorly studied.Methods. Twenty patients with drug-resistant epilepsy were studied using HR EEG (sixty-four scalp electrodes). For each patient, three-layers realistic head models based on individual MRI were elaborated using boundary element model. For each interictal spike, source localization was performed six times, using six skull-to-brain conductivity ratios (1/80, 1/50, 1/40, 1/30, 1/20 and 1/10), exploring all the spectrum of values reported in the literature. We then measured distances between the different sources obtained and between the sources and the anterior commissure (in order to estimate sources depth).Results. We measured a mean distance of 5.3 mm (sd: 3 mm) between the sources obtained with 1/40 versus 1/80 ratio. This distance increased when the discrepancy between the two evaluated ratios increased. We measured a mean distance of 14.2 mm (sd: 4.9 mm) between sources obtained with 1/10 ratio versus 1/80 ratio. Sources localized using 1/40 ratio were 4.3 mm closer to the anterior commissure than sources localized using 1/80 ratio.Significance. Skull-to-brain conductivity ratio is an often-neglected parameter in source localization studies. The different ratios mainly used in the litterature (1/80 and 1/40) lead to significant differences in source localizations. These variations mainly occur in source depth. A more accurate estimation of skull-to-brain conductivity is needed to increase source localization accuracy.Abbreviations. ECD: equivalent current dipole; EIT: electric impedance tomography, HR EEG: High resolution Electroencephalography, IIS: Inter ictal spikes, MEG: Magnetoencephalography, MRI: Magnetic resonance imaging, mS/m: milli-Siemens/m, S/m: Siemens/m, SD: Standard deviation.
Collapse
Affiliation(s)
- Grégoire Demoulin
- Neurophysiology Department, GHU Paris Psychiatrie et Neurosciences, Sainte Anne Hospital, 1 rue Cabanis, F-75014 Paris, France.,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR 1266, F-75014 Paris, France
| | - Estelle Pruvost-Robieux
- Neurophysiology Department, GHU Paris Psychiatrie et Neurosciences, Sainte Anne Hospital, 1 rue Cabanis, F-75014 Paris, France.,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR 1266, F-75014 Paris, France.,Université de Paris, F-75006 Paris, France
| | - Angela Marchi
- Neurophysiology Department, GHU Paris Psychiatrie et Neurosciences, Sainte Anne Hospital, 1 rue Cabanis, F-75014 Paris, France.,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR 1266, F-75014 Paris, France
| | - Céline Ramdani
- Institut de Recherche Biomédicale des Armées (IRBA), 91223 Brétigny-sur-Orge, France
| | - Jean-Michel Badier
- Aix Marseille Université, France.,INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone Hospital, Epileptology Department, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille Université, France.,INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone Hospital, Epileptology Department, Marseille, France
| | - Martine Gavaret
- Neurophysiology Department, GHU Paris Psychiatrie et Neurosciences, Sainte Anne Hospital, 1 rue Cabanis, F-75014 Paris, France.,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR 1266, F-75014 Paris, France.,Université de Paris, F-75006 Paris, France
| |
Collapse
|
18
|
Schrader S, Westhoff A, Piastra MC, Miinalainen T, Pursiainen S, Vorwerk J, Brinck H, Wolters CH, Engwer C. DUNEuro-A software toolbox for forward modeling in bioelectromagnetism. PLoS One 2021; 16:e0252431. [PMID: 34086715 PMCID: PMC8177522 DOI: 10.1371/journal.pone.0252431] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/14/2021] [Indexed: 01/19/2023] Open
Abstract
Accurate and efficient source analysis in electro- and magnetoencephalography using sophisticated realistic head geometries requires advanced numerical approaches. This paper presents DUNEuro, a free and open-source C++ software toolbox for the numerical computation of forward solutions in bioelectromagnetism. Building upon the DUNE framework, it provides implementations of modern fitted and unfitted finite element methods to efficiently solve the forward problems of electro- and magnetoencephalography. The user can choose between a variety of different source models that are implemented. The software's aim is to provide interfaces that are extendable and easy-to-use. In order to enable a closer integration into existing analysis pipelines, interfaces to Python and MATLAB are provided. The practical use is demonstrated by a source analysis example of somatosensory evoked potentials using a realistic six-compartment head model. Detailed installation instructions and example scripts using spherical and realistic head models are appended.
Collapse
Affiliation(s)
- Sophie Schrader
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Munster, Germany
| | - Andreas Westhoff
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Munster, Germany
- Applied Mathematics: Institute for Analysis and Numerics, University of Münster, Munster, Germany
- Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, Gelsenkirchen, Germany
| | - Maria Carla Piastra
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Munster, Germany
- Applied Mathematics: Institute for Analysis and Numerics, University of Münster, Munster, Germany
- Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Tuuli Miinalainen
- Computing Sciences, Tampere University, Tampere, Finland
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | | | - Johannes Vorwerk
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Munster, Germany
- Institute of Electrical and Biomedical Engineering, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Hall in Tyrol, Austria
| | - Heinrich Brinck
- Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, Gelsenkirchen, Germany
| | - Carsten H. Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Munster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Munster, Germany
| | - Christian Engwer
- Applied Mathematics: Institute for Analysis and Numerics, University of Münster, Munster, Germany
- * E-mail:
| |
Collapse
|
19
|
Hamid L, Habboush N, Stern P, Japaridze N, Aydin Ü, Wolters CH, Claussen JC, Heute U, Stephani U, Galka A, Siniatchkin M. Source imaging of deep-brain activity using the regional spatiotemporal Kalman filter. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 200:105830. [PMID: 33250282 DOI: 10.1016/j.cmpb.2020.105830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE The human brain displays rich and complex patterns of interaction within and among brain networks that involve both cortical and subcortical brain regions. Due to the limited spatial resolution of surface electroencephalography (EEG), EEG source imaging is used to reconstruct brain sources and investigate their spatial and temporal dynamics. The majority of EEG source imaging methods fail to detect activity from subcortical brain structures. The reconstruction of subcortical sources is a challenging task because the signal from these sources is weakened and mixed with artifacts and other signals from cortical sources. In this proof-of-principle study we present a novel EEG source imaging method, the regional spatiotemporal Kalman filter (RSTKF), that can detect deep brain activity. METHODS The regional spatiotemporal Kalman filter (RSTKF) is a generalization of the spatiotemporal Kalman filter (STKF), which allows for the characterization of different regional dynamics in the brain. It is based on state-space modeling with spatially heterogeneous dynamical noise variances, since models with spatial and temporal homogeneity fail to describe the dynamical complexity of brain activity. First, RSTKF is tested using simulated EEG data from sources in the frontal lobe, putamen, and thalamus. After that, it is applied to non-averaged interictal epileptic spikes from a presurgical epilepsy patient with focal epileptic activity in the amygdalo-hippocampal complex. The results of RSTKF are compared to those of low-resolution brain electromagnetic tomography (LORETA) and of standard STKF. RESULTS Only RSTKF is successful in consistently and accurately localizing the sources in deep brain regions. Additionally, RSTKF shows improved spatial resolution compared to LORETA and STKF. CONCLUSIONS RSTKF is a generalization of STKF that allows for accurate, focal, and consistent localization of sources, especially in the deeper brain areas. In contrast to standard source imaging methods, RSTKF may find application in the localization of the epileptogenic zone in deeper brain structures, such as mesial frontal and temporal lobe epilepsies, especially in EEG recordings for which no reliable averaged spike shape can be obtained due to lack of the necessary number of spikes required to reach a certain signal-to-noise ratio level after averaging.
Collapse
Affiliation(s)
- Laith Hamid
- Department of Medical Psychology and Medical Sociology, University of Kiel, D-24113 Kiel, Germany.
| | - Nawar Habboush
- Department of Medical Psychology and Medical Sociology, University of Kiel, D-24113 Kiel, Germany
| | - Philipp Stern
- Institute of Theoretical Physics and Astrophysics, University of Kiel, D-24098 Kiel, Germany
| | - Natia Japaridze
- Department of Neuropediatrics, University of Kiel, D-24098 Kiel, Germany
| | - Ümit Aydin
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, D-48149 Münster, Germany; Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Canada
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, D-48149 Münster, Germany
| | - Jens Christian Claussen
- Institute of Theoretical Physics and Astrophysics, University of Kiel, D-24098 Kiel, Germany; Institute for Neuro- and Bioinformatics, University of Lübeck, D-23562 Lübeck, Germany; Mathematics EAS, Aston University, Aston Triangle, Birmingham B3 7ET, United Kingdom
| | - Ulrich Heute
- Digital Signal Processing and System Theory Group, Faculty of Engineering, University of Kiel, D-24143 Kiel, Germany
| | - Ulrich Stephani
- Department of Neuropediatrics, University of Kiel, D-24098 Kiel, Germany
| | - Andreas Galka
- Department of Medical Psychology and Medical Sociology, University of Kiel, D-24113 Kiel, Germany
| | - Michael Siniatchkin
- Department of Medical Psychology and Medical Sociology, University of Kiel, D-24113 Kiel, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, Evangelisches Klinikum Bethel gGmbH, D-33617 Bielefeld, Germany
| |
Collapse
|
20
|
Schrader S, Antonakakis M, Rampp S, Engwer C, Wolters CH. A novel method for calibrating head models to account for variability in conductivity and its evaluation in a sphere model. Phys Med Biol 2020; 65:245043. [PMID: 33113524 DOI: 10.1088/1361-6560/abc5aa] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The accuracy in electroencephalography (EEG) and combined EEG and magnetoencephalography (MEG) source reconstructions as well as in optimized transcranial electric stimulation (TES) depends on the conductive properties assigned to the head model, and most importantly on individual skull conductivity. In this study, we present an automatic pipeline to calibrate head models with respect to skull conductivity based on the reconstruction of the P20/N20 response using somatosensory evoked potentials and fields. In order to validate in a well-controlled setup without interplay with numerical errors, we evaluate the accuracy of this algorithm in a 4-layer spherical head model using realistic noise levels as well as dipole sources at different eccentricities with strengths and orientations related to somatosensory experiments. Our results show that the reference skull conductivity can be reliably reconstructed for sources resembling the generator of the P20/N20 response. In case of erroneous assumptions on scalp conductivity, the resulting skull conductivity parameter counterbalances this effect, so that EEG source reconstructions using the fitted skull conductivity parameter result in lower errors than when using the standard value. We propose an automatized procedure to calibrate head models which only relies on non-invasive modalities that are available in a standard MEG laboratory, measures under in vivo conditions and in the low frequency range of interest. Calibrated head modeling can improve EEG and combined EEG/MEG source analysis as well as optimized TES.
Collapse
Affiliation(s)
- S Schrader
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | | | | | | | | |
Collapse
|
21
|
Antonakakis M, Schrader S, Aydin Ü, Khan A, Gross J, Zervakis M, Rampp S, Wolters CH. Inter-Subject Variability of Skull Conductivity and Thickness in Calibrated Realistic Head Models. Neuroimage 2020; 223:117353. [DOI: 10.1016/j.neuroimage.2020.117353] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/19/2020] [Accepted: 09/05/2020] [Indexed: 01/11/2023] Open
|
22
|
Head phantoms for bioelectromagnetic applications: a material study. Biomed Eng Online 2020; 19:87. [PMID: 33228687 PMCID: PMC7685571 DOI: 10.1186/s12938-020-00830-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/07/2020] [Indexed: 11/30/2022] Open
Abstract
Background Assessments of source reconstruction procedures in electroencephalography and computations of transcranial electrical stimulation profiles require verification and validation with the help of ground truth configurations as implemented by physical head phantoms. For these phantoms, synthetic materials are needed, which are mechanically and electrochemically stable and possess conductivity values similar to the modeled human head tissues. Three-compartment head models comprise a scalp layer with a conductivity range of 0.137 S/m to 2.1 S/m, a skull layer with conductivity values between 0.066 S/m and 0.00275 S/m, and an intracranial volume with an often-used average conductivity value of 0.33 S/m. To establish a realistically shaped physical head phantom with a well-defined volume conduction configuration, we here characterize the electrical conductivity of synthetic materials for modeling head compartments. We analyzed agarose hydrogel, gypsum, and sodium chloride (NaCl) solution as surrogate materials for scalp, skull, and intracranial volume. We measured the impedance of all materials when immersed in NaCl solution using a four-electrode setup. The measured impedance values were used to calculate the electrical conductivity values of each material. Further, the conductivities in the longitudinal and transverse directions of reed sticks immersed in NaCl solution were measured to test their suitability for mimicking the anisotropic conductivity of white matter tracts. Results We obtained conductivities of 0.314 S/m, 0.30 S/m, 0.311 S/m (2%, 3%, 4% agarose), 0.0425 S/m and 0.0017 S/m (gypsum with and without NaCl in the compound), and 0.332 S/m (0.17% NaCl solution). These values are within the range of the conductivity values used for EEG and TES modeling. The reed sticks showed anisotropic conductivity with a ratio of 1:2.8. Conclusion We conclude that agarose, gypsum, and NaCl solution can serve as stable representations of the three main conductivity compartments of the head, i.e., scalp, skull, and intracranial volume. An anisotropic conductivity structure such as a fiber track in white matter can be modeled using tailored reed sticks inside a volume conductor.![]()
Collapse
|
23
|
Khan A, Haueisen J, Wolters CH, Antonakakis M, Vogenauer N, Wollbrink A, Suntrup-Krueger S, Schneider TR, Herrmann CS, Nitsche M, Paulus W. Constrained maximum intensity optimized multi-electrode tDCS targeting of human somatosensory network. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:5894-5897. [PMID: 31947191 DOI: 10.1109/embc.2019.8857253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive method that delivers current through the scalp to enhance or suppress brain activity. The standard way of applying tDCS is by the use of two large rectangular sponge electrodes on the scalp. The resulting currents often stimulate a broad region of the brain distributed over brain networks. In order to address this issue, recently, multi-electrode transcranial direct current stimulation with optimized montages has been used to stimulate brain regions of interest (ROI) with improved trade-off between focality and intensity of the electrical current at the target brain region. However, in many cases only the location of target region is considered and not the orientation. Here we emphasize the importance of calculating the individualized target location and orientation by combined electroencephalography and magnetoencephalography (EMEG) source analysis in individualized skull-conductivity calibrated finite element method (FEM) head models and stimulate the target region by four different tDCS montages. We have chosen the generator of the P20/N20 component, located at Brodmann area 3b and oriented mainly from posterior to anterior directions as our target for stimulation because it can be modeled as a single dipole source with a fixed position and orientation. The simulations will deliver optimized excitatory and inhibitory electrode montages that are in future investigations compared to standard and sham tDCS in a somatosensory experiment. We also present a new constrained maximum intensity (CMI) optimization approach that better distributes the currents over multiple electrodes, therefore should lead to less tingling and burning sensations at the skin, and thus allows an easier realization of the sham condition significantly reducing the current intensity parallel to the target.
Collapse
|
24
|
Aydin Ü, Pellegrino G, Ali OBK, Abdallah C, Dubeau F, Lina JM, Kobayashi E, Grova C. Magnetoencephalography resting state connectivity patterns as indicatives of surgical outcome in epilepsy patients. J Neural Eng 2020; 17:035007. [PMID: 32191632 DOI: 10.1088/1741-2552/ab8113] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Focal epilepsy is a disorder affecting several brain networks; however, epilepsy surgery usually targets a restricted region, the so-called epileptic focus. There is a growing interest in embedding resting state (RS) connectivity analysis into pre-surgical workup. APPROACH In this retrospective study, we analyzed Magnetoencephalography (MEG) long-range RS functional connectivity patterns in patients with drug-resistant focal epilepsy. MEG recorded prior to surgery from seven seizure-free (Engel Ia) and five non seizure-free (Engel III or IV) patients were analyzed (minimum 2-years post-surgical follow-up). MEG segments without any detectable epileptic activity were source localized using wavelet-based Maximum Entropy on the Mean method. Amplitude envelope correlation in the theta (4-8 Hz), alpha (8-13 Hz), and beta (13-26 Hz) bands were used for assessing connectivity. MAIN RESULTS For seizure-free patients, we found an isolated epileptic network characterized by weaker connections between the brain region where interictal epileptic discharges (IED) are generated and the rest of the cortex, when compared to connectivity between the corresponding contralateral homologous region and the rest of the cortex. Contrarily, non seizure-free patients exhibited a widespread RS epileptic network characterized by stronger connectivity between the IED generator and the rest of the cortex, in comparison to the contralateral region and the cortex. Differences between the two seizure outcome groups concerned mainly distant long-range connections and were found in the alpha-band. SIGNIFICANCE Importantly, these connectivity patterns suggest specific mechanisms describing the underlying organization of the epileptic network and were detectable at the individual patient level, supporting the prospect use of MEG connectivity patterns in epilepsy to predict post-surgical seizure outcome.
Collapse
Affiliation(s)
- Ümit Aydin
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Québec, Canada. Authors to whom any correspondence should be addressed
| | | | | | | | | | | | | | | |
Collapse
|
25
|
P120 Combined EEG/MEG targeting and multi-electrode individually optimized tDCS stimulation of the human somatosensory network. Clin Neurophysiol 2020. [DOI: 10.1016/j.clinph.2019.12.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Plummer C, Vogrin SJ, Woods WP, Murphy MA, Cook MJ, Liley DTJ. Interictal and ictal source localization for epilepsy surgery using high-density EEG with MEG: a prospective long-term study. Brain 2019; 142:932-951. [PMID: 30805596 PMCID: PMC6459284 DOI: 10.1093/brain/awz015] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/07/2018] [Accepted: 12/05/2018] [Indexed: 11/17/2022] Open
Abstract
Drug-resistant focal epilepsy is a major clinical problem and surgery is under-used. Better non-invasive techniques for epileptogenic zone localization are needed when MRI shows no lesion or an extensive lesion. The problem is interictal and ictal localization before propagation from the epileptogenic zone. High-density EEG (HDEEG) and magnetoencephalography (MEG) offer millisecond-order temporal resolution to address this but co-acquisition is challenging, ictal MEG studies are rare, long-term prospective studies are lacking, and fundamental questions remain. Should HDEEG-MEG discharges be assessed independently [electroencephalographic source localization (ESL), magnetoencephalographic source localization (MSL)] or combined (EMSL) for source localization? Which phase of the discharge best characterizes the epileptogenic zone (defined by intracranial EEG and surgical resection relative to outcome)? Does this differ for interictal and ictal discharges? Does MEG detect mesial temporal lobe discharges? Thirteen patients (10 non-lesional, three extensive-lesional) underwent synchronized HDEEG-MEG (72–94 channel EEG, 306-sensor MEG). Source localization (standardized low-resolution tomographic analysis with MRI patient-individualized boundary-element method) was applied to averaged interictal epileptiform discharges (IED) and ictal discharges at three phases: ‘early-phase’ (first latency 90% explained variance), ‘mid-phase’ (first of 50% rising-phase, 50% mean global field power), ‘late-phase’ (negative peak). ‘Earliest-solution’ was the first of the three early-phase solutions (ESL, MSL, EMSL). Prospective follow-up was 3–21 (median 12) months before surgery, 14–39 (median 21) months after surgery. IEDs (n = 1474) were recorded, seen in: HDEEG only, 626 (42%); MEG only, 232 (16%); and both 616 (42%). Thirty-three seizures were captured, seen in: HDEEG only, seven (21%); MEG only, one (3%); and both 25 (76%). Intracranial EEG was done in nine patients. Engel scores were I (9/13, 69%), II (2/13,15%), and III (2/13). MEG detected baso-mesial temporal lobe epileptogenic zone sources. Epileptogenic zone OR [odds ratio(s)] were significantly higher for earliest-solution versus early-phase IED-surgical resection and earliest-solution versus all mid-phase and late-phase solutions. ESL outperformed EMSL for ictal-surgical resection [OR 3.54, 95% confidence interval (CI) 1.09–11.55, P = 0.036]. MSL outperformed EMSL for IED-intracranial EEG (OR 4.67, 95% CI 1.19–18.34, P = 0.027). ESL outperformed MSL for ictal-surgical resection (OR 3.73, 95% CI 1.16–12.03, P = 0.028) but was outperformed by MSL for IED-intracranial EEG (OR 0.18, 95% CI 0.05–0.73, P = 0.017). Thus, (i) HDEEG and MEG source solutions more accurately localize the epileptogenic zone at the earliest resolvable phase of interictal and ictal discharges, not mid-phase (as is common practice) or late peak-phase (when signal-to-noise ratios are maximal); (ii) from empirical observation of the differential timing of HDEEG and MEG discharges and based on the superiority of ESL plus MSL over either modality alone and over EMSL, concurrent HDEEG-MEG signals should be assessed independently, not combined; (iii) baso-mesial temporal lobe sources are detectable by MEG; and (iv) MEG is not ‘more accurate’ than HDEEG—emphasis is best placed on the earliest signal (whether HDEEG or MEG) amenable to source localization. Our findings challenge current practice and our reliance on invasive monitoring in these patients.
Collapse
Affiliation(s)
- Chris Plummer
- Department of Neurology, St Vincent's Hospital, Fitzroy, Australia.,School of Health Sciences, Swinburne University of Technology, Hawthorn, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia
| | - Simon J Vogrin
- Department of Neurology, St Vincent's Hospital, Fitzroy, Australia.,School of Health Sciences, Swinburne University of Technology, Hawthorn, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia
| | - William P Woods
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Australia
| | - Michael A Murphy
- Department of Neurology, St Vincent's Hospital, Fitzroy, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia
| | - Mark J Cook
- Department of Neurology, St Vincent's Hospital, Fitzroy, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia.,Graeme Clark Institute of Biomedical Engineering, University of Melbourne, Parkville, Australia
| | - David T J Liley
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia.,Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Australia
| |
Collapse
|
27
|
Vorwerk J, Hanrath A, Wolters CH, Grasedyck L. The multipole approach for EEG forward modeling using the finite element method. Neuroimage 2019; 201:116039. [PMID: 31369809 DOI: 10.1016/j.neuroimage.2019.116039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/14/2019] [Accepted: 07/19/2019] [Indexed: 01/19/2023] Open
Abstract
For accurate EEG forward solutions, it is necessary to apply numerical methods that allow to take into account the realistic geometry of the subject's head. A commonly used method to solve this task is the finite element method (FEM). Different approaches have been developed to obtain EEG forward solutions for dipolar sources with the FEM. The St. Venant approach is frequently applied, since its high numerical accuracy and stability as well as its computational efficiency was demonstrated in multiple comparison studies. In this manuscript, we propose a variation of the St. Venant approach, the multipole approach, to improve the numerical accuracy of the St. Venant approach even further and to allow for the simulation of additional source scenarios, such as quadrupolar sources. Exploiting the multipole expansion of electric fields, we demonstrate that the newly proposed multipole approach achieves even higher numerical accuracies than the St. Venant approach in both multi-layer sphere and realistic head models. Additionally, we exemplarily show that the multipole approach allows to not only simulate dipolar but also quadrupolar sources.
Collapse
Affiliation(s)
- Johannes Vorwerk
- Institute of Electrical and Biomedical Engineering, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria; Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany.
| | - Anne Hanrath
- Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Aachen, Germany
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Lars Grasedyck
- Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Aachen, Germany
| |
Collapse
|
28
|
Scherg M, Berg P, Nakasato N, Beniczky S. Taking the EEG Back Into the Brain: The Power of Multiple Discrete Sources. Front Neurol 2019; 10:855. [PMID: 31481921 PMCID: PMC6710389 DOI: 10.3389/fneur.2019.00855] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/23/2019] [Indexed: 11/13/2022] Open
Abstract
Background: In contrast to many neuroimaging modalities, clinical interpretation of EEG does not take advantage of post-processing and digital signal analysis. In most centers, EEG is still interpreted at sensor level, exactly as half a century ago. A major task in clinical EEG interpretation is the identification of interictal epileptiform discharges (IEDs). However, due to the overlap of background activity, IEDs can be hard to detect in the scalp EEG. Since traditional montages, like bipolar and average reference, are linear transformations of the recorded channels, the question is whether we can provide linear transformations of the digital EEG to take it back into the brain, at least on a macroscopic level. The goal is to improve visibility of epileptiform activities and to separate out most of the overlap. Methods: Multiple discrete sources provide a stable linear inverse to transform the EEG into source space with little cross-talk between source regions. The model can be based on a few dipoles or regional sources, adapted to the individual EEG and MRI data, or on selected standard sources evenly distributed throughout the brain, e.g. below the 25 EEG standard electrodes. Results: Auditory and somatosensory evoked potentials serve as teaching examples to show how various source spaces can reveal the underlying source components including their loss or alteration due to lesions. Source spaces were able to reveal the propagation of source activities in frontal IEDs and the sequential activation of the major nodes of the underlying epileptic network in myoclonic epilepsy. The power of multiple discrete sources in separating the activities of different brain regions was also evident in the ongoing EEG of cases with frontal cortical dysplasia and bitemporal lobe epilepsy. The new source space 25 made IEDs more clearly visible over the EEG background signals. The more focal nature of source vs. scalp space was quantitatively confirmed using a new measurement of focality. Conclusion: Multiple discrete sources have the power to transform the EEG back into the brain by defining new EEG traces in source space. Using standard source space 25, these can provide for improved clinical interpretation of EEG.
Collapse
Affiliation(s)
| | - Patrick Berg
- Research Department, BESA GmbH, Gräfelfing, Germany
| | | | - Sándor Beniczky
- Department of Clinical Neurophysiology, Danish Epilepsy Centre, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
29
|
Antonakakis M, Schrader S, Wollbrink A, Oostenveld R, Rampp S, Haueisen J, Wolters CH. The effect of stimulation type, head modeling, and combined EEG and MEG on the source reconstruction of the somatosensory P20/N20 component. Hum Brain Mapp 2019; 40:5011-5028. [PMID: 31397966 PMCID: PMC6865415 DOI: 10.1002/hbm.24754] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/23/2019] [Accepted: 07/28/2019] [Indexed: 11/06/2022] Open
Abstract
Modeling and experimental parameters influence the Electro- (EEG) and Magnetoencephalography (MEG) source analysis of the somatosensory P20/N20 component. In a sensitivity group study, we compare P20/N20 source analysis due to different stimulation type (Electric-Wrist [EW], Braille-Tactile [BT], or Pneumato-Tactile [PT]), measurement modality (combined EEG/MEG - EMEG, EEG, or MEG) and head model (standard or individually skull-conductivity calibrated including brain anisotropic conductivity). Considerable differences between pairs of stimulation types occurred (EW-BT: 8.7 ± 3.3 mm/27.1° ± 16.4°, BT-PT: 9 ± 5 mm/29.9° ± 17.3°, and EW-PT: 9.8 ± 7.4 mm/15.9° ± 16.5° and 75% strength reduction of BT or PT when compared to EW) regardless of the head model used. EMEG has nearly no localization differences to MEG, but large ones to EEG (16.1 ± 4.9 mm), while source orientation differences are non-negligible to both EEG (14° ± 3.7°) and MEG (12.5° ± 10.9°). Our calibration results show a considerable inter-subject variability (3.1-14 mS/m) for skull conductivity. The comparison due to different head model show localization differences smaller for EMEG (EW: 3.4 ± 2.4 mm, BT: 3.7 ± 3.4 mm, and PT: 5.9 ± 6.8 mm) than for EEG (EW: 8.6 ± 8.3 mm, BT: 11.8 ± 6.2 mm, and PT: 10.5 ± 5.3 mm), while source orientation differences for EMEG (EW: 15.4° ± 6.3°, BT: 25.7° ± 15.2° and PT: 14° ± 11.5°) and EEG (EW: 14.6° ± 9.5°, BT: 16.3° ± 11.1° and PT: 12.9° ± 8.9°) are in the same range. Our results show that stimulation type, modality and head modeling all have a non-negligible influence on the source reconstruction of the P20/N20 component. The complementary information of both modalities in EMEG can be exploited on the basis of detailed and individualized head models.
Collapse
Affiliation(s)
- Marios Antonakakis
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
| | - Sophie Schrader
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
| | - Andreas Wollbrink
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
| | - Robert Oostenveld
- Donders Institute, Radboud University, Nijmegen, Netherlands.,Karolinska Institute, Stockholm, Sweden
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany
| | - Jens Haueisen
- Institute for Biomedical Engineering and Informatics, Technical University of Ilmenau, Ilmenau, Germany
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
30
|
Vorwerk J, Aydin Ü, Wolters CH, Butson CR. Influence of Head Tissue Conductivity Uncertainties on EEG Dipole Reconstruction. Front Neurosci 2019; 13:531. [PMID: 31231178 PMCID: PMC6558618 DOI: 10.3389/fnins.2019.00531] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/08/2019] [Indexed: 11/28/2022] Open
Abstract
Reliable EEG source analysis depends on sufficiently detailed and accurate head models. In this study, we investigate how uncertainties inherent to the experimentally determined conductivity values of the different conductive compartments influence the results of EEG source analysis. In a single source scenario, the superficial and focal somatosensory P20/N20 component, we analyze the influence of varying conductivities on dipole reconstructions using a generalized polynomial chaos (gPC) approach. We find that in particular the conductivity uncertainties for skin and skull have a significant influence on the EEG inverse solution, leading to variations in source localization by several centimeters. The conductivity uncertainties for gray and white matter were found to have little influence on the source localization, but a strong influence on the strength and orientation of the reconstructed source, respectively. As the CSF conductivity is most accurately determined of all conductivities in a realistic head model, CSF conductivity uncertainties had a negligible influence on the source reconstruction. This small uncertainty is a further benefit of distinguishing the CSF in realistic volume conductor models.
Collapse
Affiliation(s)
- Johannes Vorwerk
- Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, United States
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
- Institute of Electrical and Biomedical Engineering, UMIT - University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Ümit Aydin
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - Carsten H. Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Christopher R. Butson
- Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, United States
- Departments of Biomedical Engineering, Neurology, and Psychiatry, University of Utah, Salt Lake City, UT, United States
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
31
|
Variation in Reported Human Head Tissue Electrical Conductivity Values. Brain Topogr 2019; 32:825-858. [PMID: 31054104 PMCID: PMC6708046 DOI: 10.1007/s10548-019-00710-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/13/2019] [Indexed: 01/01/2023]
Abstract
Electromagnetic source characterisation requires accurate volume conductor models representing head geometry and the electrical conductivity field. Head tissue conductivity is often assumed from previous literature, however, despite extensive research, measurements are inconsistent. A meta-analysis of reported human head electrical conductivity values was therefore conducted to determine significant variation and subsequent influential factors. Of 3121 identified publications spanning three databases, 56 papers were included in data extraction. Conductivity values were categorised according to tissue type, and recorded alongside methodology, measurement condition, current frequency, tissue temperature, participant pathology and age. We found variation in electrical conductivity of the whole-skull, the spongiform layer of the skull, isotropic, perpendicularly- and parallelly-oriented white matter (WM) and the brain-to-skull-conductivity ratio (BSCR) could be significantly attributed to a combination of differences in methodology and demographics. This large variation should be acknowledged, and care should be taken when creating volume conductor models, ideally constructing them on an individual basis, rather than assuming them from the literature. When personalised models are unavailable, it is suggested weighted average means from the current meta-analysis are used. Assigning conductivity as: 0.41 S/m for the scalp, 0.02 S/m for the whole skull, or when better modelled as a three-layer skull 0.048 S/m for the spongiform layer, 0.007 S/m for the inner compact and 0.005 S/m for the outer compact, as well as 1.71 S/m for the CSF, 0.47 S/m for the grey matter, 0.22 S/m for WM and 50.4 for the BSCR.
Collapse
|
32
|
Roesmann K, Dellert T, Junghoefer M, Kissler J, Zwitserlood P, Zwanzger P, Dobel C. The causal role of prefrontal hemispheric asymmetry in valence processing of words – Insights from a combined cTBS-MEG study. Neuroimage 2019; 191:367-379. [DOI: 10.1016/j.neuroimage.2019.01.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 10/27/2022] Open
|
33
|
van Klink N, Mooij A, Huiskamp G, Ferrier C, Braun K, Hillebrand A, Zijlmans M. Simultaneous MEG and EEG to detect ripples in people with focal epilepsy. Clin Neurophysiol 2019; 130:1175-1183. [PMID: 30871799 DOI: 10.1016/j.clinph.2019.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE We studied ripples (80-250 Hz) simultaneously recorded in electroencephalography (EEG) and magnetoencephalography (MEG) to evaluate the differences. METHODS Simultaneous EEG and MEG were recorded in 30 patients with drug resistant focal epilepsy. Ripples were automatically detected and visually checked in virtual channels throughout the cortex. The number and location of ripples in EEG and MEG were compared to each other and to a region of interest (ROI) defined by clinically available information. RESULTS Eleven patients showed ripples in both MEG and EEG, 11 only in EEG and one only in MEG. Twenty-four percent of the ripples occurred simultaneously in EEG and MEG, 71% only in EEG, and 5% only in MEG. Three patients without spikes in EEG showed EEG ripples. Ripple localization was concordant with the ROI in 80% of patients with MEG ripples, as opposed to 62% full or partial concordance for EEG ripples. With the optimal threshold for localizing the ROI, sensitivity and specificity were more than 80%. CONCLUSIONS Ripples in MEG are less frequent but more specific and sensitive for the region of interest than ripples in EEG. Ripples in EEG can exist without spikes in the EEG. SIGNIFICANCE Ripples in MEG and EEG provide complementary information.
Collapse
Affiliation(s)
- Nicole van Klink
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, UMC Utrecht, the Netherlands; SEIN - Stichting Epilepsie Instellingen Nederland, Heemstede, the Netherlands.
| | - Anne Mooij
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, UMC Utrecht, the Netherlands
| | - Geertjan Huiskamp
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, UMC Utrecht, the Netherlands
| | - Cyrille Ferrier
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, UMC Utrecht, the Netherlands
| | - Kees Braun
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, UMC Utrecht, the Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and Magnetoencephalography Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Maeike Zijlmans
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, UMC Utrecht, the Netherlands; SEIN - Stichting Epilepsie Instellingen Nederland, Heemstede, the Netherlands
| |
Collapse
|
34
|
Pillain A, Rahmouni L, Andriulli F. Handling anisotropic conductivities in the EEG forward problem with a symmetric formulation. Phys Med Biol 2019; 64:035022. [PMID: 30577034 DOI: 10.1088/1361-6560/aafaaf] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The electroencephalography (EEG) forward problem, the computation of the electric potential generated by a known electric current source configuration in the brain, is a key step of EEG source analysis. In this problem, it is often desired to model the anisotropic conductivity profiles of the skull and of the white matter. These profiles, however, cannot be handled by standard surface integral formulations and the use of volume finite elements is required. Leveraging on the representation theorem using an anisotropic fundamental solution, this paper proposes a modified symmetric formulation for solving the EEG forward problem by a surface integral equation which can take into account anisotropic conductivity profiles. A set of numerical results is presented to corroborate theoretical treatments and to show the impact of the proposed approach on both canonical and real case scenarios.
Collapse
Affiliation(s)
- Axelle Pillain
- Computational Electromagnetics Research Laboratory, IMT Atlantique, Brest, France
| | | | | |
Collapse
|
35
|
Duez L, Tankisi H, Hansen PO, Sidenius P, Sabers A, Pinborg LH, Fabricius M, Rásonyi G, Rubboli G, Pedersen B, Leffers AM, Uldall P, Jespersen B, Brennum J, Henriksen OM, Fuglsang-Frederiksen A, Beniczky S. Electromagnetic source imaging in presurgical workup of patients with epilepsy: A prospective study. Neurology 2019; 92:e576-e586. [PMID: 30610090 PMCID: PMC6382058 DOI: 10.1212/wnl.0000000000006877] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/02/2018] [Indexed: 11/23/2022] Open
Abstract
Objective To determine the diagnostic accuracy and clinical utility of electromagnetic source imaging (EMSI) in presurgical evaluation of patients with epilepsy. Methods We prospectively recorded magnetoencephalography (MEG) simultaneously with EEG and performed EMSI, comprising electric source imaging, magnetic source imaging, and analysis of combined MEG-EEG datasets, using 2 different software packages. As reference standard for irritative zone (IZ) and seizure onset zone (SOZ), we used intracranial recordings and for localization accuracy, outcome 1 year after operation. Results We included 141 consecutive patients. EMSI showed localized epileptiform discharges in 94 patients (67%). Most of the epileptiform discharge clusters (72%) were identified by both modalities, 15% only by EEG, and 14% only by MEG. Agreement was substantial between inverse solutions and moderate between software packages. EMSI provided new information that changed the management plan in 34% of the patients, and these changes were useful in 80%. Depending on the method, EMSI had a concordance of 53% to 89% with IZ and 35% to 73% with SOZ. Localization accuracy of EMSI was between 44% and 57%, which was not significantly different from MRI (49%–76%) and PET (54%–85%). Combined EMSI achieved significantly higher odds ratio compared to electric source imaging and magnetic source imaging. Conclusion EMSI has accuracy similar to established imaging methods and provides clinically useful, new information in 34% of the patients. Classification of evidence This study provides Class IV evidence that EMSI had a concordance of 53%–89% and 35%–73% (depending on analysis) for the localization of epileptic focus as compared with intracranial recordings—IZ and SOZ, respectively.
Collapse
Affiliation(s)
- Lene Duez
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Hatice Tankisi
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Peter Orm Hansen
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Per Sidenius
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Anne Sabers
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Lars H Pinborg
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Martin Fabricius
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - György Rásonyi
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Guido Rubboli
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Birthe Pedersen
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Anne-Mette Leffers
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Peter Uldall
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Bo Jespersen
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Jannick Brennum
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Otto Mølby Henriksen
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Anders Fuglsang-Frederiksen
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Sándor Beniczky
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark.
| |
Collapse
|
36
|
Indahlastari A, Chauhan M, Sadleir RJ. Benchmarking transcranial electrical stimulation finite element models: a comparison study. J Neural Eng 2019; 16:026019. [PMID: 30605892 DOI: 10.1088/1741-2552/aafbbd] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To compare field measure differences in simulations of transcranial electrical stimulation (tES) generated by variations in finite element (FE) models due to boundary condition specification, use of tissue compartment smoothing filters, and use of free or structured tetrahedral meshes based on magnetic resonance imaging (MRI) data. APPROACH A structural MRI head volume was acquired at 1 mm3 resolution and segmented into ten tissue compartments. Predicted current densities and electric fields were computed in segmented models using modeling pipelines involving either an in-house (block) or a commercial platform commonly used in previous FE tES studies involving smoothed compartments and free meshing procedures (smooth). The same boundary conditions were used for both block and smooth pipelines. Differences caused by varying boundary conditions were examined using a simple geometry. Percentage differences of median current density values in five cortical structures were compared between the two pipelines for three electrode montages (F3-right supraorbital, T7-T8 and Cz-Oz). MAIN RESULTS Use of boundary conditions commonly used in previous tES FE studies produced asymmetric current density profiles in the simple geometry. In head models, median current density differences produced by the two pipelines, using the same boundary conditions, were up to 6% (isotropic) and 18% (anisotropic) in structures targeted by each montage. Tangential electric field measures calculated via either pipeline were within the range of values reported in the literature, when averaged over cortical surface patches. SIGNIFICANCE Apparently equivalent boundary settings may affect predicted current density outcomes and care must be taken in their specification. Smoothing FE model compartments may not be necessary, and directly translated, voxellated tissue boundaries at 1 mm3 resolution may be sufficient for use in tES FE studies, greatly reducing processing times. The findings here may be used to inform future current density modeling studies.
Collapse
Affiliation(s)
- Aprinda Indahlastari
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
| | | | | |
Collapse
|
37
|
Rimpiläinen V, Koulouri A, Lucka F, Kaipio JP, Wolters CH. Improved EEG source localization with Bayesian uncertainty modelling of unknown skull conductivity. Neuroimage 2018; 188:252-260. [PMID: 30529398 DOI: 10.1016/j.neuroimage.2018.11.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022] Open
Abstract
Electroencephalography (EEG) source imaging is an ill-posed inverse problem that requires accurate conductivity modelling of the head tissues, especially the skull. Unfortunately, the conductivity values are difficult to determine in vivo. In this paper, we show that the exact knowledge of the skull conductivity is not always necessary when the Bayesian approximation error (BAE) approach is exploited. In BAE, we first postulate a probability distribution for the skull conductivity that describes our (lack of) knowledge on its value, and model the effects of this uncertainty on EEG recordings with the help of an additive error term in the observation model. Before the Bayesian inference, the likelihood is marginalized over this error term. Thus, in the inversion we estimate only our primary unknown, the source distribution. We quantified the improvements in the source localization when the proposed Bayesian modelling was used in the presence of different skull conductivity errors and levels of measurement noise. Based on the results, BAE was able to improve the source localization accuracy, particularly when the unknown (true) skull conductivity was much lower than the expected standard conductivity value. The source locations that gained the highest improvements were shallow and originally exhibited the largest localization errors. In our case study, the benefits of BAE became negligible when the signal-to-noise ratio dropped to 20 dB.
Collapse
Affiliation(s)
- Ville Rimpiläinen
- Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom; Institute for Biomagnetism and Biosignalanalysis, University of Münster, Malmedyweg 15, D-48149, Münster, Germany.
| | - Alexandra Koulouri
- Laboratory of Mathematics, Tampere University of Technology, P. O. Box 692, 33101, Tampere, Finland; Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 541 24, Greece
| | - Felix Lucka
- Computational Imaging, Centrum Wiskunde & Informatica, Science Park 123, 1098 XG, Amsterdam, the Netherlands; Centre for Medical Image Computing, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Jari P Kaipio
- Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; Department of Applied Physics, University of Eastern Finland, FI-90211, Kuopio, Finland
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Malmedyweg 15, D-48149, Münster, Germany
| |
Collapse
|
38
|
Opitz A, Yeagle E, Thielscher A, Schroeder C, Mehta AD, Milham MP. On the importance of precise electrode placement for targeted transcranial electric stimulation. Neuroimage 2018; 181:560-567. [PMID: 30010008 PMCID: PMC6139038 DOI: 10.1016/j.neuroimage.2018.07.027] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 06/13/2018] [Accepted: 07/12/2018] [Indexed: 12/31/2022] Open
Abstract
Transcranial electric stimulation (TES) is an increasingly popular method for non-invasive modulation of brain activity and a potential treatment for neuropsychiatric disorders. However, there are concerns about the reliability of its application because of variability in TES-induced intracranial electric fields across individuals. While realistic computational models offer can help to alleviate these concerns, their direct empirical validation is sparse, and their practical implications are not always clear. In this study, we combine direct intracranial measurements of electric fields generated by TES in surgical epilepsy patients with computational modeling. First, we directly validate the computational models and identify key parameters needed for accurate model predictions. Second, we derive practical guidelines for a reliable application of TES in terms of the precision of electrode placement needed to achieve a desired electric field distribution. Based on our results, we recommend electrode placement accuracy to be < 1 cm for a reliable application of TES across sessions.
Collapse
Affiliation(s)
- Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Center for the Developing Brain, Child Mind Institute, New York, NY, USA.
| | - Erin Yeagle
- Department of Neurosurgery, Hofstra Northwell School of Medicine, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Axel Thielscher
- Danish Research Center for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Charles Schroeder
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Departments of Neurological Surgery and Psychiatry, Columbia University College of Physicians and Surgeons, New York, USA
| | - Ashesh D Mehta
- Department of Neurosurgery, Hofstra Northwell School of Medicine, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Michael P Milham
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| |
Collapse
|
39
|
Cuartas Morales E, Acosta-Medina CD, Castellanos-Dominguez G, Mantini D. A Finite-Difference Solution for the EEG Forward Problem in Inhomogeneous Anisotropic Media. Brain Topogr 2018; 32:229-239. [PMID: 30341590 DOI: 10.1007/s10548-018-0683-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/08/2018] [Indexed: 11/24/2022]
Abstract
Accurate source localization of electroencephalographic (EEG) signals requires detailed information about the geometry and physical properties of head tissues. Indeed, these strongly influence the propagation of neural activity from the brain to the sensors. Finite difference methods (FDMs) are head modelling approaches relying on volumetric data information, which can be directly obtained using magnetic resonance (MR) imaging. The specific goal of this study is to develop a computationally efficient FDM solution that can flexibly integrate voxel-wise conductivity and anisotropy information. Given the high computational complexity of FDMs, we pay particular attention to attain a very low numerical error, as evaluated using exact analytical solutions for spherical volume conductor models. We then demonstrate the computational efficiency of our FDM numerical solver, by comparing it with alternative solutions. Finally, we apply the developed head modelling tool to high-resolution MR images from a real experimental subject, to demonstrate the potential added value of incorporating detailed voxel-wise conductivity and anisotropy information. Our results clearly show that the developed FDM can contribute to a more precise head modelling, and therefore to a more reliable use of EEG as a brain imaging tool.
Collapse
Affiliation(s)
- Ernesto Cuartas Morales
- Signal Processing and Recognition Group, Faculty of Engineering, Universidad Nacional de Colombia, Km 9 Vía al Aeropuerto la Nubia, Manizales, 170001, Colombia
| | - Carlos D Acosta-Medina
- Signal Processing and Recognition Group, Faculty of Engineering, Universidad Nacional de Colombia, Km 9 Vía al Aeropuerto la Nubia, Manizales, 170001, Colombia
| | - German Castellanos-Dominguez
- Signal Processing and Recognition Group, Faculty of Engineering, Universidad Nacional de Colombia, Km 9 Vía al Aeropuerto la Nubia, Manizales, 170001, Colombia
| | - Dante Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Tervuursevest 101, 3001, Leuven, Belgium. .,Functional Neuroimaging Laboratory, IRCCS San Camillo Hospital Foundation, 30126, Venice, Italy.
| |
Collapse
|
40
|
Miinalainen T, Rezaei A, Us D, Nüßing A, Engwer C, Wolters CH, Pursiainen S. A realistic, accurate and fast source modeling approach for the EEG forward problem. Neuroimage 2018; 184:56-67. [PMID: 30165251 DOI: 10.1016/j.neuroimage.2018.08.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/09/2018] [Accepted: 08/22/2018] [Indexed: 11/20/2022] Open
Abstract
The aim of this paper is to advance electroencephalography (EEG) source analysis using finite element method (FEM) head volume conductor models that go beyond the standard three compartment (skin, skull, brain) approach and take brain tissue inhomogeneity (gray and white matter and cerebrospinal fluid) into account. The new approach should enable accurate EEG forward modeling in the thin human cortical structures and, more specifically, in the especially thin cortices in children brain research or in pathological applications. The source model should thus be focal enough to be usable in the thin cortices, but should on the other side be more realistic than the current standard mathematical point dipole. Furthermore, it should be numerically accurate and computationally fast. We propose to achieve the best balance between these demands with a current preserving (divergence conforming) dipolar source model. We develop and investigate a varying number of current preserving source basis elements n (n=1,…,n=5). For validation, we conducted numerical experiments within a multi-layered spherical domain, where an analytical solution exists. We show that the accuracy increases along with the number of basis elements, while focality decreases. The results suggest that the best balance between accuracy and focality in thin cortices is achieved with n=4 (or in extreme cases even n=3) basis functions, while in thicker cortices n=5 is recommended to obtain the highest accuracy. We also compare the current preserving approach to two further FEM source modeling techniques, namely partial integration and St. Venant, and show that the best current preserving source model outperforms the competing methods with regard to overall balance. For all tested approaches, FEM transfer matrices enable high computational speed. We implemented the new EEG forward modeling approaches into the open source duneuro library for forward modeling in bioelectromagnetism to enable its broader use by the brain research community. This library is build upon the DUNE framework for parallel finite elements simulations and integrates with high-level toolboxes like FieldTrip. Additionally, an inversion test has been implemented using the realistic head model to demonstrate and compare the differences between the aforementioned source models.
Collapse
Affiliation(s)
- Tuuli Miinalainen
- Laboratory of Mathematics, Tampere University of Technology, P.O. Box 692, 33101, Tampere, Finland; Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany, Malmedyweg 15, D-48149, Münster, Germany; Institute for Computational and Applied Mathematics, University of Münster, Germany, Einsteinstrasse 62, D-48149, Münster, Germany; Department of Applied Physics, University of Eastern Finland, P.O.Box 1627, FI-70211 Kuopio, Finland
| | - Atena Rezaei
- Laboratory of Mathematics, Tampere University of Technology, P.O. Box 692, 33101, Tampere, Finland.
| | - Defne Us
- Laboratory of Mathematics, Tampere University of Technology, P.O. Box 692, 33101, Tampere, Finland; Laboratory of Signal Processing, Tampere University of Technology, Tampere, Finland, P.O. Box 553, 33101, Tampere, Finland
| | - Andreas Nüßing
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany, Malmedyweg 15, D-48149, Münster, Germany; Institute for Computational and Applied Mathematics, University of Münster, Germany, Einsteinstrasse 62, D-48149, Münster, Germany
| | - Christian Engwer
- Institute for Computational and Applied Mathematics, University of Münster, Germany, Einsteinstrasse 62, D-48149, Münster, Germany
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany, Malmedyweg 15, D-48149, Münster, Germany
| | - Sampsa Pursiainen
- Laboratory of Mathematics, Tampere University of Technology, P.O. Box 692, 33101, Tampere, Finland
| |
Collapse
|
41
|
New Strategy for Finite Element Mesh Generation for Accurate Solutions of Electroencephalography Forward Problems. Brain Topogr 2018; 32:354-362. [PMID: 30073558 DOI: 10.1007/s10548-018-0669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
The finite element method (FEM) is a numerical method that is often used for solving electroencephalography (EEG) forward problems involving realistic head models. In this study, FEM solutions obtained using three different mesh structures, namely coarse, densely refined, and adaptively refined meshes, are compared. The simulation results showed that the accuracy of FEM solutions could be significantly enhanced by adding a small number of elements around regions with large estimated errors. Moreover, it was demonstrated that the adaptively refined regions were always near the current dipole sources, suggesting that selectively generating additional elements around the cortical surface might be a new promising strategy for more efficient FEM-based EEG forward analysis.
Collapse
|
42
|
Skull Modeling Effects in Conductivity Estimates Using Parametric Electrical Impedance Tomography. IEEE Trans Biomed Eng 2018; 65:1785-1797. [DOI: 10.1109/tbme.2017.2777143] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Nielsen JD, Madsen KH, Puonti O, Siebner HR, Bauer C, Madsen CG, Saturnino GB, Thielscher A. Automatic skull segmentation from MR images for realistic volume conductor models of the head: Assessment of the state-of-the-art. Neuroimage 2018. [DOI: 10.1016/j.neuroimage.2018.03.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
44
|
Epileptic MEG Spike Detection Using Statistical Features and Genetic Programming with KNN. JOURNAL OF HEALTHCARE ENGINEERING 2017; 2017:3035606. [PMID: 29118962 PMCID: PMC5651155 DOI: 10.1155/2017/3035606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/06/2017] [Accepted: 09/13/2017] [Indexed: 11/18/2022]
Abstract
Epilepsy is a neurological disorder that affects millions of people worldwide. Monitoring the brain activities and identifying the seizure source which starts with spike detection are important steps for epilepsy treatment. Magnetoencephalography (MEG) is an emerging epileptic diagnostic tool with high-density sensors; this makes manual analysis a challenging task due to the vast amount of MEG data. This paper explores the use of eight statistical features and genetic programing (GP) with the K-nearest neighbor (KNN) for interictal spike detection. The proposed method is comprised of three stages: preprocessing, genetic programming-based feature generation, and classification. The effectiveness of the proposed approach has been evaluated using real MEG data obtained from 28 epileptic patients. It has achieved a 91.75% average sensitivity and 92.99% average specificity.
Collapse
|
45
|
Neugebauer F, Möddel G, Rampp S, Burger M, Wolters CH. The Effect of Head Model Simplification on Beamformer Source Localization. Front Neurosci 2017; 11:625. [PMID: 29209157 PMCID: PMC5701642 DOI: 10.3389/fnins.2017.00625] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/26/2017] [Indexed: 11/13/2022] Open
Abstract
Beamformers are a widely-used tool in brain analysis with magnetoencephalography (MEG) and electroencephalography (EEG). For the construction of the beamformer filters realistic head volume conductor modeling is necessary for accurately computing the EEG and MEG leadfields, i.e., for solving the EEG and MEG forward problem. In this work, we investigate the influence of including realistic head tissue compartments into a finite element method (FEM) model on the beamformer's localization ability. Specifically, we investigate the effect of including cerebrospinal fluid, gray matter, and white matter distinction, as well as segmenting the skull bone into compacta and spongiosa, and modeling white matter anisotropy. We simulate an interictal epileptic measurement with white sensor noise. Beamformer filters are constructed with unit gain, unit array gain, and unit noise gain constraint. Beamformer source positions are determined by evaluating power and excess sample kurtosis (g2) of the source-waveforms at all source space nodes. For both modalities, we see a strong effect of modeling the cerebrospinal fluid and white and gray matter. Depending on the source position, both effects can each be in the magnitude of centimeters, rendering their modeling necessary for successful localization. Precise skull modeling mainly effected the EEG up to a few millimeters, while both modalities could profit from modeling white matter anisotropy to a smaller extent of 5-10 mm. The unit noise gain or neural activity index beamformer behaves similarly to the array gain beamformer when noise strength is sufficiently high. Variance localization seems more robust against modeling errors than kurtosis.
Collapse
Affiliation(s)
- Frank Neugebauer
- Institute for Biomagnetism und Biosignalanalysis, University of Münster, Münster, Germany
| | - Gabriel Möddel
- Department of Sleep Medicine and Neuromuscular Disorders, Epilepsy Center Münster-Osnabrück, University of Münster, Münster, Germany
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany
| | - Martin Burger
- Institute for Computational and Applied Mathematics, University of Münster, Münster, Germany
| | - Carsten H. Wolters
- Institute for Biomagnetism und Biosignalanalysis, University of Münster, Münster, Germany
| |
Collapse
|
46
|
Dmochowski JP, Koessler L, Norcia AM, Bikson M, Parra LC. Optimal use of EEG recordings to target active brain areas with transcranial electrical stimulation. Neuroimage 2017; 157:69-80. [PMID: 28578130 PMCID: PMC5777160 DOI: 10.1016/j.neuroimage.2017.05.059] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/11/2017] [Accepted: 05/27/2017] [Indexed: 12/14/2022] Open
Abstract
To demonstrate causal relationships between brain and behavior, investigators would like to guide brain stimulation using measurements of neural activity. Particularly promising in this context are electroencephalography (EEG) and transcranial electrical stimulation (TES), as they are linked by a reciprocity principle which, despite being known for decades, has not led to a formalism for relating EEG recordings to optimal stimulation parameters. Here we derive a closed-form expression for the TES configuration that optimally stimulates (i.e., targets) the sources of recorded EEG, without making assumptions about source location or distribution. We also derive a duality between TES targeting and EEG source localization, and demonstrate that in cases where source localization fails, so does the proposed targeting. Numerical simulations with multiple head models confirm these theoretical predictions and quantify the achieved stimulation in terms of focality and intensity. We show that constraining the stimulation currents automatically selects optimal montages that involve only a few (4-7) electrodes, with only incremental loss in performance when targeting focal activations. The proposed technique allows brain scientists and clinicians to rationally target the sources of observed EEG and thus overcomes a major obstacle to the realization of individualized or closed-loop brain stimulation.
Collapse
Affiliation(s)
- Jacek P Dmochowski
- Department of Biomedical Engineering, Steinman Hall 460 City College of New York, New York, NY 10031, USA.
| | | | | | | | | |
Collapse
|
47
|
Hedrich T, Pellegrino G, Kobayashi E, Lina JM, Grova C. Comparison of the spatial resolution of source imaging techniques in high-density EEG and MEG. Neuroimage 2017; 157:531-544. [PMID: 28619655 DOI: 10.1016/j.neuroimage.2017.06.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/29/2017] [Accepted: 06/09/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The present study aims at evaluating and comparing electrical and magnetic distributed source imaging methods applied to high-density Electroencephalography (hdEEG) and Magnetoencephalography (MEG) data. We used resolution matrices to characterize spatial resolution properties of Minimum Norm Estimate (MNE), dynamic Statistical Parametric Mapping (dSPM), standardized Low-Resolution Electromagnetic Tomography (sLORETA) and coherent Maximum Entropy on the Mean (cMEM, an entropy-based technique). The resolution matrix provides information of the Point Spread Functions (PSF) and of the Crosstalk functions (CT), this latter being also called source leakage, as it reflects the influence of a source on its neighbors. METHODS The spatial resolution of the inverse operators was first evaluated theoretically and then with real data acquired using electrical median nerve stimulation on five healthy participants. We evaluated the Dipole Localization Error (DLE) and the Spatial Dispersion (SD) of each PSF and CT map. RESULTS cMEM showed the smallest spatial spread (SD) for both PSF and CT maps, whereas localization errors (DLE) were similar for all methods. Whereas cMEM SD values were lower in MEG compared to hdEEG, the other methods slightly favored hdEEG over MEG. In real data, cMEM provided similar localization error and significantly less spatial spread than other methods for both MEG and hdEEG. Whereas both MEG and hdEEG provided very accurate localizations, all the source imaging methods actually performed better in MEG compared to hdEEG according to all evaluation metrics, probably due to the higher signal-to-noise ratio of the data in MEG. CONCLUSION Our overall results show that all investigated methods provide similar localization errors, suggesting very accurate localization for both MEG and hdEEG when similar number of sensors are considered for both modalities. Intrinsic properties of source imaging methods as well as their behavior for well-controlled tasks, suggest an overall better performance of cMEM in regards to spatial resolution and spatial leakage for both hdEEG and MEG. This indicates that cMEM would be a good candidate for studying source localization of focal and extended generators as well as functional connectivity studies.
Collapse
Affiliation(s)
- T Hedrich
- Multimodal Functional Imaging Lab, Biomedical Engineering Dpt., McGill University, Montreal, Canada.
| | - G Pellegrino
- Multimodal Functional Imaging Lab, Biomedical Engineering Dpt., McGill University, Montreal, Canada; Neurology and Neurosurgery Department, Montreal Neurological Institute (MNI), McGill University, Montreal, Canada; San Camillo Hospital IRCCS, Venice, Italy
| | - E Kobayashi
- Neurology and Neurosurgery Department, Montreal Neurological Institute (MNI), McGill University, Montreal, Canada
| | - J M Lina
- Département de Génie Électrique, École de Technologie Supérieure, Canada; Centre de recherches mathémathiques, Université de Montréal, Montreal, Canada; Center for Advanced Research on Sleep Medecine (CEAMS), hôpital du Sacré-Coeur, Montreal, Canada
| | - C Grova
- Multimodal Functional Imaging Lab, Biomedical Engineering Dpt., McGill University, Montreal, Canada; Neurology and Neurosurgery Department, Montreal Neurological Institute (MNI), McGill University, Montreal, Canada; Physics Dpt., PERFORM Centre, Concordia University, Canada; Centre de recherches mathémathiques, Université de Montréal, Montreal, Canada
| |
Collapse
|
48
|
Aydin Ü, Rampp S, Wollbrink A, Kugel H, Cho JH, Knösche TR, Grova C, Wellmer J, Wolters CH. Zoomed MRI Guided by Combined EEG/MEG Source Analysis: A Multimodal Approach for Optimizing Presurgical Epilepsy Work-up and its Application in a Multi-focal Epilepsy Patient Case Study. Brain Topogr 2017; 30:417-433. [PMID: 28510905 PMCID: PMC5495874 DOI: 10.1007/s10548-017-0568-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/25/2017] [Indexed: 10/25/2022]
Abstract
In recent years, the use of source analysis based on electroencephalography (EEG) and magnetoencephalography (MEG) has gained considerable attention in presurgical epilepsy diagnosis. However, in many cases the source analysis alone is not used to tailor surgery unless the findings are confirmed by lesions, such as, e.g., cortical malformations in MRI. For many patients, the histology of tissue resected from MRI negative epilepsy shows small lesions, which indicates the need for more sensitive MR sequences. In this paper, we describe a technique to maximize the synergy between combined EEG/MEG (EMEG) source analysis and high resolution MRI. The procedure has three main steps: (1) construction of a detailed and calibrated finite element head model that considers the variation of individual skull conductivities and white matter anisotropy, (2) EMEG source analysis performed on averaged interictal epileptic discharges (IED), (3) high resolution (0.5 mm) zoomed MR imaging, limited to small areas centered at the EMEG source locations. The proposed new diagnosis procedure was then applied in a particularly challenging case of an epilepsy patient: EMEG analysis at the peak of the IED coincided with a right frontal focal cortical dysplasia (FCD), which had been detected at standard 1 mm resolution MRI. Of higher interest, zoomed MR imaging (applying parallel transmission, 'ZOOMit') guided by EMEG at the spike onset revealed a second, fairly subtle, FCD in the left fronto-central region. The evaluation revealed that this second FCD, which had not been detectable with standard 1 mm resolution, was the trigger of the seizures.
Collapse
Affiliation(s)
- Ü Aydin
- Institute for Biomagnetism und Biosignalanalysis, University of Münster, Malmedyweg 15, 48149, Münster, Germany. .,Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Quebec, Canada.
| | - S Rampp
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany
| | - A Wollbrink
- Institute for Biomagnetism und Biosignalanalysis, University of Münster, Malmedyweg 15, 48149, Münster, Germany
| | - H Kugel
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - J -H Cho
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - T R Knösche
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - C Grova
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Quebec, Canada.,Multimodal Functional Imaging Lab, Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - J Wellmer
- Ruhr-Epileptology, Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - C H Wolters
- Institute for Biomagnetism und Biosignalanalysis, University of Münster, Malmedyweg 15, 48149, Münster, Germany
| |
Collapse
|
49
|
Vorwerk J, Engwer C, Pursiainen S, Wolters CH. A Mixed Finite Element Method to Solve the EEG Forward Problem. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:930-941. [PMID: 27831869 DOI: 10.1109/tmi.2016.2624634] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Finite element methods have been shown to achieve high accuracies in numerically solving the EEG forward problem and they enable the realistic modeling of complex geometries and important conductive features such as anisotropic conductivities. To date, most of the presented approaches rely on the same underlying formulation, the continuous Galerkin (CG)-FEM. In this article, a novel approach to solve the EEG forward problem based on a mixed finite element method (Mixed-FEM) is introduced. To obtain the Mixed-FEM formulation, the electric current is introduced as an additional unknown besides the electric potential. As a consequence of this derivation, the Mixed-FEM is, by construction, current preserving, in contrast to the CG-FEM. Consequently, a higher simulation accuracy can be achieved in certain scenarios, e.g., when the diameter of thin insulating structures, such as the skull, is in the range of the mesh resolution. A theoretical derivation of the Mixed-FEM approach for EEG forward simulations is presented, and the algorithms implemented for solving the resulting equation systems are described. Subsequently, first evaluations in both sphere and realistic head models are presented, and the results are compared to previously introduced CG-FEM approaches. Additional visualizations are shown to illustrate the current preserving property of the Mixed-FEM. Based on these results, it is concluded that the newly presented Mixed-FEM can at least complement and in some scenarios even outperform the established CG-FEM approaches, which motivates a further evaluation of the Mixed-FEM for applications in bioelectromagnetism.
Collapse
|
50
|
Al-Subari K, Al-Baddai S, Tomé AM, Volberg G, Ludwig B, Lang EW. Combined EMD-sLORETA Analysis of EEG Data Collected during a Contour Integration Task. PLoS One 2016; 11:e0167957. [PMID: 27936219 PMCID: PMC5148586 DOI: 10.1371/journal.pone.0167957] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/15/2016] [Indexed: 11/18/2022] Open
Abstract
Lately, Ensemble Empirical Mode Decomposition (EEMD) techniques receive growing interest in biomedical data analysis. Event-Related Modes (ERMs) represent features extracted by an EEMD from electroencephalographic (EEG) recordings. We present a new approach for source localization of EEG data based on combining ERMs with inverse models. As the first step, 64 channel EEG recordings are pooled according to six brain areas and decomposed, by applying an EEMD, into their underlying ERMs. Then, based upon the problem at hand, the most closely related ERM, in terms of frequency and amplitude, is combined with inverse modeling techniques for source localization. More specifically, the standardized low resolution brain electromagnetic tomography (sLORETA) procedure is employed in this work. Accuracy and robustness of the results indicate that this approach deems highly promising in source localization techniques for EEG data.
Collapse
Affiliation(s)
- Karema Al-Subari
- Department of Biology, Institute of Biophysics, University of Regensburg, Regensburg, Germany
- Department of Linguistics, Literature and Culture, Institute of Information Science, University of Regensburg, Regensburg, Germany
| | - Saad Al-Baddai
- Department of Biology, Institute of Biophysics, University of Regensburg, Regensburg, Germany
- Department of Linguistics, Literature and Culture, Institute of Information Science, University of Regensburg, Regensburg, Germany
| | - Ana Maria Tomé
- Department of Electrical Engineering, Telecommunication and Informatics, Institut of Electrical Engineering and Electronics, Universidade de Aveiro, Aveiro, Portugal
| | - Gregor Volberg
- Department of Psychology, Pedagogics and Sport, Institute of Experimental Psychology, University of Regensburg, Regensburg, Germany
| | - Bernd Ludwig
- Department of Linguistics, Literature and Culture, Institute of Information Science, University of Regensburg, Regensburg, Germany
| | - Elmar W. Lang
- Department of Biology, Institute of Biophysics, University of Regensburg, Regensburg, Germany
| |
Collapse
|