1
|
Liu Y, Tang SC, Li CH, To KF, Li B, Chan SL, Wong CH, Chen Y. The molecular mechanism underlying KRAS regulation on STK31 expression in pancreatic ductal adenocarcinoma. Cancer Sci 2024; 115:3288-3304. [PMID: 39054797 PMCID: PMC11447899 DOI: 10.1111/cas.16286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
KRAS gene mutations are common in pancreatic ductal adenocarcinoma (PDAC), but targeting mutant KRAS is still challenging. Here, an endoribonuclease-prepared small interfering RNA (esiRNA) library was used to screen new kinases that play critical roles in PDAC driven by KRAS gene mutations, and serine/threonine kinase 31 (STK31) was identified and characterized as a potential therapeutic target for KRAS-mutant PDAC. Our results showed that STK31 was upregulated in KRAS-mutant PDAC patients with poor survival and highly expressed in PDAC cell lines with KRASG12D mutation. Inhibition of STK31 in KRAS-mutant cell lines significantly reduced PDAC cell growth in vitro and hindered tumor growth in vivo. Gain and loss of function experiments revealed that STK31 is a downstream target of KRAS in PDAC. A pharmacological inhibition assay showed MAPK/ERK signaling involved in STK31 regulation. The further mechanistic study validated that c-Jun, regulated by KRAS/MAPK signaling, directly modulates the transcription level of STK31 by binding to its promoter region. Through RNA sequencing, we found that the cell cycle regulators CCNB1 and CDC25C are downstream targets of STK31. Taken together, our results indicate that STK31, which is the downstream target of the KRAS/MAPK/ERK/c-Jun signaling pathway in KRAS-mutant PDAC, promotes PDAC cell growth by modulating the expression of the cell cycle regulators CCNB1 and CDC25C.
Collapse
Affiliation(s)
- Yuting Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Shing Chun Tang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Han Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Bo Li
- Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Stephen Lam Chan
- Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Hin Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
2
|
Mallikarjuna T, Thummadi NB, Vindal V, Manimaran P. Prioritizing cervical cancer candidate genes using chaos game and fractal-based time series approach. Theory Biosci 2024; 143:183-193. [PMID: 38807013 DOI: 10.1007/s12064-024-00418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Cervical cancer is one of the most severe threats to women worldwide and holds fourth rank in lethality. It is estimated that 604, 127 cervical cancer cases have been reported in 2020 globally. With advancements in high throughput technologies and bioinformatics, several cervical candidate genes have been proposed for better therapeutic strategies. In this paper, we intend to prioritize the candidate genes that are involved in cervical cancer progression through a fractal time series-based cross-correlations approach. we apply the chaos game representation theory combining a two-dimensional multifractal detrended cross-correlations approach among the known and candidate genes involved in cervical cancer progression to prioritize the candidate genes. We obtained 16 candidate genes that showed cross-correlation with known cancer genes. Functional enrichment analysis of the candidate genes shows that they involve GO terms: biological processes, cell-cell junction assembly, cell-cell junction organization, regulation of cell shape, cortical actin cytoskeleton organization, and actomyosin structure organization. KEGG pathway analysis revealed genes' role in Rap1 signaling pathway, ErbB signaling pathway, MAPK signaling pathway, PI3K-Akt signaling pathway, mTOR signaling pathway, Acute myeloid leukemia, chronic myeloid leukemia, Breast cancer, Thyroid cancer, Bladder cancer, and Gastric cancer. Further, we performed survival analysis and prioritized six genes CDH2, PAIP1, BRAF, EPB41L3, OSMR, and RUNX1 as potential candidate genes for cervical cancer that has a crucial role in tumor progression. We found that our study through this integrative approach an efficient tool and paved a new way to prioritize the candidate genes and these genes could be evaluated experimentally for potential validation. We suggest this may be useful in analyzing the nucleotide sequences and protein sequences for clustering, classification, class affiliation, etc.
Collapse
Affiliation(s)
- T Mallikarjuna
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - N B Thummadi
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Vaibhav Vindal
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - P Manimaran
- School of Physics, University of Hyderabad, Gachibowli, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
3
|
Gao H, Cai B, Lu Z, Wang G, Gao Y, Miao Y, Jiang K, Zhang K. Cancer‐testis gene
STK31
is regulated by methylation and promotes the development of pancreatic cancer. Cancer Med 2022; 12:7273-7282. [PMID: 36424885 PMCID: PMC10067059 DOI: 10.1002/cam4.5472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/22/2022] [Accepted: 11/13/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUD Pancreatic cancer (PC) is a highly invasive malignancy with extremely poor prognosis. STK31 has been identified as a cancer-testis (CT) gene, but its function in PC has not been elucidated well. METHODS The effect of STK31 on cell proliferation, migration and invasion was investigated by in vitro and in vivo experiments and total RNA sequencing and targeted bisulfite sequencing was applied to explore the potential regulatory mechanisms of STK31 in PC. RESULTS By analysis of tissue samples and the clinicopathologic features, we found that STK31 was reactivated in PC and associated with poor prognosis. In addition, the vitro and vivo studies indicated that STK31 could promote PC progression by facilitating cell proliferation, migration and invasion, and the indication. Targeted Bisulfite Sequencing showed that STK31 was regulated by methylation. Furthermore, the results of total RNA sequencing suggested that STK31 was closely related to signal transduction, metabolism, and the immune system. CONCLUSIONS This study demonstrates that STK31, as a CT gene, can promote the development of PC and is regulated by methylation. STK31 could be considered as a potential therapeutic target for PC.
Collapse
Affiliation(s)
- Hao Gao
- Pancreas Center the First Affiliated Hospital of Nanjing Medical University Nanjing China
- Pancreas Institution of Nanjing Medical University Nanjing China
| | - Baobao Cai
- Pancreas Center the First Affiliated Hospital of Nanjing Medical University Nanjing China
- Pancreas Institution of Nanjing Medical University Nanjing China
| | - Zipeng Lu
- Pancreas Center the First Affiliated Hospital of Nanjing Medical University Nanjing China
- Pancreas Institution of Nanjing Medical University Nanjing China
| | - Guangfu Wang
- Pancreas Center the First Affiliated Hospital of Nanjing Medical University Nanjing China
- Pancreas Institution of Nanjing Medical University Nanjing China
| | - Yong Gao
- Pancreas Center the First Affiliated Hospital of Nanjing Medical University Nanjing China
- Pancreas Institution of Nanjing Medical University Nanjing China
| | - Yi Miao
- Pancreas Center the First Affiliated Hospital of Nanjing Medical University Nanjing China
- Pancreas Institution of Nanjing Medical University Nanjing China
| | - Kuirong Jiang
- Pancreas Center the First Affiliated Hospital of Nanjing Medical University Nanjing China
- Pancreas Institution of Nanjing Medical University Nanjing China
| | - Kai Zhang
- Pancreas Center the First Affiliated Hospital of Nanjing Medical University Nanjing China
- Pancreas Institution of Nanjing Medical University Nanjing China
| |
Collapse
|
4
|
Ikari N, Serizawa A, Tanji E, Yamamoto M, Furukawa T. Analysis of RHOA mutations and their significance in the proliferation and transcriptome of digestive tract cancer cells. Oncol Lett 2021; 22:735. [PMID: 34466148 PMCID: PMC8387854 DOI: 10.3892/ol.2021.12996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
The ras homolog family member A (RHOA) gene encodes a member of the Rho family of small GTPases and is known to function in reorganization of the actin cytoskeleton, which is associated with regulation of cell shape, attachment and motility. RHOA has been found to be recurrently mutated in gastrointestinal cancer; however, the functional significance of the mutated RHOA protein in digestive tract cancers remains to be uncovered. The aim of the present study was to understand the role of mutant RHOA in the proliferation and transcriptome of digestive tract cancer cells. Mutations of RHOA in one esophageal cancer cell line, OE19, eight gastric cancer cell lines, namely, AGS, GCIY, HGC-27, KATO III, MKN1, MKN45, SNU16 and SNU719, as well as two colon cancer cell lines, CCK-81 and SW948, were determined using Sanger sequencing. The results uncovered several mutations, including p.Arg5Gln and p.Tyr42Cys in CCK-81, p.Arg5Trp and p.Phe39Leu in SNU16, p.Gly17Glu in SW948, p.Tyr42Ser in OE19, p.Ala61Val in SNU719, p.Glu64del in AGS. Wild-type RHOA was identified in GCIY, HGC-27, KATO III, MKN1 and MKN45. Knockdown of RHOA using small interfering RNA attenuated the in vitro proliferation in the three-dimensional culture systems of GCIY, MKN1, OE19 and SW948, whereas no apparent changes were seen in CCK-81, HGC-27 and SNU719. Transcriptome analysis revealed that downregulation of the long non-coding RNA (lnc)-DERA-1 was observed in all tested cell lines following RHOA knockdown in the RHOA-mutated cell lines. Gene Ontology analysis showed that the genes associated with small molecule metabolic process, oxidation-reduction processes, protein kinase activity, transport, and cell junction were commonly downregulated in cells whose proliferation was attenuated by the knockdown of RHOA. These results suggested that certain RHOA mutations may result in upregulation of lnc-DERA-1 and genes associated with cellular metabolism and proliferation in digestive tract cancers.
Collapse
Affiliation(s)
- Naoki Ikari
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan.,Institute for Integrated Medical Sciences, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Akiko Serizawa
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Etsuko Tanji
- Institute for Integrated Medical Sciences, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Masakazu Yamamoto
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Toru Furukawa
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan.,Institute for Integrated Medical Sciences, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan.,Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
5
|
Bae DH, Kim HJ, Yoon BH, Park JL, Kim M, Kim SK, Kim SY, Lee SI, Song KS, Kim YS. STK31 upregulation is associated with chromatin remodeling in gastric cancer and induction of tumorigenicity in a xenograft mouse model. Oncol Rep 2021; 45:42. [PMID: 33649810 PMCID: PMC7934220 DOI: 10.3892/or.2021.7993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
Pathological changes in the epigenetic landscape of chromatin are hallmarks of cancer. Our previous study showed that global methylation of promoters may increase or decrease during the transition from gastric mucosa to intestinal metaplasia (IM) to gastric cancer (GC). Here, CpG hypomethylation of the serine/threonine kinase STK31 promoter in IM and GC was detected in a reduced representation bisulfite sequencing database. STK31 hypomethylation, which resulted in its upregulation in 120 cases of primary GC, was confirmed. Using public genome-wide histone modification data, upregulation of STK31 promoter activity was detected in primary GC but not in normal mucosae, suggesting that STK31 may be repressed in gastric mucosa but activated in GC as a consequence of hypomethylation-associated chromatin remodeling. STK31 knockdown suppressed the proliferation, colony formation and migration activities of GC cells in vitro, whereas stable overexpression of STK31 promoted the proliferation, colony formation, and migration activities of GC cells in vitro and tumorigenesis in nude mice. Patients with GC in which STK31 was upregulated exhibited significantly shorter survival times in a combined cohort. Thus, activation of STK31 by chromatin remodeling may be associated with gastric carcinogenesis and also may help predict GC prognosis.
Collapse
Affiliation(s)
- Dong Hyuck Bae
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hee-Jin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Byoung-Ha Yoon
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jong-Lyul Park
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Mirang Kim
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Seon-Young Kim
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sang-Il Lee
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Kyu-Sang Song
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Yong Sung Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Lu HY, Tai YJ, Chen YL, Chiang YC, Hsu HC, Cheng WF. Ovarian cancer risk score predicts chemo-response and outcome in epithelial ovarian carcinoma patients. J Gynecol Oncol 2020; 32:e18. [PMID: 33327048 PMCID: PMC7930441 DOI: 10.3802/jgo.2021.32.e18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Cytoreductive surgery followed by adjuvant chemotherapy is a standard frontline treatment for epithelial ovarian cancer (EOC). We aimed to develop an ovarian cancer risk score (OVRS) based on the expression of 10 ovarian-cancer-related genes to predict the chemoresistance, and outcomes of EOC patients. METHODS We designed a case-control study with total 149 EOC women including 75 chemosensitives and 74 chemoresistants. Gene expression was measured using the quantitative real-time polymerase chain reaction. We tested for correlation between the OVRS and chemosensitivity or chemoresistance, disease-free survival (DFS), and overall survival (OS), and validated the OVRS by analyzing patients from the TCGA database. RESULTS The chemosensitive group had lower OVRS than the chemoresistant group (5 vs. 15, p≤0.001, Mann-Whitney U test). Patients with disease relapse (13 vs. 5, p<0.001, Mann-Whitney U test) or disease-related death (13.5 vs. 6, p<0.001) had higher OVRS than those without. OVRS ≥10 (hazard ratio=3.29; 95% confidence interval=1.94-5.58; p<0.001) was the only predictor for chemoresistance in multivariate analysis. The median DFS (5 months vs. 24 months) and OS (39 months vs. >60 months) of patients with OVRS ≥10 were significantly shorter than those of patients with OVRS <10). The high OVRS group also had significantly shorter median OS than the low OVRS group in 255 patients in the TCGA database (39 vs. 49 months, p=0.046). CONCLUSIONS Specific genes panel can be clinically applied in predicting the chemoresistance and outcome, and decision-making of epithelial ovarian cancer.
Collapse
Affiliation(s)
- Hsiao Yun Lu
- Graduate Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi Jou Tai
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu Li Chen
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ying Cheng Chiang
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, National Taiwan University Hospital, Yun-Lin Branch, Douliou, Taiwan.
| | - Heng Cheng Hsu
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu City, Taiwan
| | - Wen Fang Cheng
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
I. Mohammed S, Utturkar S, Lee M, Yang HH, Cui Z, Atallah Lanman N, Zhang G, Ramos Cardona XE, Mittal SK, Miller MA. Ductal Carcinoma In Situ Progression in Dog Model of Breast Cancer. Cancers (Basel) 2020; 12:cancers12020418. [PMID: 32053966 PMCID: PMC7072653 DOI: 10.3390/cancers12020418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/25/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
The mechanisms that drive ductal carcinoma in situ (DCIS) progression to invasive cancer are not clear. Studying DCIS progression in humans is challenging and not ethical, thus necessitating the characterization of an animal model that faithfully resembles human disease. We have characterized a canine model of spontaneous mammary DCIS and invasive cancer that shares histologic, molecular, and diagnostic imaging characteristics with DCIS and invasive cancer in women. The purpose of the study was to identify markers and altered signaling pathways that lead to invasive cancer and shed light on early molecular events in breast cancer progression and development. Transcriptomic studies along the continuum of cancer progression in the mammary gland from healthy, through atypical ductal hyperplasia (ADH), DCIS, and invasive carcinoma were performed using the canine model. Gene expression profiles of preinvasive DCIS lesions closely resemble those of invasive carcinoma. However, certain genes, such as SFRP2, FZD2, STK31, and LALBA, were over-expressed in DCIS compared to invasive cancer. The over-representation of myoepithelial markers, epithelial-mesenchymal transition (EMT), canonical Wnt signaling components, and other pathways induced by Wnt family members distinguishes DCIS from invasive. The information gained may help in stratifying DCIS as well as identify actionable targets for primary and tertiary prevention or targeted therapy.
Collapse
Affiliation(s)
- Sulma I. Mohammed
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; (Z.C.); (N.A.L.); (G.Z.); (X.E.R.C.); (S.K.M.); (M.A.M.)
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA;
- Correspondence: ; Tel.: +1-765-494-9948; Fax: +1-765-494-9830
| | - Sagar Utturkar
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA;
| | - Maxwell Lee
- High Dimension Data Analysis Group, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20852, USA; (M.L.); (H.H.Y.)
| | - Howard H. Yang
- High Dimension Data Analysis Group, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20852, USA; (M.L.); (H.H.Y.)
| | - Zhibin Cui
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; (Z.C.); (N.A.L.); (G.Z.); (X.E.R.C.); (S.K.M.); (M.A.M.)
| | - Nadia Atallah Lanman
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; (Z.C.); (N.A.L.); (G.Z.); (X.E.R.C.); (S.K.M.); (M.A.M.)
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA;
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; (Z.C.); (N.A.L.); (G.Z.); (X.E.R.C.); (S.K.M.); (M.A.M.)
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA;
| | - Xavier E. Ramos Cardona
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; (Z.C.); (N.A.L.); (G.Z.); (X.E.R.C.); (S.K.M.); (M.A.M.)
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; (Z.C.); (N.A.L.); (G.Z.); (X.E.R.C.); (S.K.M.); (M.A.M.)
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA;
| | - Margaret A. Miller
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; (Z.C.); (N.A.L.); (G.Z.); (X.E.R.C.); (S.K.M.); (M.A.M.)
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA;
| |
Collapse
|
8
|
STK31 regulates the proliferation and cell cycle of lung cancer cells via the Wnt/β‑catenin pathway and feedback regulation by c‑myc. Oncol Rep 2020; 43:395-404. [PMID: 31894338 PMCID: PMC6967196 DOI: 10.3892/or.2019.7441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/25/2019] [Indexed: 12/29/2022] Open
Abstract
Lung cancer, which is a leading cause of cancer‑related deaths, is diagnosed at a male to female ratio of 2.1:1. Serine‑threonine kinase 31 (STK31) is a novel cancer/testis (CT)‑related gene that is highly expressed in several types of cancers, such as lung and colorectal cancer, and plays crucial roles in cancer. In the present study, increased expression of STK31 and β‑catenin was observed in lung cancer tissues and cell lines. Downregulation of STK31 expression in lung cancer cells significantly inhibited their proliferation by arresting the cell cycle in the G1 phase concurrent with decreased β‑catenin, c‑myc and cyclin D1 protein levels, while upregulation of STK31 had the opposite effects. In addition, STK31‑induced lung cancer cell viability, proliferation, cell cycle progression, and expression of related genes were completely attenuated by a Wnt/β‑catenin inhibitor (XAV939). Similar to XAV939, a c‑myc inhibitor (10058‑F4) also significantly attenuated STK31‑induced proliferation and cell cycle progression in lung cancer cells. Inhibiting c‑myc and TRRAP significantly decreased the expression of STK31, and a chromatin immunoprecipitation (ChIP) assay confirmed that c‑myc directly bound to the STK31 promoter. These results indicated that STK31 may act as an oncogene in lung cancer and that c‑myc may be the transcription factor that promotes STK31 expression. Moreover, the results suggested that c‑myc can also regulate STK31 expression in a positive feedback loop, and the downregulation of STK31 in lung cancer cells had an inhibitory effect on cell viability, cell proliferation and cell cycle progression, likely by inactivating the Wnt/β‑catenin pathway and positive feedback regulation by c‑myc.
Collapse
|
9
|
Pekow J, Hernandez K, Meckel K, Deng Z, Haider HI, Khalil A, Zhang C, Talisila N, Siva S, Jasmine F, Li YC, Rubin DT, Hyman N, Bissonnette M, Weber C, Kibriya MG. IBD-associated Colon Cancers Differ in DNA Methylation and Gene Expression Profiles Compared With Sporadic Colon Cancers. J Crohns Colitis 2019; 13:884-893. [PMID: 30753380 PMCID: PMC7327274 DOI: 10.1093/ecco-jcc/jjz014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS As ulcerative colitis [UC]-associated colorectal cancer [CRC] and sporadic CRC differ in presentation and molecular features, we sought to evaluate differences in the impact of DNA methylation on gene expression. METHODS DNA methylation was assessed in 11 UC-CRCs and adjacent tissue and 11 sporadic CRCs and adjacent tissue, using Illumina arrays. RNA sequencing was performed on 10 UC-CRCs and adjacent tissue and eight sporadic CRCs and adjacent tissues. Differences in DNA methylation and transcript expression, as well as their correlation in the same tissues, were assessed. Immunohistochemistry was performed for three proteins, ANPEP, FAM92A1, and STK31, all of which exhibited an inverse correlation between DNA methylation and transcript expression in UC. RESULTS Thirty three loci demonstrated differences in DNA methylation between UC-CRC and adjacent tissue. In contrast, there were 4204 differentially methylated loci between sporadic colon cancer and adjacent tissue. Eight hundred eighty six genes as well as 10 long non-coding RNAs [lncRNA] were differentially expressed between UC-CRC and adjacent tissues. Although there were no differentially methylated loci between UC and sporadic CRC, 997 genes and 38 lncRNAs were differentially expressed between UC-CRC and sporadic CRC. In UC, 18 genes demonstrated a negative correlation between DNA methylation and transcript expression. Evaluation of protein expression related to three genes, ANPEP, FAM92A1, and STK31, confirmed down-regulation of ANPEP and up-regulation of STK31 in UC-CRC. CONCLUSIONS Regulation of transcript expression by DNA methylation involves genes key to colon carcinogenesis and may account for differences in presentation and outcomes between inflammatory bowel disease and sporadic colon cancer.
Collapse
Affiliation(s)
- Joel Pekow
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition,Corresponding author: Joel Pekow, MD, 900 East 57th St, MB #9, University of Chicago Medicine, Section of Gastroenterology, Hepatology, and Nutrition, Chicago, IL 60637, USA. Tel: 773-702-2774; Fax: 773-702-2281;
| | - Kyle Hernandez
- University of Chicago, Center for Research Informatics,University of Chicago, Department of Pediatrics
| | - Katherine Meckel
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition
| | - Zifeng Deng
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition
| | - Haider I Haider
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition
| | - Abdurahman Khalil
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition
| | | | - Nitya Talisila
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition
| | - Shivi Siva
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition
| | | | - Yan Chun Li
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition
| | - David T Rubin
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition
| | - Neil Hyman
- University of Chicago, Department of Surgery
| | - Marc Bissonnette
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition
| | | | | |
Collapse
|
10
|
Gan B, Chen S, Liu H, Min J, Liu K. Structure and function of eTudor domain containing TDRD proteins. Crit Rev Biochem Mol Biol 2019; 54:119-132. [DOI: 10.1080/10409238.2019.1603199] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Bing Gan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Sizhuo Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Huan Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| |
Collapse
|
11
|
Niture S, Dong X, Arthur E, Chimeh U, Niture SS, Zheng W, Kumar D. Oncogenic Role of Tumor Necrosis Factor α-Induced Protein 8 (TNFAIP8). Cells 2018; 8:cells8010009. [PMID: 30586922 PMCID: PMC6356598 DOI: 10.3390/cells8010009] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022] Open
Abstract
Tumor necrosis factor (TNF)-α-induced protein 8 (TNFAIP8) is a founding member of the TIPE family, which also includes TNFAIP8-like 1 (TIPE1), TNFAIP8-like 2 (TIPE2), and TNFAIP8-like 3 (TIPE3) proteins. Expression of TNFAIP8 is strongly associated with the development of various cancers including cancer of the prostate, liver, lung, breast, colon, esophagus, ovary, cervix, pancreas, and others. In human cancers, TNFAIP8 promotes cell proliferation, invasion, metastasis, drug resistance, autophagy, and tumorigenesis by inhibition of cell apoptosis. In order to better understand the molecular aspects, biological functions, and potential roles of TNFAIP8 in carcinogenesis, in this review, we focused on the expression, regulation, structural aspects, modifications/interactions, and oncogenic role of TNFAIP8 proteins in human cancers.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, Durham, NC 27707, USA.
| | - Xialan Dong
- Bio-manufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA.
| | - Elena Arthur
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, Durham, NC 27707, USA.
| | - Uchechukwu Chimeh
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, Durham, NC 27707, USA.
| | | | - Weifan Zheng
- Bio-manufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA.
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, Durham, NC 27707, USA.
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
12
|
Kwak S, Lee S, Han E, Park S, Jeong M, Seo J, Park S, Sung G, Yoo J, Yoon H, Choi K. Serine/threonine kinase 31 promotes PDCD5‐mediated apoptosis in p53‐dependent human colon cancer cells. J Cell Physiol 2018; 234:2649-2658. [DOI: 10.1002/jcp.27079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/29/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Sungmin Kwak
- Department of Biomedical SciencesAsan Medical Center, AMIST, University of Ulsan College of MedicineSeoul Korea
- Department of PharmacologyUniversity of Ulsan College of MedicineSeoul Korea
| | - Seung‐Hyun Lee
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Eun‐Jung Han
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Soo‐Yeon Park
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Mi‐Hyeon Jeong
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Jaesung Seo
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Seung‐Ho Park
- Department of Biomedical SciencesAsan Medical Center, AMIST, University of Ulsan College of MedicineSeoul Korea
- Department of PharmacologyUniversity of Ulsan College of MedicineSeoul Korea
| | - Gi‐Jun Sung
- Department of Biomedical SciencesAsan Medical Center, AMIST, University of Ulsan College of MedicineSeoul Korea
- Department of PharmacologyUniversity of Ulsan College of MedicineSeoul Korea
| | - Jung‐Yoon Yoo
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Ho‐Geun Yoon
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Kyung‐Chul Choi
- Department of Biomedical SciencesAsan Medical Center, AMIST, University of Ulsan College of MedicineSeoul Korea
- Department of PharmacologyUniversity of Ulsan College of MedicineSeoul Korea
| |
Collapse
|
13
|
Watany MM, Elmashad NM, Badawi R, Hawash N. Serum FBLN1 and STK31 as biomarkers of colorectal cancer and their ability to noninvasively differentiate colorectal cancer from benign polyps. Clin Chim Acta 2018; 483:151-155. [DOI: 10.1016/j.cca.2018.04.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/11/2018] [Accepted: 04/27/2018] [Indexed: 12/21/2022]
|
14
|
STK31 as novel biomarker of metastatic potential and tumorigenicity of colorectal cancer. Oncotarget 2018; 8:24354-24361. [PMID: 28412729 PMCID: PMC5421852 DOI: 10.18632/oncotarget.15396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/01/2017] [Indexed: 11/25/2022] Open
Abstract
Purpose Colorectal cancer (CRC) is the fifth most common cause of cancer deaths in China and fourth worldwide. Metastatic dissemination of primary tumors is considered main cause for CRC related mortality. The serine–threonine kinase 31 (STK31) gene is a novel cancer testis (CT) antigen. It was found significantly highly expressed in gastrointestinal cancers. In our study we aimed to analyze the correlation between STK31 expression patterns and metastasization, tumor stage and grade in CRC patients. RESULTS Relative STK31 expression level was significantly higher in patients with lymph node metastasis. STK31 expression levels in primary tumorous tissues of metastatic patients were significantly higher than in ANCTs and in lymph nodes samples, both at the RNA level and the protein level. Materials and Methods Surgical specimens of cancerous tissues, paired with adjacent noncancerous tissues, and lymph nodes from 44 CRC cases with different clinicopathological features were collected. Expression of STK31 was detected and measured by immunohistochemistry and quantitative real-time polymerase chain reaction (QRT-PCR). Conclusions Our data suggest that STK31 might be a potential biomarker in detecting, monitoring and predicting the metastatic risk of colorectal cancer.
Collapse
|
15
|
Abstract
The expression of cancer-testis (CT) genes varies with tumor type. There are tumors with high, low, and intermediate gene expressions. Tumor cells of different origin are characterized by ST gene co-expression. The expression of ST genes increases in later stages of tumor development in the presence of metastases. In colon cancer, the tumor samples showed most frequently MAGE-A and SSX mRNA. The peripheral blood samples displayed most commonly XAGE, MAGE-C, and SSX mRNA. In patients with colon cancer, the expression of TSP50, MAGE-A(1-6), and SSX1,2,4 genes was associated with a poor prognosis, that of MAGE-C1 and XAGE1 was related to a favorable prognosis.
Collapse
Affiliation(s)
- N R Hilal
- N.I. Lobachevsky Nizhny Novgorod National Research University, Nizhny Novgorod, Russia
| | - D V Novikov
- N.I. Lobachevsky Nizhny Novgorod National Research University, Nizhny Novgorod, Russia
| | - V V Novikov
- N.I. Lobachevsky Nizhny Novgorod National Research University, Nizhny Novgorod, Russia
| | - A V Karaulov
- N.I. Lobachevsky Nizhny Novgorod National Research University, Nizhny Novgorod, Russia; I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
16
|
The secret life of kinases: insights into non-catalytic signalling functions from pseudokinases. Biochem Soc Trans 2017; 45:665-681. [PMID: 28620028 DOI: 10.1042/bst20160331] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/31/2022]
Abstract
Over the past decade, our understanding of the mechanisms by which pseudokinases, which comprise ∼10% of the human and mouse kinomes, mediate signal transduction has advanced rapidly with increasing structural, biochemical, cellular and genetic studies. Pseudokinases are the catalytically defective counterparts of conventional, active protein kinases and have been attributed functions as protein interaction domains acting variously as allosteric modulators of conventional protein kinases and other enzymes, as regulators of protein trafficking or localisation, as hubs to nucleate assembly of signalling complexes, and as transmembrane effectors of such functions. Here, by categorising mammalian pseudokinases based on their known functions, we illustrate the mechanistic diversity among these proteins, which can be viewed as a window into understanding the non-catalytic functions that can be exerted by conventional protein kinases.
Collapse
|
17
|
Xu Y, Wu J, Peng X, Yang T, Liu M, Chen L, Dai X, Wang Z, Yang C, Yan B, Jiang Y. LncRNA LINC00341 mediates PM 2.5 -induced cell cycle arrest in human bronchial epithelial cells. Toxicol Lett 2017; 276:1-10. [DOI: 10.1016/j.toxlet.2017.03.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 11/30/2022]
|
18
|
Chen F, Luo M, Lai F, Yu C, Cheng H, Zhou R. Biased Duplications and Loss of Members in Tdrd Family in Teleost Fish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:727-736. [DOI: 10.1002/jez.b.22757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/29/2017] [Accepted: 06/02/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Feng Chen
- Hubei Key Laboratory of Cell Homeostasis; Laboratory of Molecular and Developmental Genetics; College of Life Sciences; Wuhan University; Wuhan P. R. China
| | - Majing Luo
- Hubei Key Laboratory of Cell Homeostasis; Laboratory of Molecular and Developmental Genetics; College of Life Sciences; Wuhan University; Wuhan P. R. China
| | - Fengling Lai
- Hubei Key Laboratory of Cell Homeostasis; Laboratory of Molecular and Developmental Genetics; College of Life Sciences; Wuhan University; Wuhan P. R. China
| | - Chunlai Yu
- Hubei Key Laboratory of Cell Homeostasis; Laboratory of Molecular and Developmental Genetics; College of Life Sciences; Wuhan University; Wuhan P. R. China
| | - Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis; Laboratory of Molecular and Developmental Genetics; College of Life Sciences; Wuhan University; Wuhan P. R. China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis; Laboratory of Molecular and Developmental Genetics; College of Life Sciences; Wuhan University; Wuhan P. R. China
| |
Collapse
|
19
|
OncoScape: Exploring the cancer aberration landscape by genomic data fusion. Sci Rep 2016; 6:28103. [PMID: 27321817 PMCID: PMC4913322 DOI: 10.1038/srep28103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/25/2016] [Indexed: 01/22/2023] Open
Abstract
Although large-scale efforts for molecular profiling of cancer samples provide multiple data types for many samples, most approaches for finding candidate cancer genes rely on somatic mutations and DNA copy number only. We present a new method, OncoScape, which exploits five complementary data types across 11 cancer types to identify new candidate cancer genes. We find many rarely mutated genes that are strongly affected by other aberrations. We retrieve the majority of known cancer genes but also new candidates such as STK31 and MSRA with very high confidence. Several genes show a dual oncogene- and tumor suppressor-like behavior depending on the tumor type. Most notably, the well-known tumor suppressor RB1 shows strong oncogene-like signal in colon cancer. We applied OncoScape to cell lines representing ten cancer types, providing the most comprehensive comparison of aberrations in cell lines and tumor samples to date. This revealed that glioblastoma, breast and colon cancer show strong similarity between cell lines and tumors, while head and neck squamous cell carcinoma and bladder cancer, exhibit very little similarity between cell lines and tumors. To facilitate exploration of the cancer aberration landscape, we created a web portal enabling interactive analysis of OncoScape results (http://ccb.nki.nl/software/oncoscape).
Collapse
|
20
|
Yin FF, Wang N, Bi XN, Yu X, Xu XH, Wang YL, Zhao CQ, Luo B, Wang YK. Serine/threonine kinases 31(STK31) may be a novel cellular target gene for the HPV16 oncogene E7 with potential as a DNA hypomethylation biomarker in cervical cancer. Virol J 2016; 13:60. [PMID: 27044426 PMCID: PMC4820863 DOI: 10.1186/s12985-016-0515-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 03/24/2016] [Indexed: 01/21/2023] Open
Abstract
Background Cervical cancer (CC) is a leading cause of mortality in females, especially in developing countries. The two viral oncoproteins E6 and E7 mediate the oncogenic activities of high-risk human papillomavirus (hrHPV), and hrHPV, especially HPV16 or/and HPV18 (HPV16/18) play critical roles in CC through different pathways. STK31 gene of which the expression has been proven to be regulated by the methylation status of its promoter, is one of the novel cancer/testis (CT) genes and plays important roles in human cancers. Reasearches have indicated that viral infection is correlated to the methylation statuses of some genes. Herein, we detected methylation status of the STK31 gene in cervical tumors and explored its interaction with HPV16 or/and HPV18 (HPV16/18) infection. Methods Bisulfite genomic sequencing PCR (BGS) combined with TA clone, methylation-specific PCR (MSP) were used to analyze methylation statuses of the STK31 gene promoter/exon 1 region in HPV16/18-positive, HPV-negative CC cell lines; ectopically expressed HPV16 E6, -E7, and -E6/E7 CC cells; normal cervical tissues and cervical tumor tissues of different stages. The mRNA and protein expressions of STK31 were detected by RT-PCR and western blotting. Results The STK31 gene promoter/exon 1 was hypomethylated in the HPV16/18-positive cell lines HeLa, SiHa and CaSki, and the mRNA and protein expression were detected. In contrast, the STK31 gene exhibited hypermethylation and silenced expression in the HPV-negative CC cells C33A and HT-3. Compared with the primary HPV-negative CC cell lines, the STK31 methylation was downregulated, and STK31 expression was induced in the HPV16E7/E67 transfected cells. The methylation statuses and expressions of STK31 were verified in the cervical tumor samples at different stages. Additionally, chemotherapy treatment may influence STK31 expression by regulating its methylation status. Conclusions STK31 may be a novel cellular target gene for the HPV16 oncogeneE7. The HPV16 oncogene E7 may affect STK31 expression through a methylation-mediated mechanism. The aberrant methylation of the STK31 promoter/exon 1 region may be a precursor of human cervical carcinogenesis and a potential DNA aberrant methylation biomarker of conditions ranging from precancerous disease to invasive cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0515-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fu-Fen Yin
- Department of Obstetrics and Gynecology, Affiliate Hospital of Qingdao University, Qingdao, China
| | - Ning Wang
- Department of Obstetrics and Gynecology, Affiliate Hospital of Qingdao University, Qingdao, China
| | - Xiao-Ning Bi
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Yu
- Department of Obstetrics and Gynecology, Affiliate Hospital of Qingdao University, Qingdao, China
| | - Xiao-Hui Xu
- Department of Obstetrics and Gynecology, Affiliate Hospital of Qingdao University, Qingdao, China
| | - You-Lin Wang
- Department of Urology, Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng-Quan Zhao
- Department of Pathology, Magee-Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Bing Luo
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, 266021, China
| | - Yan-Kui Wang
- Department of Obstetrics and Gynecology, Affiliate Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|