1
|
Zeng DD, Cai YR, Zhang S, Yan F, Jiang T, Li J. Machine learning methods for predicting human-adaptive influenza A virus reassortment based on intersegment constraint. Front Microbiol 2025; 16:1546536. [PMID: 40190733 PMCID: PMC11970406 DOI: 10.3389/fmicb.2025.1546536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/20/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction It is not clear about mechanisms underlining the inter-segment reassortment of Influenza A viruses (IAVs).We analyzed the viral nucleotide composition (NC) in coding sequences,examined the intersegment NC correlation, and predicted the IAV reassortment using machine learning (ML) approaches based on viral NC features. Methods Unsupervised ML methods were used to examine the NC difference between human-adapted and zoonotic IAVs. Supervised ML models of random forest classifier (rfc) and multiple-layer preceptor (mlp) were developed to predict the human adaption to IAVs. Results Our results demonstrated that the frequencies of thymine, cytosine, adenine,and guanine (t, c, a, and g), as well as the content of gc/at were consistently high or low for the segments of PB2, PB1, PA, NP, M1, and NS1 (ribonucleoprotein plus [RNPplus]), between mammalian and avian IAVs or between influenza B viruses (IBVs) and IAVs.RNPplus NC negatively correlated with the NC for HA, NA, and M1 (envelope protein plus [EPplus]). The human-adapted NC accurately discriminated between human IAVs and avian IAVs. A total of 221,184 simulated IAVs with pd09H1N1 EPplus and with RNPplus from other IAV subtypes indicated a high adaption of the RNPplus, from H6N6, H13N2, and H13N8 and other IAVs. Discussion In summary, there is a distinct human adaption-specific genomic NC between human IAVs and avian IAVs. The intersegment NC correlation constrains segment reassortment. This study presents a novel strategy for predicting IAV reassortment based on viral genetic compatibility.
Collapse
Affiliation(s)
- Dan-Dan Zeng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yu-Rong Cai
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Fang Yan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Sharma SP, Chawla-Sarkar M, Sandhir R, Dutta D. Decoding the role of RNA sequences and their interactions in influenza A virus infection and adaptation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1871. [PMID: 39501458 DOI: 10.1002/wrna.1871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 04/10/2025]
Abstract
Influenza viruses (types A, B, C, and D) belong to the family orthomyxoviridae. Out of all the influenza types, influenza A virus (IAV) causes human pandemic outbreaks. Its pandemic potential is predominantly attributed to the genetic reassortment favored by a broad spectrum of host species that could lead to an antigenic shift along with a high rate of mutations in its genome, presenting a possibility of subtypes with heightened pathogenesis and virulence in humans (antigenic drift). In addition to antigenic shift and drift, there are several other inherent properties of its viral RNA species (vRNA, vmRNA, and cRNA) that significantly contribute to the success of specific stages of viral infection. In this review, we compile the key features of IAV RNA, such as sequence motifs and secondary structures, their functional significance in the infection cycle, and their overall impact on the virus's adaptive and evolutionary fitness. Because many of these motifs and folds are conserved, we also assess the existing antiviral approaches focused on targeting IAV RNA. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Satya P Sharma
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Mamta Chawla-Sarkar
- ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Dipanjan Dutta
- School of Biological Sciences, Amity University, Punjab, India
| |
Collapse
|
3
|
Zhang S, Dai LN, Yin Q, Kang XP, Zeng DD, Jiang T, Zhao GY, Li XH, Li J. Dinucleotide composition representation -based deep learning to predict scoliosis-associated Fibrillin-1 genotypes. Front Genet 2024; 15:1492226. [PMID: 39502335 PMCID: PMC11534654 DOI: 10.3389/fgene.2024.1492226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Scoliosis is a pathological spine structure deformation, predominantly classified as "idiopathic" due to its unknown etiology. However, it has been suggested that scoliosis may be linked to polygenic backgrounds. It is crucial to identify potential Adolescent Idiopathic Scoliosis (AIS)-related genetic backgrounds before scoliosis onset. Methods The present study was designed to intelligently parse, decompose and predict AIS-related variants in ClinVar database. Possible AIS-related variant records downloaded from ClinVar were parsed for various labels, decomposed for Dinucleotide Compositional Representation (DCR) and other traits, screened for high-risk genes with statistical analysis, and then learned intelligently with deep learning to predict high-risk AIS genotypes. Results Results demonstrated that the present framework is composed of all technical sections of data parsing, scoliosis genotyping, genome encoding, machine learning (ML)/deep learning (DL) and scoliosis genotype predicting. 58,000 scoliosis-related records were automatically parsed and statistically analyzed for high-risk genes and genotypes, such as FBN1, LAMA2 and SPG11. All variant genes were decomposed for DCR and other traits. Unsupervised ML indicated marked inter-group separation and intra-group clustering of the DCR of FBN1, LAMA2 or SPG11 for the five types of variants (Pathogenic, Pathogeniclikely, Benign, Benignlikely and Uncertain). A FBN1 DCR-based Convolutional Neural Network (CNN) was trained for Pathogenic and Benign/ Benignlikely variants performed accurately on validation data and predicted 179 high-risk scoliosis variants. The trained predictor was interpretable for the similar distribution of variant types and variant locations within 2D structure units in the predicted 3D structure of FBN1. Discussion In summary, scoliosis risk is predictable by deep learning based on genomic decomposed features of DCR. DCR-based classifier has predicted more scoliosis risk FBN1 variants in ClinVar database. DCR-based models would be promising for genotype-to-phenotype prediction for more disease types.
Collapse
Affiliation(s)
- Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Li-Na Dai
- College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Qi Yin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Xiao-Ping Kang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Dan-Dan Zeng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Guang-Yu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Xiao-He Li
- College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
4
|
Li J, Li XH, Ebrahimie E, Huang L. Editorial: Exploring genetic characteristics and molecular mechanisms of host adaptation of viruses with artificial intelligence (AI) or (and) biological (BIO) approaches. Front Cell Infect Microbiol 2024; 14:1474097. [PMID: 39253329 PMCID: PMC11381412 DOI: 10.3389/fcimb.2024.1474097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Affiliation(s)
- Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
- College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Xiao-He Li
- College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Esmaeil Ebrahimie
- Genomics Research Platform, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
- School of Animal and Veterinary Science, The University of Adelaide, Adelaide, SA, Australia
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Lei Huang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Nie MS, Li XH, Zhang S, Zeng DD, Cai YR, Peng DX, Jiang T, Shi JP, Li J. Screening for anti-influenza virus compounds from traditional Mongolian medicine by GFP-based reporter virus. Front Cell Infect Microbiol 2024; 14:1431979. [PMID: 39071166 PMCID: PMC11272615 DOI: 10.3389/fcimb.2024.1431979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Screening for effective antiviral compounds from traditional Mongolian medicine not only aids in the research of antiviral mechanisms of traditional medicines, but is also of significant importance for the development of new antiviral drugs targeting influenza A virus. Our study aimed to establish high-throughput, rapid screening methods for antiviral compounds against influenza A virus from abundant resources of Mongolian medicine. Methods The use of GFP-based reporter viruses plays a pivotal role in antiviral drugs screening by enabling rapid and precise identification of compounds that inhibit viral replication. Herein, a GFP-based reporter influenza A virus was used to identify potent anti-influenza compounds within traditional Mongolian medicine. Results Our study led to the discovery of three active compounds: Cardamonin, Curcumin, and Kaempferide, all of which exhibited significant antiviral properties in vitro. Subsequent analysis confirmed that their effectiveness was largely due to the stimulation of the antiviral signaling pathways of host cells, rather than direct interference with the viral components, such as the viral polymerase. Discussion This study showcased the use of GFP-based reporter viruses in high-throughput screening to unearth antiviral agents from traditional Mongolian medicine, which contains rich antiviral compounds and deserves further exploration. Despite certain limitations, fluorescent reporter viruses present substantial potential for antiviral drug screening research due to their high throughput and efficiency.
Collapse
Affiliation(s)
- Mao-Shun Nie
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiao-He Li
- College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Dan-Dan Zeng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yu-Rong Cai
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Da-Xin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Jian-Ping Shi
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Jing Li
- College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Zhao Z, Li J, Feng Y, Kang X, Li Y, Chen Y, Li W, Yang W, Zhao L, Huang S, Zhang S, Jiang T. Host DNA Demethylation Induced by DNMT1 Inhibition Up-Regulates Antiviral OASL Protein during Influenza a Virus Infection. Viruses 2023; 15:1646. [PMID: 37631988 PMCID: PMC10459088 DOI: 10.3390/v15081646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Influenza A virus (IAV) is a leading cause of human respiratory infections and poses a major public health concern. IAV replication can affect the expression of DNA methyltransferases (DNMTs), and the subsequent changes in DNA methylation regulate gene expression and may lead to abnormal gene transcription and translation, yet the underlying mechanisms of virus-induced epigenetic changes from DNA methylation and its role in virus-host interactions remain elusive. Here in this paper, we showed that DNMT1 expression could be suppressed following the inhibition of miR-142-5p or the PI3K/AKT signaling pathway during IAV infection, resulting in demethylation of the promotor region of the 2'-5'-oligoadenylate synthetase-like (OASL) protein and promotion of its expression in A549 cells. OASL expression enhanced RIG-I-mediated interferon induction and then suppressed replication of IAV. Our study elucidated an innate immunity mechanism by which up-regulation of OASL contributes to host antiviral responses via epigenetic modifications in IAV infection, which could provide important insights into the understanding of viral pathogenesis and host antiviral defense.
Collapse
Affiliation(s)
- Zhiyan Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (Z.Z.); (S.H.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China; (J.L.); (Y.F.); (X.K.); (Y.L.); (Y.C.); (W.L.); (W.Y.); (L.Z.)
| | - Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China; (J.L.); (Y.F.); (X.K.); (Y.L.); (Y.C.); (W.L.); (W.Y.); (L.Z.)
| | - Ye Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China; (J.L.); (Y.F.); (X.K.); (Y.L.); (Y.C.); (W.L.); (W.Y.); (L.Z.)
| | - Xiaoping Kang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China; (J.L.); (Y.F.); (X.K.); (Y.L.); (Y.C.); (W.L.); (W.Y.); (L.Z.)
| | - Yuchang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China; (J.L.); (Y.F.); (X.K.); (Y.L.); (Y.C.); (W.L.); (W.Y.); (L.Z.)
| | - Yuehong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China; (J.L.); (Y.F.); (X.K.); (Y.L.); (Y.C.); (W.L.); (W.Y.); (L.Z.)
| | - Wei Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China; (J.L.); (Y.F.); (X.K.); (Y.L.); (Y.C.); (W.L.); (W.Y.); (L.Z.)
| | - Wenguang Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China; (J.L.); (Y.F.); (X.K.); (Y.L.); (Y.C.); (W.L.); (W.Y.); (L.Z.)
| | - Lu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China; (J.L.); (Y.F.); (X.K.); (Y.L.); (Y.C.); (W.L.); (W.Y.); (L.Z.)
| | - Shenghai Huang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (Z.Z.); (S.H.)
| | - Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China; (J.L.); (Y.F.); (X.K.); (Y.L.); (Y.C.); (W.L.); (W.Y.); (L.Z.)
| | - Tao Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (Z.Z.); (S.H.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China; (J.L.); (Y.F.); (X.K.); (Y.L.); (Y.C.); (W.L.); (W.Y.); (L.Z.)
| |
Collapse
|
7
|
Zhao X, Lin X, Li P, Chen Z, Zhang C, Manicassamy B, Rong L, Cui Q, Du R. Expanding the tolerance of segmented Influenza A Virus genome using a balance compensation strategy. PLoS Pathog 2022; 18:e1010756. [PMID: 35926068 PMCID: PMC9380948 DOI: 10.1371/journal.ppat.1010756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/16/2022] [Accepted: 07/21/2022] [Indexed: 12/17/2022] Open
Abstract
Reporter viruses provide powerful tools for both basic and applied virology studies, however, the creation and exploitation of reporter influenza A viruses (IAVs) have been hindered by the limited tolerance of the segmented genome to exogenous modifications. Interestingly, our previous study has demonstrated the underlying mechanism that foreign insertions reduce the replication/transcription capacity of the modified segment, impairing the delicate balance among the multiple segments during IAV infection. In the present study, we developed a “balance compensation” strategy by incorporating additional compensatory mutations during initial construction of recombinant IAVs to expand the tolerance of IAV genome. As a proof of concept, promoter-enhancing mutations were introduced within the modified segment to rectify the segments imbalance of a reporter influenza PR8-NS-Gluc virus, while directed optimization of the recombinant IAV was successfully achieved. Further, we generated recombinant IAVs expressing a much larger firefly luciferase (Fluc) by coupling with a much stronger compensatory enhancement, and established robust Fluc-based live-imaging mouse models of IAV infection. Our strategy feasibly expands the tolerance for foreign gene insertions in the segmented IAV genome, which opens up better opportunities to develop more versatile reporter IAVs as well as live attenuated influenza virus-based vaccines for other important human pathogens.
Collapse
Affiliation(s)
- Xiujuan Zhao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaojing Lin
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zinuo Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chengcheng Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, University of Iowa, Iowa, United States of America
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, United States of America
- * E-mail: (LR); (QC); (RD)
| | - Qinghua Cui
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
- * E-mail: (LR); (QC); (RD)
| | - Ruikun Du
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
- * E-mail: (LR); (QC); (RD)
| |
Collapse
|
8
|
Cárdenas M, Galleguillos C, Acevedo K, Ananias C, Alarcón J, Michelson S, Toledo J, Montoya M, Meneses C, Castro-Nallar E, Vásquez-Martínez Y, Cortez-San Martin M. Rapid sequence modification in the highly polymorphic region (HPR) of the hemagglutinin gene of the infectious salmon anaemia virus (ISAV) suggests intra-segmental template switching recombination. JOURNAL OF FISH DISEASES 2020; 43:1483-1496. [PMID: 32955147 DOI: 10.1111/jfd.13242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The ISAV has a genome composed of eight segments of (-)ssRNA, segment 6 codes for the hemagglutinin-esterase protein, and has the most variable region of the genome, the highly polymorphic region (HPR), which is unique among orthomyxoviruses. The HPR has been associated with virulence, infectivity and pathogenicity. The full length of the HPR is called HPR0 and the strain with this HPR is avirulent, in contrast to strains with deleted HPR that are virulent to varying degrees. The molecular mechanism that gives rise to the different HPRs remains unclear. Here, we studied in vitro the evolution of reassortant recombinant ISAV (rISAV) in Atlantic salmon head kidney (ASK) cells. To this end, we rescued and cultivated a set of rISAV with different segment 6-HPR genotypes using a reverse genetics system and then sequencing HPR regions of the viruses. Our results show rapid multiple recombination events in ISAV, with sequence insertions and deletions in the HPR, indicating a dynamic process. Inserted sequences can be found in four segments of the ISAV genome (segments 1, 5, 6, and 8). The results suggest intra-segmental heterologous recombination, probably by class I and class II template switching, similar to the proposed segment 5 recombination mechanism.
Collapse
Affiliation(s)
- Matías Cárdenas
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Claudia Galleguillos
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Karina Acevedo
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Catarina Ananias
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Javiera Alarcón
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Sofía Michelson
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Jorge Toledo
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Margarita Montoya
- Cell Biochemistry Laboratory, Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile
| | - Claudio Meneses
- Plant Biotechnology Center, Andres Bello University, Santiago, Chile
| | - Eduardo Castro-Nallar
- Center of Bioinformatics and Integrative Biology, Faculty of Life Sciences, University Andrés Bello, Santiago, Chile
| | - Yesseny Vásquez-Martínez
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Programa Centro de Investigaciones Biomédicas Aplicadas, Facultad de Ciencias Médicas, University of Santiago de Chile, Santiago, Chile
| | - Marcelo Cortez-San Martin
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
9
|
Li X, Chen Y, Wang X, Peng B, Wu W, Liu H, Sun Y, Tang X, Zheng Q, Fang S. U13 → C13 mutation in the variable region of the NA gene 3′UTR of H9N2 influenza virus influences the replication and transcription of NA and enhances virus infectivity. Virus Genes 2019; 55:440-447. [DOI: 10.1007/s11262-019-01654-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/05/2019] [Indexed: 12/31/2022]
|
10
|
Drews SJ. The Role of Clinical Virology Laboratory and the Clinical Virology Laboratorian in Ensuring Effective Surveillance for Influenza and Other Respiratory Viruses: Points to Consider and Pitfalls to Avoid. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2016; 8:165-176. [PMID: 32226325 PMCID: PMC7100664 DOI: 10.1007/s40506-016-0081-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Influenza and respiratory viruses have a global impact on public health. Clinical virology laboratories and laboratorians play an important role in not only the diagnosis but also the surveillance of these pathogens. Surveillance for influenza and other respiratory pathogens is important, as it informs public health decision making in terms of influenza vaccine and antiviral effectiveness, informs clinicians and public health practitioners about the pathogenicity of specific viral strains, guides clinical practice, and supports laboratory panning activities. Key background issues include the following: the fact that the laboratory is only one of several data providers to a surveillance system, the biologic nature of influenza and respiratory viruses and the laboratory needs to keep up to date on the diagnosis of these agents, the need for laboratorians to be involved in case definition development, the impact of push and pull data flow models on laboratory resources, and the fact that laboratories may be asked to provide more than just test results to surveillance programs. This review also identifies some key issues or questions that arise during the pre-analytic, analytic, and post-analytic phases that could impact on the ability of the laboratory to link to surveillance programs. Finally, issues surrounding virus characterization programs and how they link to surveillance programs are identified and discussed.
Collapse
Affiliation(s)
- Steven J. Drews
- Provincial Laboratory for Public Health (ProvLab), 2B1.03 WMC, University of Alberta Hospital, Edmonton, Alberta T6G 2J2 Canada
- Department of Pathology and Laboratory Medicine, University of Alberta, Edmonton, Alberta Canada
| |
Collapse
|
11
|
Additional Evidence That the Polymerase Subunits Contribute to the Viral Replication and the Virulence of H5N1 Avian Influenza Virus Isolates in Mice. PLoS One 2015; 10:e0124422. [PMID: 25938456 PMCID: PMC4418698 DOI: 10.1371/journal.pone.0124422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/13/2015] [Indexed: 11/23/2022] Open
Abstract
Genetically similar H5N1 viruses circulating in the avian reservoir exhibit different levels of pathogenicity in mice. In this study, we characterized two highly pathogenic H5N1 avian isolates—A/Hunan/316/2005 (HN05), which is highly pathogenic in mice, and A/Hubei/489/2004 (HB04), which is nonpathogenic. In mammalian cells, HN05 replicates more efficiently than HB04, although both viruses have similar growth kinetics in avian cells. We used reverse genetics to generate recombinant H5N1 strains containing genes from HN05 and HB04 and examined their virulence. HN05 genes encoding the polymerase complex determine pathogenicity and viral replication ability both in vitro and in vivo. The PB2 subunit plays an important role in enhancing viral replication, and the PB1 and PA subunits contribute mainly to pathogenicity in mice. These results can be used to elucidate host-range expansion and the molecular basis of the high virulence of H5N1 viruses in mammalian species.
Collapse
|
12
|
Cheng K, Yu Z, Chai H, Sun W, Xin Y, Zhang Q, Huang J, Zhang K, Li X, Yang S, Wang T, Zheng X, Wang H, Qin C, Qian J, Chen H, Hua Y, Gao Y, Xia X. PB2-E627K and PA-T97I substitutions enhance polymerase activity and confer a virulent phenotype to an H6N1 avian influenza virus in mice. Virology 2014; 468-470:207-213. [PMID: 25194918 DOI: 10.1016/j.virol.2014.08.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/09/2014] [Accepted: 08/13/2014] [Indexed: 01/08/2023]
Abstract
H6N1 avian influenza viruses (AIVs) may pose a potential human risk as suggested by the first documented naturally-acquired human H6N1 virus infection in 2013. Here, we set out to elucidate viral determinants critical to the pathogenesis of this virus using a mouse model. We found that the recombinant H6N1 viruses possessing both the PA-T97I and PB2-E627K substitutions displayed the greatest enhancement of replication in vitro and in vivo. Polymerase complexes possessing either PB2-E627K, PA-T97I, and PB2-E627K/PA-T97I displayed higher virus polymerase activity when compared to the wild-type virus, which may account for the increased replication kinetics and enhanced virulence of variant viruses. Our results demonstrate that PB2-E627K and PA-T97I enhance the ability of H6N1 virus to replicate and cause disease in mammals. Influenza surveillance efforts should include scrutiny of these regions of PB2 and PA because of their impact on the increased virulence of H6N1 AIVs in mice.
Collapse
Affiliation(s)
- Kaihui Cheng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China; Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250132, People׳s Republic of China
| | - Zhijun Yu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China; Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, People׳s Republic of China
| | - Hongliang Chai
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People׳s Republic of China
| | - Weiyang Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China
| | - Yue Xin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China
| | - Qianyi Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People׳s Republic of China
| | - Jing Huang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China
| | - Kun Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China
| | - Xue Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China
| | - Xuexing Zheng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China
| | - Hualei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, People׳s Republic of China
| | - Jun Qian
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People׳s Republic of China
| | - Yuping Hua
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People׳s Republic of China.
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China; Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, People׳s Republic of China.
| |
Collapse
|