1
|
Cacialli P, Dogan S, Linnerz T, Pasche C, Bertrand JY. Minichromosome maintenance protein 10 (mcm10) regulates hematopoietic stem cell emergence in the zebrafish embryo. Stem Cell Reports 2023; 18:1534-1546. [PMID: 37437546 PMCID: PMC10362509 DOI: 10.1016/j.stemcr.2023.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 07/14/2023] Open
Abstract
Hematopoietic stem cells (HSCs) guarantee the continuous supply of all blood lineages during life. In response to stress, HSCs are capable of extensive proliferative expansion, whereas in steady state, HSCs largely remain in a quiescent state to prevent their exhaustion. DNA replication is a very complex process, where many factors need to exert their functions in a perfectly concerted manner. Mini-chromosome-maintenance protein 10 (Mcm10) is an important replication factor, required for proper assembly of the eukaryotic replication fork. In this report, we use zebrafish to study the role of mcm10 during embryonic development, and we show that mcm10 specifically regulates HSC emergence from the hemogenic endothelium. We demonstrate that mcm10-deficient embryos present an accumulation of DNA damages in nascent HSCs, inducing their apoptosis. This phenotype can be rescued by knocking down p53. Taken all together, our results show that mcm10 plays an important role in the emergence of definitive hematopoiesis.
Collapse
Affiliation(s)
- Pietro Cacialli
- University of Geneva, Faculty of Medicine, Department of Pathology and Immunology, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Serkan Dogan
- University of Geneva, Faculty of Medicine, Department of Pathology and Immunology, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; McMaster University, Faculty of Sciences, Department of Biology, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Tanja Linnerz
- University of Geneva, Faculty of Medicine, Department of Pathology and Immunology, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; University of Auckland, Faculty of Medical and Health Sciences, Department of Molecular Medicine and Pathology, 85 Park Road, 1023 Auckland, New Zealand
| | - Corentin Pasche
- University of Geneva, Faculty of Medicine, Department of Pathology and Immunology, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Julien Y Bertrand
- University of Geneva, Faculty of Medicine, Department of Pathology and Immunology, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Vo N, Anh Suong DN, Yoshino N, Yoshida H, Cotterill S, Yamaguchi M. Novel roles of HP1a and Mcm10 in DNA replication, genome maintenance and photoreceptor cell differentiation. Nucleic Acids Res 2017; 45:1233-1254. [PMID: 28180289 PMCID: PMC5388399 DOI: 10.1093/nar/gkw1174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 11/04/2016] [Accepted: 11/13/2016] [Indexed: 01/21/2023] Open
Abstract
Both Mcm10 and HP1a are known to be required for DNA replication. However, underlying mechanism is not clarified yet especially for HP1. Knockdown of both HP1a and Mcm10 genes inhibited the progression of S phase in Drosophila eye imaginal discs. Proximity Ligation Assay (PLA) demonstrated that HP1a is in close proximity to DNA replication proteins including Mcm10, RFC140 and DNA polymerase ε 255 kDa subunit in S-phase. This was further confirmed by co-immunoprecipitation assay. The PLA signals between Mcm10 and HP1a are specifically observed in the mitotic cycling cells, but not in the endocycling cells. Interestingly, many cells in the posterior regions of eye imaginal discs carrying a double knockdown of Mcm10 and HP1a induced ectopic DNA synthesis and DNA damage without much of ectopic apoptosis. Therefore, the G1-S checkpoint may be affected by knockdown of both proteins. This event was also the case with other HP family proteins such as HP4 and HP6. In addition, both Mcm10 and HP1a are required for differentiation of photoreceptor cells R1, R6 and R7. Further analyses on several developmental genes involved in the photoreceptor cell differentiation suggest that a role of both proteins is mediated by regulation of the lozenge gene.
Collapse
Affiliation(s)
- Nicole Vo
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan.,The Center for Advanced Insect Research, Kyoto Institute of Technology, Kyoto, Japan
| | - Dang Ngoc Anh Suong
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan.,The Center for Advanced Insect Research, Kyoto Institute of Technology, Kyoto, Japan
| | - Natsuki Yoshino
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan.,The Center for Advanced Insect Research, Kyoto Institute of Technology, Kyoto, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan.,The Center for Advanced Insect Research, Kyoto Institute of Technology, Kyoto, Japan
| | - Sue Cotterill
- Department of Basic Medical Sciences, St Georges, University of London, London, UK
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan.,The Center for Advanced Insect Research, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
3
|
Chadha GS, Gambus A, Gillespie PJ, Blow JJ. Xenopus Mcm10 is a CDK-substrate required for replication fork stability. Cell Cycle 2016; 15:2183-2195. [PMID: 27327991 PMCID: PMC4993430 DOI: 10.1080/15384101.2016.1199305] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 12/17/2022] Open
Abstract
During S phase, following activation of the S phase CDKs and the DBF4-dependent kinases (DDK), double hexamers of Mcm2-7 at licensed replication origins are activated to form the core replicative helicase. Mcm10 is one of several proteins that have been implicated from work in yeasts to play a role in forming a mature replisome during the initiation process. Mcm10 has also been proposed to play a role in promoting replisome stability after initiation has taken place. The role of Mcm10 is particularly unclear in metazoans, where conflicting data has been presented. Here, we investigate the role and regulation of Mcm10 in Xenopus egg extracts. We show that Xenopus Mcm10 is recruited to chromatin late in the process of replication initiation and this requires prior action of DDKs and CDKs. We also provide evidence that Mcm10 is a CDK substrate but does not need to be phosphorylated in order to associate with chromatin. We show that in extracts depleted of more than 99% of Mcm10, the bulk of DNA replication still occurs, suggesting that Mcm10 is not required for the process of replication initiation. However, in extracts depleted of Mcm10, the replication fork elongation rate is reduced. Furthermore, the absence of Mcm10 or its phosphorylation by CDK results in instability of replisome proteins on DNA, which is particularly important under conditions of replication stress.
Collapse
Affiliation(s)
- Gaganmeet Singh Chadha
- a Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee , Dundee , UK
| | - Agnieszka Gambus
- a Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee , Dundee , UK
| | - Peter J Gillespie
- a Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee , Dundee , UK
| | - J Julian Blow
- a Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee , Dundee , UK
| |
Collapse
|
4
|
Reubens MC, Biller MD, Bedsole SE, Hopkins LT, Ables ET, Christensen TW. Mcm10 is required for oogenesis and early embryogenesis in Drosophila. Mech Dev 2015; 138 Pt 3:291-9. [PMID: 26369283 DOI: 10.1016/j.mod.2015.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 01/05/2023]
Abstract
Efficient replication of the genome and the establishment of endogenous chromatin states are processes that are essential to eukaryotic life. It is well documented that Mcm10 is intimately linked to both of these important biological processes; therefore, it is not surprising that Mcm10 is commonly misregulated in many human cancers. Most of the research regarding the biological roles of Mcm10 has been performed in single-cell or cell-free in-vitro systems. Though these systems are informative, they are unable to provide information on the cell-specific function of Mcm10 in the context of the tissue and organ systems that comprise multicellular eukaryotes. We therefore sought to identify the potential biological functions of Mcm10 in the context of a complex multicellular organism by continuing our analysis in Drosophila using three novel hypomorphic alleles. Observation of embryonic nuclear morphology and quantification of embryo hatch rates reveal that maternal loading of Mcm10 is required for embryonic nuclear stability, and suggest a role for Mcm10 post zygotic transition. Contrary to the essential nature of Mcm10 depicted in the literature, it does not appear to be required for adult viability in Drosophila if embryonic requirements are met. Although not required for adult somatic viability, analysis of fecundity and ovarian morphology in mutant females suggest that Mcm10 plays a role in maintenance of the female germline. Taken together, our results demonstrate critical roles for Mcm10 during early embryogenesis, and mark the first data linking Mcm10 to female specific reproduction in multicellular eukaryotes.
Collapse
Affiliation(s)
- Michael C Reubens
- Department of Biology, East Carolina University, Greenville, NC 27878, USA.
| | - Megan D Biller
- Department of Biology, East Carolina University, Greenville, NC 27878, USA.
| | - Sidney E Bedsole
- Department of Biology, East Carolina University, Greenville, NC 27878, USA.
| | - Lucas T Hopkins
- Department of Biology, East Carolina University, Greenville, NC 27878, USA.
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC 27878, USA.
| | - Tim W Christensen
- Department of Biology, East Carolina University, Greenville, NC 27878, USA.
| |
Collapse
|
5
|
Lavanya Devi AL, Nongthomba U, Bobji MS. Quantitative characterization of adhesion and stiffness of corneal lens of Drosophila melanogaster using atomic force microscopy. J Mech Behav Biomed Mater 2015; 53:161-173. [PMID: 26327451 DOI: 10.1016/j.jmbbm.2015.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/26/2015] [Accepted: 08/07/2015] [Indexed: 11/25/2022]
Abstract
Atomic force Microscopy (AFM) has become a versatile tool in biology due to its advantage of high-resolution imaging of biological samples close to their native condition. Apart from imaging, AFM can also measure the local mechanical properties of the surfaces. In this study, we explore the possibility of using AFM to quantify the rough eye phenotype of Drosophila melanogaster through mechanical properties. We have measured adhesion force, stiffness and elastic modulus of the corneal lens using AFM. Various parameters affecting these measurements like cantilever stiffness and tip geometry are systematically studied and the measurement procedures are standardized. Results show that the mean adhesion force of the ommatidial surface varies from 36 nN to 16 nN based on the location. The mean stiffness is 483 ± 5 N/m, and the elastic modulus is 3.4 ± 0.05 GPa (95% confidence level) at the center of ommatidia. These properties are found to be different in corneal lens of eye expressing human mutant tau gene (mutant). The adhesion force, stiffness and elastic modulus are decreased in the mutant. We conclude that the measurement of surface and mechanical properties of D. melanogaster using AFM can be used for quantitative evaluation of 'rough eye' surface.
Collapse
Affiliation(s)
- A L Lavanya Devi
- Centre for Nanoscience and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India; Department of Mechanical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Upendra Nongthomba
- Department of Molecular Reproduction and Development Genetics, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - M S Bobji
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|