1
|
Machy P, Mortier E, Birklé S. Biology of GD2 ganglioside: implications for cancer immunotherapy. Front Pharmacol 2023; 14:1249929. [PMID: 37670947 PMCID: PMC10475612 DOI: 10.3389/fphar.2023.1249929] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Part of the broader glycosphingolipid family, gangliosides are composed of a ceramide bound to a sialic acid-containing glycan chain, and locate at the plasma membrane. Gangliosides are produced through sequential steps of glycosylation and sialylation. This diversity of composition is reflected in differences in expression patterns and functions of the various gangliosides. Ganglioside GD2 designates different subspecies following a basic structure containing three carbohydrate residues and two sialic acids. GD2 expression, usually restrained to limited tissues, is frequently altered in various neuroectoderm-derived cancers. While GD2 is of evident interest, its glycolipid nature has rendered research challenging. Physiological GD2 expression has been linked to developmental processes. Passing this stage, varying levels of GD2, physiologically expressed mainly in the central nervous system, affect composition and formation of membrane microdomains involved in surface receptor signaling. Overexpressed in cancer, GD2 has been shown to enhance cell survival and invasion. Furthermore, binding of antibodies leads to immune-independent cell death mechanisms. In addition, GD2 contributes to T-cell dysfunction, and functions as an immune checkpoint. Given the cancer-associated functions, GD2 has been a source of interest for immunotherapy. As a potential biomarker, methods are being developed to quantify GD2 from patients' samples. In addition, various therapeutic strategies are tested. Based on initial success with antibodies, derivates such as bispecific antibodies and immunocytokines have been developed, engaging patient immune system. Cytotoxic effectors or payloads may be redirected based on anti-GD2 antibodies. Finally, vaccines can be used to mount an immune response in patients. We review here the pertinent biological information on GD2 which may be of use for optimizing current immunotherapeutic strategies.
Collapse
Affiliation(s)
| | | | - Stéphane Birklé
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, Nantes, France
| |
Collapse
|
2
|
Feng Z, Ou Y, Hao L. The roles of glycolysis in osteosarcoma. Front Pharmacol 2022; 13:950886. [PMID: 36059961 PMCID: PMC9428632 DOI: 10.3389/fphar.2022.950886] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Metabolic reprogramming is of great significance in the progression of various cancers and is critical for cancer progression, diagnosis, and treatment. Cellular metabolic pathways mainly include glycolysis, fat metabolism, glutamine decomposition, and oxidative phosphorylation. In cancer cells, reprogramming metabolic pathways is used to meet the massive energy requirement for tumorigenesis and development. Metabolisms are also altered in malignant osteosarcoma (OS) cells. Among reprogrammed metabolisms, alterations in aerobic glycolysis are key to the massive biosynthesis and energy demands of OS cells to sustain their growth and metastasis. Numerous studies have demonstrated that compared to normal cells, glycolysis in OS cells under aerobic conditions is substantially enhanced to promote malignant behaviors such as proliferation, invasion, metastasis, and drug resistance of OS. Glycolysis in OS is closely related to various oncogenes and tumor suppressor genes, and numerous signaling pathways have been reported to be involved in the regulation of glycolysis. In recent years, a vast number of inhibitors and natural products have been discovered to inhibit OS progression by targeting glycolysis-related proteins. These potential inhibitors and natural products may be ideal candidates for the treatment of osteosarcoma following hundreds of preclinical and clinical trials. In this article, we explore key pathways, glycolysis enzymes, non-coding RNAs, inhibitors, and natural products regulating aerobic glycolysis in OS cells to gain a deeper understanding of the relationship between glycolysis and the progression of OS and discover novel therapeutic approaches targeting glycolytic metabolism in OS.
Collapse
|
3
|
Inhibiting Endothelin Receptors with Macitentan Strengthens the Bone Protective Action of RANKL Inhibition and Reduces Metastatic Dissemination in Osteosarcoma. Cancers (Basel) 2022; 14:cancers14071765. [PMID: 35406536 PMCID: PMC8997105 DOI: 10.3390/cancers14071765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The efficacy of current osteosarcoma therapy is diminished by two adverse events, namely resistance to chemotherapy and metastatic dissemination. In recent decades, research has been devoted to reducing these adverse events. Inhibiting bone resorption has shown promising effects on metastatic dissemination and tumor growth, with, however, the formation of significant tumoral mineralized tissue. Endothelin signaling is implicated in activating the cell that forms the mineralized tissues, consequently the impact of inhibiting it alone and in combination with the inhibition of bone resorption was evaluated using osteosarcoma models. The results obtained showed that inhibiting endothelin signaling significantly reduced the formation of mineralized tumor tissue concomitantly to metastatic dissemination without affecting sensitivity to chemotherapy. This inhibition appears to be a promising new therapeutic tool in the fight against osteosarcoma. Abstract Current treatments for osteosarcoma, combining conventional polychemotherapy and surgery, make it possible to attain a five-year survival rate of 70% in affected individuals. The presence of chemoresistance and metastases significantly shorten the patient’s lifespan, making identification of new therapeutic tools essential. Inhibiting bone resorption has been shown to be an efficient adjuvant strategy impacting the metastatic dissemination of osteosarcoma, tumor growth, and associated bone destruction. Unfortunately, over-apposition of mineralized matrix by normal and tumoral osteoblasts was associated with this inhibition. Endothelin signaling is implicated in the functional differentiation of osteoblasts, raising the question of the potential value of inhibiting it alone, or in combination with bone resorption repression. Using mouse models of osteosarcoma, the impact of macitentan, an endothelin receptor inhibitor, was evaluated regarding tumor growth, metastatic dissemination, matrix over-apposition secondary to RANKL blockade, and safety when combined with chemotherapy. The results showed that macitentan has no impact on tumor growth or sensitivity to ifosfamide, but significantly reduces tumoral osteoid tissue formation and the metastatic capacity of the osteosarcoma. To conclude, macitentan appears to be a promising therapeutic adjuvant for osteosarcoma alone or associated with bone resorption inhibitors.
Collapse
|
4
|
Cancer-Associated Glycosphingolipids as Tumor Markers and Targets for Cancer Immunotherapy. Int J Mol Sci 2021; 22:ijms22116145. [PMID: 34200284 PMCID: PMC8201009 DOI: 10.3390/ijms22116145] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022] Open
Abstract
Aberrant expression of glycosphingolipids is a hallmark of cancer cells and is associated with their malignant properties. Disialylated gangliosides GD2 and GD3 are considered as markers of neuroectoderm origin in tumors, whereas fucosyl-GM1 is expressed in very few normal tissues but overexpressed in a variety of cancers, especially in small cell lung carcinoma. These gangliosides are absent in most normal adult tissues, making them targets of interest in immuno-oncology. Passive and active immunotherapy strategies have been developed, and have shown promising results in clinical trials. In this review, we summarized the current knowledge on GD2, GD3, and fucosyl-GM1 expression in health and cancer, their biosynthesis pathways in the Golgi apparatus, and their biological roles. We described how their overexpression can affect intracellular signaling pathways, increasing the malignant phenotypes of cancer cells, including their metastatic potential and invasiveness. Finally, the different strategies used to target these tumor-associated gangliosides for immunotherapy were discussed, including the use and development of monoclonal antibodies, vaccines, immune system modulators, and immune effector-cell therapy, with a special focus on adoptive cellular therapy with T cells engineered to express chimeric antigen receptors.
Collapse
|
5
|
Yu J, Hung JT, Wang SH, Cheng JY, Yu AL. Targeting glycosphingolipids for cancer immunotherapy. FEBS Lett 2020; 594:3602-3618. [PMID: 32860713 DOI: 10.1002/1873-3468.13917] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 11/07/2022]
Abstract
Aberrant expression of glycosphingolipids (GSLs) is a unique feature of cancer and stromal cells in tumor microenvironments. Although the impact of GSLs on tumor progression remains largely unclear, anticancer immunotherapies directed against GSLs are attracting growing attention. Here, we focus on GD2, a disialoganglioside expressed in tumors of neuroectodermal origin, and Globo H ceramide (GHCer), the most prevalent cancer-associated GSL overexpressed in a variety of epithelial cancers. We first summarize recent advances on our understanding of GD2 and GHCer biology and then discuss the clinical development of the first immunotherapeutic agent targeting a glycolipid, the GD2-specific antibody dinutuximab, its approved indications, and new strategies to improve its efficacy for neuroblastoma. Next, we review ongoing clinical trials on Globo H-targeted immunotherapeutics. We end with highlighting how these studies provide sound scientific rationales for targeting GSLs in cancer and may facilitate a rational design of new GSL-targeted anticancer therapeutics.
Collapse
Affiliation(s)
- John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Jing-Yan Cheng
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan.,Department of Pediatrics, University of California in San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Cavdarli S, Groux-Degroote S, Delannoy P. Gangliosides: The Double-Edge Sword of Neuro-Ectodermal Derived Tumors. Biomolecules 2019; 9:E311. [PMID: 31357634 PMCID: PMC6723632 DOI: 10.3390/biom9080311] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
Gangliosides, the glycosphingolipids carrying one or several sialic acid residues, are mostly localized at the plasma membrane in lipid raft domains and implicated in many cellular signaling pathways mostly by interacting with tyrosine kinase receptors. Gangliosides are divided into four series according to the number of sialic acid residues, which can be also modified by O-acetylation. Both ganglioside expression and sialic acid modifications can be modified in pathological conditions such as cancer, which can induce either pro-cancerous or anti-cancerous effects. In this review, we summarize the specific functions of gangliosides in neuro-ectodermal derived tumors, and their roles in reprogramming the lipidomic profile of cell membrane occurring with the induction of epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Sumeyye Cavdarli
- Université de Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F59000 Lille, France
| | - Sophie Groux-Degroote
- Université de Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F59000 Lille, France
| | - Philippe Delannoy
- Université de Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F59000 Lille, France.
| |
Collapse
|
7
|
Perut F, Roncuzzi L, Zini N, Massa A, Baldini N. Extracellular Nanovesicles Secreted by Human Osteosarcoma Cells Promote Angiogenesis. Cancers (Basel) 2019; 11:cancers11060779. [PMID: 31195680 PMCID: PMC6627280 DOI: 10.3390/cancers11060779] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/28/2019] [Accepted: 06/01/2019] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis involves a number of different players among which extracellular nanovesicles (EVs) have recently been proposed as an efficient cargo of pro-angiogenic mediators. Angiogenesis plays a key role in osteosarcoma (OS) development and progression. Acidity is a hallmark of malignancy in a variety of cancers, including sarcomas, as a result of an increased energetic metabolism. The aim of this study was to investigate the role of EVs derived from osteosarcoma cells on angiogenesis and whether extracellular acidity, generated by tumor metabolism, could influence EVs activity. For this purpose, we purified and characterized EVs from OS cells maintained at either acidic or neutral pH. The ability of EVs to induce angiogenesis was assessed in vitro by endothelial cell tube formation and in vivo using chicken chorioallantoic membrane. Our findings demonstrated that EVs derived from osteosarcoma cells maintained either in acidic or neutral conditions induced angiogenesis. The results showed that miRNA and protein content of EVs cargo are correlated with pro-angiogenic activity and this activity is increased by the acidity of tumor microenvironment. This study provides evidence that EVs released by human osteosarcoma cells act as carriers of active angiogenic stimuli that are able to promote endothelial cell functions relevant to angiogenesis.
Collapse
Affiliation(s)
- Francesca Perut
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Laura Roncuzzi
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Nicoletta Zini
- CNR-National Research Council of Italy, Institute of Molecular Genetics, 40136 Bologna, Italy.
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Annamaria Massa
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Nicola Baldini
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40123 Bologna, Italy.
| |
Collapse
|
8
|
Yu S, Fourman MS, Mahjoub A, Mandell JB, Crasto JA, Greco NG, Weiss KR. Lung cells support osteosarcoma cell migration and survival. BMC Cancer 2017; 17:78. [PMID: 28122543 PMCID: PMC5267399 DOI: 10.1186/s12885-017-3047-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/06/2017] [Indexed: 01/16/2023] Open
Abstract
Background Osteosarcoma (OS) is the most common primary bone tumor, with a propensity to metastasize to the lungs. Five-year survival for metastatic OS is below 30%, and has not improved for several decades despite the introduction of multi-agent chemotherapy. Understanding OS cell migration to the lungs requires an evaluation of the lung microenvironment. Here we utilized an in vitro lung cell and OS cell co-culture model to explore the interactions between OS and lung cells, hypothesizing that lung cells would promote OS cell migration and survival. The impact of a novel anti-OS chemotherapy on OS migration and survival in the lung microenvironment was also examined. Methods Three human OS cell lines (SJSA-1, Saos-2, U-2) and two human lung cell lines (HULEC-5a, MRC-5) were cultured according to American Type Culture Collection recommendations. Human lung cell lines were cultured in growth medium for 72 h to create conditioned media. OS proliferation was evaluated in lung co-culture and conditioned media microenvironment, with a murine fibroblast cell line (NIH-3 T3) in fresh growth medium as controls. Migration and invasion were measured using a real-time cell analysis system. Real-time PCR was utilized to probe for Aldehyde Dehydrogenase (ALDH1) expression. Osteosarcoma cells were also transduced with a lentivirus encoding for GFP to permit morphologic analysis with fluorescence microscopy. The anti-OS efficacy of Disulfiram, an ALDH-inhibitor previously shown to inhibit OS cell proliferation and metastasis in vitro, was evaluated in each microenvironment. Results Lung-cell conditioned medium promoted osteosarcoma cell migration, with a significantly higher attractive effect on all three osteosarcoma cell lines compared to basic growth medium, 10% serum containing medium, and NIH-3 T3 conditioned medium (p <0.05). Lung cell conditioned medium induced cell morphologic changes, as demonstrated with GFP-labeled cells. OS cells cultured in lung cell conditioned medium had increased alkaline phosphatase staining. Conclusions Lung endothelial HULEC-5a cells are attractants for OS cell migration, proliferation, and survival. The SJSA-1 osteosarcoma cell line demonstrated greater metastatic potential than Saos-2 and U-2 cells. ALDH appears to be involved in the interaction between lung and OS cells, and ALP may be a valuable biomarker for monitoring functional OS changes during metastasis.
Collapse
Affiliation(s)
- Shibing Yu
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Adel Mahjoub
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Jared Anthony Crasto
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kurt Richard Weiss
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA. .,Cancer Stem Cell Laboratory, Department of Orthopaedic Surgery, 450 Technology Dr, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
9
|
Yu AL, Hung JT, Ho MY, Yu J. Alterations of Glycosphingolipids in Embryonic Stem Cell Differentiation and Development of Glycan-Targeting Cancer Immunotherapy. Stem Cells Dev 2016; 25:1532-1548. [DOI: 10.1089/scd.2016.0138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alice L. Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Yi Ho
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
10
|
Heymann MF, Brown HK, Heymann D. Drugs in early clinical development for the treatment of osteosarcoma. Expert Opin Investig Drugs 2016; 25:1265-1280. [DOI: 10.1080/13543784.2016.1237503] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Marie-Françoise Heymann
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
- INSERM, UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Equipe Ligue 2012, Faculty of Medicine, University of Nantes, Nantes, France
- Nantes University Hospital, Nantes, France
- European Associated Laboratory, Sarcoma Research Unit, Medical School, INSERM-University of Sheffield, Sheffield, UK
| | - Hannah K. Brown
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
- European Associated Laboratory, Sarcoma Research Unit, Medical School, INSERM-University of Sheffield, Sheffield, UK
| | - Dominique Heymann
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
- INSERM, UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Equipe Ligue 2012, Faculty of Medicine, University of Nantes, Nantes, France
- Nantes University Hospital, Nantes, France
- European Associated Laboratory, Sarcoma Research Unit, Medical School, INSERM-University of Sheffield, Sheffield, UK
| |
Collapse
|
11
|
Fisher JPH, Flutter B, Wesemann F, Frosch J, Rossig C, Gustafsson K, Anderson J. Effective combination treatment of GD2-expressing neuroblastoma and Ewing's sarcoma using anti-GD2 ch14.18/CHO antibody with Vγ9Vδ2+ γδT cells. Oncoimmunology 2015; 5:e1025194. [PMID: 26942051 PMCID: PMC4760299 DOI: 10.1080/2162402x.2015.1025194] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/24/2015] [Accepted: 02/27/2015] [Indexed: 11/12/2022] Open
Abstract
Gamma delta T lymphocytes (γδT cells) have pleiotropic properties including innate cytotoxicity, which make them attractive effectors for cancer immunotherapy. Combination treatment with zoledronic acid and IL-2 can activate and expand the most common subset of blood γδT, which express the Vγ9Vδ2 T cell receptor (TCR) (Vδ2 T cells). Vγ9Vδ2 T cells are equipped for antibody-dependent cell-mediated cytotoxicity (ADCC) through expression of the low-affinity FcγR CD16. GD2 is a highly ranked tumor associated antigen for immunotherapy due to bright expression on the cell surface, absent expression on normal tissues and availability of therapeutic antibodies with known efficacy in neuroblastoma. To explore the hypothesis that zoledronic acid, IL-2 and anti-GD2 antibodies will synergize in a therapeutic combination, we evaluated in vitro cytotoxicity and tumor growth inhibition in the GD2 expressing cancers neuroblastoma and Ewing's sarcoma. Vδ2 T cells exert ADCC against GD2-expressing Ewing's sarcoma and neuroblastoma cell lines, an effect which correlates with the brightness of GD2 expression. In an immunodeficient mouse model of small established GD2-expressing Ewing's sarcoma or neuroblastoma tumors, the combination of adoptively transferred Vδ2+ T cells, expanded in vitro with zoledronic acid and IL-2, with anti-GD2 antibody ch14.18/CHO, and with systemic zoledronic acid, significantly suppressed tumor growth compared to antibody or γδT cell-free controls. Combination treatment using ch14.18/CHO, zoledronic acid and IL-2 is more effective than their use in isolation. The already-established safety profiles of these agents make testing of the combination in GD2 positive cancers such as neuroblastoma or Ewing's sarcoma both rational and feasible.
Collapse
Affiliation(s)
- Jonathan P H Fisher
- University College London Institute of Child Health; Developmental Biology and Cancer Section; London, UK
| | - Barry Flutter
- University College London Institute of Child Health; Developmental Biology and Cancer Section; London, UK
| | - Florian Wesemann
- University College London Institute of Child Health; Developmental Biology and Cancer Section; London, UK
| | - Jennifer Frosch
- University College London Institute of Child Health; Developmental Biology and Cancer Section; London, UK
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology; University Children´s Hospital Muenster; Muenster, Germany
| | - Kenth Gustafsson
- University College London Institute of Child Health; Infection, Immunity, Inflammation and Physiological Medicine Section; London, UK
| | - John Anderson
- University College London Institute of Child Health; Developmental Biology and Cancer Section; London, UK
| |
Collapse
|
12
|
PI3K/Akt signaling in osteosarcoma. Clin Chim Acta 2015; 444:182-92. [PMID: 25704303 DOI: 10.1016/j.cca.2014.12.041] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 11/24/2014] [Accepted: 12/09/2014] [Indexed: 12/19/2022]
Abstract
Osteosarcoma (OS) is the most common nonhematologic bone malignancy in children and adolescents. Despite the advances of adjuvant chemotherapy and significant improvement of survival, the prognosis remains generally poor. As such, the search for more effective anti-OS agents is urgent. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is thought to be one of the most important oncogenic pathways in human cancer. An increasing body of evidence has shown that this pathway is frequently hyperactivated in OS and contributes to disease initiation and development, including tumorigenesis, proliferation, invasion, cell cycle progression, inhibition of apoptosis, angiogenesis, metastasis and chemoresistance. Inhibition of this pathway through small molecule compounds represents an attractive potential therapeutic approach for OS. The aim of this review is to summarize the roles of the PI3K/Akt pathway in the development and progression of OS, and to highlight the therapeutic potential of targeting this signaling pathway. Knowledge obtained from the application of these compounds will help in further understanding the pathogenesis of OS and designing subsequent treatment strategies.
Collapse
|
13
|
Horwacik I, Rokita H. Targeting of tumor-associated gangliosides with antibodies affects signaling pathways and leads to cell death including apoptosis. Apoptosis 2015; 20:679-88. [DOI: 10.1007/s10495-015-1103-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Suzuki M, Cheung NKV. Disialoganglioside GD2 as a therapeutic target for human diseases. Expert Opin Ther Targets 2015; 19:349-62. [PMID: 25604432 DOI: 10.1517/14728222.2014.986459] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Ganglioside GD2 is found in vertebrates and invertebrates, overexpressed among pediatric and adult solid tumors, including neuroblastoma, glioma, retinoblastoma, Ewing's family of tumors, rhabdomyosarcoma, osteosarcoma, leiomyosarcoma, liposarcoma, fibrosarcoma, small cell lung cancer and melanoma. It is also found on stem cells, neurons, some nerve fibers and basal layer of the skin. AREAS COVERED GD2 provides a promising clinical target for radiolabeled antibodies, bispecific antibodies, chimeric antigen receptor (CAR)-modified T cells, drug conjugates, nanoparticles and vaccines. Here, we review its biochemistry, normal physiology, role in tumorigenesis, important characteristics as a target, as well as anti-GD2-targeted strategies. EXPERT OPINION Bridging the knowledge gaps in understanding the interactions of GD2 with signaling molecules within the glycosynapses, and the regulation of its cellular expression should improve therapeutic strategies targeting this ganglioside. In addition to anti-GD2 IgG mAbs, their drug conjugates, radiolabeled forms especially when genetically engineered to improve therapeutic index and novel bispecific forms or CARs to retarget T-cells are promising candidates for treating metastatic cancers.
Collapse
Affiliation(s)
- Maya Suzuki
- Memorial Sloan Kettering Cancer Center, Department of Pediatrics , 1275 York Avenue, New York, NY 10065 , USA +1 646 888 2313 ; +1 631 422 0452 ;
| | | |
Collapse
|