1
|
Branchereau P, Cattaert D. Chloride Homeostasis in Developing Motoneurons. ADVANCES IN NEUROBIOLOGY 2022; 28:45-61. [PMID: 36066820 DOI: 10.1007/978-3-031-07167-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Maturation of GABA/Glycine chloride-mediated synaptic inhibitions is crucial for the establishment of a balance between excitation and inhibition. GABA and glycine are excitatory neurotransmitters on immature neurons that exhibit elevated [Cl-]i. Later in development [Cl-]i drops leading to the occurrence of inhibitory synaptic activity. This ontogenic change is closely correlated to a differential expression of two cation-chloride cotransporters that are the Cl- channel K+/Cl- co-transporter type 2 (KCC2) that extrudes Cl- ions and the Na+-K+-2Cl- cotransporter NKCC1 that accumulates Cl- ions. The classical scheme built from studies performed on cortical and hippocampal networks proposes that immature neurons display high [Cl-]i because NKCC1 is overexpressed compared to KCC2 and that the co-transporters ratio reverses in mature neurons, lowering [Cl-]i. In this chapter, we will see that this classical scheme is not true in motoneurons (MNs) and that an early alteration of the chloride homeostasis may be involved in pathological conditions.
Collapse
Affiliation(s)
- Pascal Branchereau
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Univ. Bordeaux, UMR 5287, CNRS, Bordeaux, France.
| | - Daniel Cattaert
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Univ. Bordeaux, UMR 5287, CNRS, Bordeaux, France
| |
Collapse
|
2
|
Akahoshi T, Utsumi MK, Oonuma K, Murakami M, Horie T, Kusakabe TG, Oka K, Hotta K. A single motor neuron determines the rhythm of early motor behavior in Ciona. SCIENCE ADVANCES 2021; 7:eabl6053. [PMID: 34890229 PMCID: PMC8664258 DOI: 10.1126/sciadv.abl6053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/21/2021] [Indexed: 05/25/2023]
Abstract
Recent work in tunicate supports the similarity between the motor circuits of vertebrates and basal deuterostome lineages. To understand how the rhythmic activity in motor circuits is acquired during development of protochordate Ciona, we investigated the coordination of the motor response by identifying a single pair of oscillatory motor neurons (MN2/A10.64). The MN2 neurons had Ca2+ oscillation with an ~80-s interval that was cell autonomous even in a dissociated single cell. The Ca2+ oscillation of MN2 coincided with the early tail flick (ETF). The spikes of the membrane potential in MN2 gradually correlated with the rhythm of ipsilateral muscle contractions in ETFs. The optogenetic experiments indicated that MN2 is a necessary and sufficient component of ETFs. These results indicate that MN2 is indispensable for the early spontaneous rhythmic motor behavior of Ciona. Our findings shed light on the understanding of development and evolution of chordate rhythmical locomotion.
Collapse
Affiliation(s)
- Taichi Akahoshi
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kohoku, Yokohama 223-8522, Japan
| | - Madoka K. Utsumi
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kohoku, Yokohama 223-8522, Japan
| | - Kouhei Oonuma
- Institute for Integrative Neurobiology and Department of Biology, Konan University, Kobe 658-8501, Japan
| | - Makoto Murakami
- Institute for Integrative Neurobiology and Department of Biology, Konan University, Kobe 658-8501, Japan
| | - Takeo Horie
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan
| | - Takehiro G. Kusakabe
- Institute for Integrative Neurobiology and Department of Biology, Konan University, Kobe 658-8501, Japan
| | - Kotaro Oka
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kohoku, Yokohama 223-8522, Japan
| | - Kohji Hotta
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kohoku, Yokohama 223-8522, Japan
| |
Collapse
|
3
|
Wang Q, Li D, Guo A, Li M, Li L, Zhou J, Mishra SK, Li G, Duan Y, Li Q. Whole-genome resequencing of Dulong Chicken reveal signatures of selection. Br Poult Sci 2020; 61:624-631. [PMID: 32627575 DOI: 10.1080/00071668.2020.1792832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1. Dulong Chickens (DLCs) live at high altitude (~3000 m) and humidity (~90%), are endemic to the Yunnan province, and have gradually developed unique physiological characteristics, but their genetic basis is still unclear. Using the fixation index (FST ) approach, based on whole-genome resequencing, DLCs were analysed to uncover the genomic architecture of the population and candidate genes involved in selection during domestication. 2. A total of 469 candidate genes were obtained to be putatively under selection in DLCs. Further investigations revealed the genic footprint for local adaptation (high-altitude and high-humidity) as the genic signatures that are involved in economic traits (related to egg production). 3. Candidate genes were identified that may be associated with disease resistance, aggressiveness, small body size and positive selection of vision in DLCs. 4. These data revealed loci of selective signals that operate during selection for production at high altitude and humidity.
Collapse
Affiliation(s)
- Q Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China (Southwest Forestry University), Ministry of Education , Kunming, China.,Life Science College, Southwest Forestry University , Kunming, China
| | - D Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, China
| | - A Guo
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China (Southwest Forestry University), Ministry of Education , Kunming, China.,Life Science College, Southwest Forestry University , Kunming, China
| | - M Li
- School of Mathematics and Computer Science, Yunnan Nationalities University , Kunming, China
| | - L Li
- Life Science College, Southwest Forestry University , Kunming, China
| | - J Zhou
- Life Science College, Southwest Forestry University , Kunming, China
| | - S K Mishra
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, China
| | - G Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China (Southwest Forestry University), Ministry of Education , Kunming, China.,Life Science College, Southwest Forestry University , Kunming, China
| | - Y Duan
- Technology Center, China Tobacco Yunnan Industrial Co., Ltd ., Kunming, China
| | - Q Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China (Southwest Forestry University), Ministry of Education , Kunming, China.,Life Science College, Southwest Forestry University , Kunming, China.,Kunming Xianghao Technology Co. Ltd ., Kunming, China
| |
Collapse
|
4
|
Rashka C, Hergalant S, Dreumont N, Oussalah A, Camadro JM, Marchand V, Hassan Z, Baumgartner MR, Rosenblatt DS, Feillet F, Guéant JL, Flayac J, Coelho D. Analysis of fibroblasts from patients with cblC and cblG genetic defects of cobalamin metabolism reveals global dysregulation of alternative splicing. Hum Mol Genet 2020; 29:1969-1985. [DOI: 10.1093/hmg/ddaa027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
Vitamin B12 or cobalamin (Cbl) metabolism can be affected by genetic defects leading to defective activity of either methylmalonyl-CoA mutase or methionine synthase or both enzymes. Patients usually present with a wide spectrum of pathologies suggesting that various cellular processes could be affected by modifications in gene expression. We have previously demonstrated that these genetic defects are associated with subcellular mislocalization of RNA-binding proteins (RBP) and subsequent altered nucleo-cytoplasmic shuttling of mRNAs. In order to characterize the possible changes of gene expression in these diseases, we have investigated global gene expression in fibroblasts from patients with cblC and cblG inherited disorders by RNA-seq. The most differentially expressed genes are strongly associated with developmental processes, neurological, ophthalmologic and cardiovascular diseases. These associations are consistent with the clinical presentation of cblC and cblG disorders. Multivariate analysis of transcript processing revaled splicing alterations that led to dramatic changes in cytoskeleton organization, response to stress, methylation of macromolecules and RNA binding. The RNA motifs associated with this differential splicing reflected a potential role of RBP such as HuR and HNRNPL. Proteomic analysis confirmed that mRNA processing was significantly disturbed. This study reports a dramatic alteration of gene expression in fibroblasts of patients with cblC and cblG disorders, which resulted partly from disturbed function of RBP. These data suggest to evaluate the rescue of the mislocalization of RBP as a potential strategy in the treatment of severe cases who are resistant to classical treatments with co-enzyme supplements.
Collapse
Affiliation(s)
- Charif Rashka
- Inserm UMRS 1256 NGERE – Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
| | - Sébastien Hergalant
- Inserm UMRS 1256 NGERE – Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
| | - Natacha Dreumont
- Inserm UMRS 1256 NGERE – Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
| | - Abderrahim Oussalah
- Inserm UMRS 1256 NGERE – Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
- National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, Nancy F-54000, France
| | | | - Virginie Marchand
- University of Lorraine, CNRS, INSERM, UMS2008, IBSLor, Epitranscriptomics and RNA Sequencing Core Facility, Nancy F-54000, France
| | - Ziad Hassan
- Inserm UMRS 1256 NGERE – Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
| | - Matthias R Baumgartner
- Radiz – Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases, University of Zürich, Zürich, Switzerland
| | | | - François Feillet
- Inserm UMRS 1256 NGERE – Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
- National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, Nancy F-54000, France
| | - Jean-Louis Guéant
- Inserm UMRS 1256 NGERE – Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
- National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, Nancy F-54000, France
| | - Justine Flayac
- Inserm UMRS 1256 NGERE – Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
| | - David Coelho
- Inserm UMRS 1256 NGERE – Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
- National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, Nancy F-54000, France
| |
Collapse
|
5
|
Black BJ, Atmaramani R, Pancrazio JJ. Spontaneous and Evoked Activity from Murine Ventral Horn Cultures on Microelectrode Arrays. Front Cell Neurosci 2017; 11:304. [PMID: 29033792 PMCID: PMC5626830 DOI: 10.3389/fncel.2017.00304] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/12/2017] [Indexed: 12/11/2022] Open
Abstract
Motor neurons are the site of action for several neurological disorders and paralytic toxins, with cell bodies located in the ventral horn (VH) of the spinal cord along with interneurons and support cells. Microelectrode arrays (MEAs) have emerged as a high content assay platform for mechanistic studies and drug discovery. Here, we explored the spontaneous and evoked electrical activity of VH cultures derived from embryonic mouse spinal cord on multi-well plates of MEAs. Primary VH cultures from embryonic day 15–16 mice were characterized by expression of choline acetyltransferase (ChAT) by immunocytochemistry. Well resolved, all-or-nothing spontaneous spikes with profiles consistent with extracellular action potentials were observed after 3 days in vitro, persisting with consistent firing rates until at least day in vitro 19. The majority of the spontaneous activity consisted of tonic firing interspersed with coordinated bursting across the network. After 5 days in vitro, spike activity was readily evoked by voltage pulses where a minimum amplitude and duration required for excitation was 300 mV and 100 μs/phase, respectively. We characterized the sensitivity of spontaneous and evoked activity to a host of pharmacological agents including AP5, CNQX, strychnine, ω-agatoxin IVA, and botulinum neurotoxin serotype A (BoNT/A). These experiments revealed sensitivity of the cultured VH to both agonist and antagonist compounds in a manner consistent with mature tissue derived from slices. In the case of BoNT/A, we also demonstrated intoxication persistence over an 18-day period, followed by partial intoxication recovery induced by N- and P/Q-type calcium channel agonist GV-58. In total, our findings suggest that VH cultures on multi-well MEA plates may represent a moderate throughput, high content assay for performing mechanistic studies and for screening potential therapeutics pertaining to paralytic toxins and neurological disorders.
Collapse
Affiliation(s)
- Bryan J Black
- Neuronal Networks and Interfaces Laboratory, Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Rahul Atmaramani
- Neuronal Networks and Interfaces Laboratory, Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Joseph J Pancrazio
- Neuronal Networks and Interfaces Laboratory, Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
6
|
Montague K, Lowe AS, Uzquiano A, Knüfer A, Astick M, Price SR, Guthrie S. The assembly of developing motor neurons depends on an interplay between spontaneous activity, type II cadherins and gap junctions. Development 2017; 144:830-836. [PMID: 28246212 DOI: 10.1242/dev.144063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/10/2017] [Indexed: 01/12/2023]
Abstract
A core structural and functional motif of the vertebrate central nervous system is discrete clusters of neurons or 'nuclei'. Yet the developmental mechanisms underlying this fundamental mode of organisation are largely unknown. We have previously shown that the assembly of motor neurons into nuclei depends on cadherin-mediated adhesion. Here, we demonstrate that the emergence of mature topography among motor nuclei involves a novel interplay between spontaneous activity, cadherin expression and gap junction communication. We report that nuclei display spontaneous calcium transients, and that changes in the activity patterns coincide with the course of nucleogenesis. We also find that these activity patterns are disrupted by manipulating cadherin or gap junction expression. Furthermore, inhibition of activity disrupts nucleogenesis, suggesting that activity feeds back to maintain integrity among motor neurons within a nucleus. Our study suggests that a network of interactions between cadherins, gap junctions and spontaneous activity governs neuron assembly, presaging circuit formation.
Collapse
Affiliation(s)
- Karli Montague
- Wolfson Centre for Age-related Diseases, King's College London, Guy's Hospital Campus, London SE1 1UL, UK
| | - Andrew S Lowe
- Department of Developmental Neurobiology, King's College London, Guy's Hospital Campus, London SE1 1UL, UK
| | - Ana Uzquiano
- École de Neuroscience-Paris Île-de-France, ENP-DIM, 15 Rue de L'École de Médécine, Paris 75006, France
| | - Athene Knüfer
- Department of Developmental Neurobiology, King's College London, Guy's Hospital Campus, London SE1 1UL, UK
| | - Marc Astick
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université de Bruxelles, Route de Lennik 808, Bruxelles B1070, Belgium
| | - Stephen R Price
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Sarah Guthrie
- Department of Developmental Neurobiology, King's College London, Guy's Hospital Campus, London SE1 1UL, UK
| |
Collapse
|
7
|
Normal Molecular Specification and Neurodegenerative Disease-Like Death of Spinal Neurons Lacking the SNARE-Associated Synaptic Protein Munc18-1. J Neurosci 2016; 36:561-76. [PMID: 26758845 DOI: 10.1523/jneurosci.1964-15.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The role of synaptic activity during early formation of neural circuits is a topic of some debate; genetic ablation of neurotransmitter release by deletion of the Munc18-1 gene provides an excellent model to answer the question of whether such activity is required for early circuit formation. Previous analysis of Munc18-1(-/-) mouse mutants documented their grossly normal nervous system, but its molecular differentiation has not been assessed. Munc18-1 deletion in mice also results in widespread neurodegeneration that remains poorly characterized. In this study, we demonstrate that the early stages of spinal motor circuit formation, including motor neuron specification, axon growth and pathfinding, and mRNA expression, are unaffected in Munc18-1(-/-) mice, demonstrating that synaptic activity is dispensable for early nervous system development. Furthermore, we show that the neurodegeneration caused by Munc18-1 loss is cell autonomous, consistent with apparently normal expression of several neurotrophic factors and normal GDNF signaling. Consistent with cell-autonomous degeneration, we demonstrate defects in the trafficking of the synaptic proteins Syntaxin1a and PSD-95 and the TrkB and DCC receptors in Munc18-1(-/-) neurons; these defects do not appear to cause ER stress, suggesting other mechanisms for degeneration. Finally, we demonstrate pathological similarities to Alzheimer's disease, such as altered Tau phosphorylation, neurofibrillary tangles, and accumulation of insoluble protein plaques. Together, our results shed new light upon the neurodegeneration observed in Munc18-1(-/-) mice and argue that this phenomenon shares parallels with neurodegenerative diseases. SIGNIFICANCE STATEMENT In this work, we demonstrate the absence of a requirement for regulated neurotransmitter release in the assembly of early neuronal circuits by assaying transcriptional identity, axon growth and guidance, and mRNA expression in Munc18-1-null mice. Furthermore, we characterize the neurodegeneration observed in Munc18-1 mutants and demonstrate that this cell-autonomous process does not appear to be a result of defects in growth factor signaling or ER stress caused by protein trafficking defects. However, we find the presence of various pathological hallmarks of Alzheimer's disease that suggest parallels between the degeneration in these mutants and neurodegenerative conditions.
Collapse
|