1
|
Chen Y, Luo M, Tu H, Qi Y, Guo Y, Zhang X, Cui Y, Gao M, Zhou X, Zhu T, Zhu H, Situ C, Li Y, Guo X. STYXL1 regulates CCT complex assembly and flagellar tubulin folding in sperm formation. Nat Commun 2024; 15:44. [PMID: 38168070 PMCID: PMC10761714 DOI: 10.1038/s41467-023-44337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Tubulin-based microtubule is a core component of flagella axoneme and essential for sperm motility and male fertility. Structural components of the axoneme have been well explored. However, how tubulin folding is regulated in sperm flagella formation is still largely unknown. Here, we report a germ cell-specific co-factor of CCT complex, STYXL1. Deletion of Styxl1 results in male infertility and microtubule defects of sperm flagella. Proteomic analysis of Styxl1-/- sperm reveals abnormal downregulation of flagella-related proteins including tubulins. The N-terminal rhodanese-like domain of STYXL1 is important for its interactions with CCT complex subunits, CCT1, CCT6 and CCT7. Styxl1 deletion leads to defects in CCT complex assembly and tubulin polymerization. Collectively, our findings reveal the vital roles of germ cell-specific STYXL1 in CCT-facilitated tubulin folding and sperm flagella development.
Collapse
Affiliation(s)
- Yu Chen
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
- Medical Research Center, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China
| | - Mengjiao Luo
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Haixia Tu
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Yaling Qi
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yueshuai Guo
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangzheng Zhang
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yiqiang Cui
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mengmeng Gao
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xin Zhou
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Tianyu Zhu
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hui Zhu
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chenghao Situ
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Yan Li
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China.
| | - Xuejiang Guo
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
2
|
Hinton SD. Understanding Pseudophosphatase Function Through Biochemical Interactions. Methods Mol Biol 2024; 2743:21-41. [PMID: 38147206 DOI: 10.1007/978-1-0716-3569-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Pseudophosphatases have been solidified as important signaling molecules that regulate signal transduction cascades. However, their mechanisms of action remain enigmatic. Reflecting this mystery, the prototypical pseudophosphatase STYX (phospho-serine-threonine/tyrosine-binding protein) was named with allusion to the river of the dead in Greek mythology to emphasize that these molecules are "dead" phosphatases. Although proteins with STYX domains do not catalyze dephosphorylation, this does not preclude their having other functions, including as integral elements of signaling networks. Thus, understanding their roles may mark them as potential novel drug targets. This chapter outlines common strategies used to characterize the functions of pseudophosphatases, using as an example MK-STYX [MAPK (mitogen-activated protein kinase) phospho-serine-threonine/tyrosine-binding], which has been linked to tumorigenesis, hepatocellular carcinoma, glioblastoma, apoptosis, and neuronal differentiation. We start with the importance of "restoring" (when possible) phosphatase activity in a pseudophosphatase, so the active mutant may be used as a comparison control throughout immunoprecipitation and mass spectrometry analyses. To this end, we provide protocols for site-directed mutagenesis, mammalian cell transfection, co-immunoprecipitation, phosphatase activity assays, and immunoblotting that we have used to investigate MK-STYX and the active mutant MK-STYXactive. We also highlight the importance of utilizing RNA interference (RNAi) "knockdown" technology to determine a cellular phenotype in various cell lines. Therefore, we outline our protocols for introducing short hairpin RNA (shRNA) expression plasmids into mammalian cells and quantifying knockdown of gene expression with real-time quantitative PCR (qPCR). We also provide a bioinformatic approach to investigating MK-STYX and MK-STYX(active mutant). These bioinformatic approaches can stand alone experimentally but also complement and enhance "wet" bench approaches such as binding assays and/or activity assays. A combination of cellular, molecular, biochemical, proteomic, and bioinformatic techniques has been a powerful tool in identifying novel functions of MK-STYX. Likewise, the information provided here should be a helpful guide to elucidating the functions of other pseudophosphatases.
Collapse
Affiliation(s)
- Shantá D Hinton
- Department of Biology, College of William and Mary, Williamsburg, VA, USA.
| |
Collapse
|
3
|
Smailys J, Jiang F, Prioleau T, Kelley K, Mitchell O, Nour S, Ali L, Buchser W, Zavada L, Hinton SD. The DUSP domain of pseudophosphatase MK-STYX interacts with G3BP1 to decrease stress granules. Arch Biochem Biophys 2023; 744:109702. [PMID: 37516290 PMCID: PMC10500436 DOI: 10.1016/j.abb.2023.109702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
Mitogen activated protein kinase phosphoserine/threonine/tyrosine-binding protein (MK-STYX) is a dual specificity (DUSP) member of the protein tyrosine phosphatase family. It is a pseudophosphatase, which lacks the essential amino acids histidine and cysteine in the catalytic active signature motif (HCX5R). We previously reported that MK-STYX interacts with G3BP1 [Ras-GAP (GTPase-activating protein) SH3 (Src homology 3) domain-binding-1] and reduces stress granules, stalled mRNA. To determine how MK-STYX reduces stress granules, truncated domains, CH2 (cell division cycle 25 phosphatase homology 2) and DUSP, of MK-STYX were used. Wild-type MK-STYX and the DUSP domain significantly decreased stressed granules that were induced by sodium arsenite, in which G3BP1 (a stress granule nucleator) was used as the marker. In addition, HEK/293 and HeLa cells co-expressing G3BP1-GFP and mCherry-MK-STYX, mCherry-MK-STYX-CH2, mCherry-MK-STYX-DUSP or mCherry showed that stress granules were significantly decreased in the presence of wild-type MK-STYX and the DUSP domain of MK-STYX. Further characterization of these dynamics in HeLa cells showed that the CH2 domain increased the number of stress granules within a cell, relative to wild-type and DUSP domain of MK-STYX. To further analyze the interaction of G3BP1 and the domains of MK-STYX, coimmunoprecipitation experiments were performed. Cells co-expressing G3BP1-GFP and mCherry, mCherry-MK-STYX, mCherry-MK-STYX-CH2, or mCherry-MK-STYX-DUSP demonstrated that the DUSP domain of MK-STYX interacts with both G3BP1-GFP and endogenous G3BP1, whereas the CH2 domain of MK-STYX did not coimmunoprecipitate with G3BP1. In addition, G3BP1 tyrosine phosphorylation, which is required for stress granule formation, was decreased in the presence of wild-type MK-STYX or the DUSP domain but increased in the presence of CH2. These data highlight a model for how MK-STYX decreases G3BP1-induced stress granules. The DUSP domain of MK-STYX interacts with G3BP1 and negatively alters its tyrosine phosphorylation- decreasing stress granule formation.
Collapse
Affiliation(s)
- Jonathan Smailys
- Department of Biology, Integrated Science Center, William and Mary, Williamsburg, VA, 23185, USA
| | - Fei Jiang
- Department of Biology, Integrated Science Center, William and Mary, Williamsburg, VA, 23185, USA
| | - Tatiana Prioleau
- Department of Biology, Integrated Science Center, William and Mary, Williamsburg, VA, 23185, USA
| | - Kylan Kelley
- Department of Biology, Integrated Science Center, William and Mary, Williamsburg, VA, 23185, USA; Department of Genetics, Washington University, St. Louis, MO, 63110, USA
| | - Olivia Mitchell
- Department of Biology, Hampton University, Hampton, VA, 23666, USA
| | - Samah Nour
- Department of Genetics, Washington University, St. Louis, MO, 63110, USA
| | - Lina Ali
- Department of Genetics, Washington University, St. Louis, MO, 63110, USA
| | - William Buchser
- Department of Genetics, Washington University, St. Louis, MO, 63110, USA
| | - Lynn Zavada
- Department of Biology, Integrated Science Center, William and Mary, Williamsburg, VA, 23185, USA
| | - Shantá D Hinton
- Department of Biology, Integrated Science Center, William and Mary, Williamsburg, VA, 23185, USA.
| |
Collapse
|
4
|
Patel S, Bhatt AM, Bhansali P, Setty SRG. Pseudophosphatase STYXL1 depletion enhances glucocerebrosidase trafficking to lysosomes via ER stress. Traffic 2023; 24:254-269. [PMID: 37198709 DOI: 10.1111/tra.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/19/2023]
Abstract
Pseudophosphatases are catalytically inactive but share sequence and structural similarities with classical phosphatases. STYXL1 is a pseudophosphatase that belongs to the family of dual-specificity phosphatases and is known to regulate stress granule formation, neurite formation and apoptosis in different cell types. However, the role of STYXL1 in regulating cellular trafficking or the lysosome function has not been elucidated. Here, we show that the knockdown of STYXL1 enhances the trafficking of β-glucocerebrosidase (β-GC) and its lysosomal activity in HeLa cells. Importantly, the STYXL1-depleted cells display enhanced distribution of endoplasmic reticulum (ER), late endosome and lysosome compartments. Further, knockdown of STYXL1 causes the nuclear translocation of unfolded protein response (UPR) and lysosomal biogenesis transcription factors. However, the upregulated β-GC activity in the lysosomes is independent of TFEB/TFE3 nuclear localization in STYXL1 knockdown cells. The treatment of STYXL1 knockdown cells with 4-PBA (ER stress attenuator) significantly reduces the β-GC activity equivalent to control cells but not additive with thapsigargin, an ER stress activator. Additionally, STYXL1-depleted cells show the enhanced contact of lysosomes with ER, possibly via increased UPR. The depletion of STYXL1 in human primary fibroblasts derived from Gaucher patients showed moderately enhanced lysosomal enzyme activity. Overall, these studies illustrated the unique role of pseudophosphatase STYXL1 in modulating the lysosome function both in normal and lysosome-storage disorder cell types. Thus, designing small molecules against STYXL1 possibly can restore the lysosome activity by enhancing ER stress in Gaucher disease.
Collapse
Affiliation(s)
- Saloni Patel
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Anshul Milap Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Priyanka Bhansali
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
5
|
Liu D, Zhang Y, Fang H, Yuan J, Ji L. The progress of research into pseudophosphatases. Front Public Health 2022; 10:965631. [PMID: 36106167 PMCID: PMC9464862 DOI: 10.3389/fpubh.2022.965631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/09/2022] [Indexed: 01/24/2023] Open
Abstract
Pseudophosphatases are a class of phosphatases that mutate at the catalytically active site. They play important parts in many life processes and disorders, e.g., cell apoptosis, stress reaction, tumorigenesis, axon differentiation, Charcot-Marie-Tooth, and metabolic dysfunction. The present review considers the structures and action types of pseudophosphatases in four families, protein tyrosine phosphatases (PTPs), myotube protein phosphatases (MTMs), phosphatases and tensin homologues (PTENs) and dual specificity phosphatases (DUSPs), as well as their mechanisms in signaling and disease. We aimed to provide reference material for the research and treatment of related diseases.
Collapse
Affiliation(s)
- Deqiang Liu
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yiming Zhang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hui Fang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jinxiang Yuan
- College of Life Sciences, Shandong Normal University, Jinan, China,The Collaborative Innovation Center, Jining Medical University, Jining, China,*Correspondence: Jinxiang Yuan
| | - Lizhen Ji
- College of Life Sciences, Shandong Normal University, Jinan, China,Lizhen Ji
| |
Collapse
|
6
|
Torres A, Vivanco S, Lavín F, Pereda C, Chernobrovkin A, Gleisner A, Alcota M, Larrondo M, López MN, Salazar-Onfray F, Zubarev RA, González FE. Haptoglobin Induces a Specific Proteomic Profile and a Mature-Associated Phenotype on Primary Human Monocyte-Derived Dendritic Cells. Int J Mol Sci 2022; 23:ijms23136882. [PMID: 35805888 PMCID: PMC9266681 DOI: 10.3390/ijms23136882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) play a critical role in dendritic cells (DCs) ability to trigger a specific and efficient adaptive immune response for different physiological and pathological scenarios. We have previously identified constitutive DAMPs (HMGB1 and Calreticulin) as well as new putative inducible DAMPs such as Haptoglobin (HP), from a therapeutically used heat shock-conditioned melanoma cell lysate (called TRIMEL). Remarkably, HP was shown to be the most abundant protein in the proteomic profile of heat shock-conditioned TRIMEL samples. However, its relative contribution to the observed DCs phenotype has not been fully elucidated. Human DCs were generated from monocytes isolated from PBMC of melanoma patients and healthy donors. DC lineage was induced with rhIL-4 and rhGM-CSF. After additional stimulation with HP, the proteome of these HP-stimulated cells was characterized. In addition, DCs were phenotypically characterized by flow cytometry for canonical maturation markers and cytokine production. Finally, in vitro transmigration capacity was assessed using Transwell plates. Our results showed that the stimulation with HP was associated with the presence of exclusive and higher relative abundance of specific immune-; energy production-; lipid biosynthesis-; and DAMPs-related proteins. Importantly, HP stimulation enhanced the expression of specific DC maturation markers and pro-inflammatory and Th1-associated cytokines, and an in vitro transmigration of primary human DCs. Taken together, these data suggest that HP can be considered as a new inducible DAMP with an important role in in vitro DC activation for cancer immunotherapy.
Collapse
Affiliation(s)
- Alfredo Torres
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile; (A.T.); (S.V.); (F.L.)
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
| | - Sheilah Vivanco
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile; (A.T.); (S.V.); (F.L.)
| | - Francisca Lavín
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile; (A.T.); (S.V.); (F.L.)
| | - Cristián Pereda
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.P.); (A.G.); (M.N.L.); (F.S.-O.)
| | - Alexey Chernobrovkin
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE17177 Stockholm, Sweden; (A.C.); (R.A.Z.)
| | - Alejandra Gleisner
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.P.); (A.G.); (M.N.L.); (F.S.-O.)
| | - Marcela Alcota
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
| | - Milton Larrondo
- Blood Bank Service, University of Chile Clinical Hospital, Santiago 8380453, Chile;
| | - Mercedes N. López
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.P.); (A.G.); (M.N.L.); (F.S.-O.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.P.); (A.G.); (M.N.L.); (F.S.-O.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Roman A. Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE17177 Stockholm, Sweden; (A.C.); (R.A.Z.)
| | - Fermín E. González
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile; (A.T.); (S.V.); (F.L.)
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Correspondence: ; Tel.: +56-2-29781714
| |
Collapse
|
7
|
Evolutionary genomic relationships and coupling in MK-STYX and STYX pseudophosphatases. Sci Rep 2022; 12:4139. [PMID: 35264672 PMCID: PMC8907265 DOI: 10.1038/s41598-022-07943-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
The dual specificity phosphatase (DUSP) family has catalytically inactive members, called pseudophosphatases. They have mutations in their catalytic motifs that render them enzymatically inactive. This study analyzes the significance of two pseudophosphatases, MK-STYX [MAPK (mitogen-activated protein kinase phosphoserine/threonine/tyrosine-binding protein]) and STYX (serine/threonine/tyrosine-interacting protein), throughout their evolution and provides measurements and comparison of their evolutionary conservation. Phylogenetic trees were constructed to show any deviation from various species evolutionary paths. Data was collected on a large set of proteins that have either one of the two domains of MK-STYX, the DUSP domain or the cdc-25 homology (CH2) /rhodanese-like domain. The distance between species pairs for MK-STYX or STYX and Ka/Ks ratio were calculated. In addition, both pseudophosphatases were ranked among a large set of related proteins, including the active homologs of MK-STYX, MKP (MAPK phosphatase)-1 and MKP-3. MK-STYX had one of the highest species-species protein distances and was under weaker purifying selection pressure than most proteins with its domains. In contrast, the protein distances of STYX were lower than 82% of the DUSP-containing proteins and was under one of the strongest purifying selection pressures. However, there was similar selection pressure on the N-terminal sequences of MK-STYX, STYX, MKP-1, and MKP-3. We next perform statistical coupling analysis, a process that reveals interconnected regions within the proteins. We find that while MKP-1,-3, and STYX all have 2 functional units (sectors), MK-STYX only has one, and that MK-STYX is similar to MKP-3 in the evolutionary coupling of the active site and KIM domain. Within those two domains, the mean coupling is also most similar for MK-STYX and MKP-3. This study reveals striking distinctions between the evolutionary patterns of MK-STYX and STYX, suggesting a very specific role for each pseudophosphatase, further highlighting the relevance of these atypical members of DUSP as signaling regulators. Therefore, our study provides computational evidence and evolutionary reasons to further explore the properties of pseudophosphatases, in particular MK-STYX and STYX.
Collapse
|
8
|
Pseudophosphatases as Regulators of MAPK Signaling. Int J Mol Sci 2021; 22:ijms222212595. [PMID: 34830476 PMCID: PMC8622459 DOI: 10.3390/ijms222212595] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/03/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathways are highly conserved regulators of eukaryotic cell function. These enzymes regulate many biological processes, including the cell cycle, apoptosis, differentiation, protein biosynthesis, and oncogenesis; therefore, tight control of the activity of MAPK is critical. Kinases and phosphatases are well established as MAPK activators and inhibitors, respectively. Kinases phosphorylate MAPKs, initiating and controlling the amplitude of the activation. In contrast, MAPK phosphatases (MKPs) dephosphorylate MAPKs, downregulating and controlling the duration of the signal. In addition, within the past decade, pseudoenzymes of these two families, pseudokinases and pseudophosphatases, have emerged as bona fide signaling regulators. This review discusses the role of pseudophosphatases in MAPK signaling, highlighting the function of phosphoserine/threonine/tyrosine-interacting protein (STYX) and TAK1-binding protein (TAB 1) in regulating MAPKs. Finally, a new paradigm is considered for this well-studied cellular pathway, and signal transduction pathways in general.
Collapse
|
9
|
The Differential Metabolomes in Cumulus and Mural Granulosa Cells from Human Preovulatory Follicles. Reprod Sci 2021; 29:1343-1356. [PMID: 34374964 PMCID: PMC8907092 DOI: 10.1007/s43032-021-00691-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/04/2021] [Indexed: 01/11/2023]
Abstract
This study evaluated the differences in metabolites between cumulus cells (CCs) and mural granulosa cells (MGCs) from human preovulatory follicles to understand the mechanism of oocyte maturation involving CCs and MGCs. CCs and MGCs were collected from women who were undergoing in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) treatment. The differences in morphology were determined by immunofluorescence. The metabolomics of CCs and MGCs was measured by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) followed by quantitative polymerase chain reaction (qPCR) and western blot analysis to further confirm the genes and proteins involved in oocyte maturation. CCs and MGCs were cultured for 48 h in vitro, and the medium was collected for detection of hormone levels. There were minor morphological differences between CCs and MGCs. LC-MS/MS analysis showed that there were differences in 101 metabolites between CCs and MGCs: 7 metabolites were upregulated in CCs, and 94 metabolites were upregulated in MGCs. The metabolites related to cholesterol transport and estradiol production were enriched in CCs, while metabolites related to antiapoptosis were enriched in MGCs. The expression of genes and proteins involved in cholesterol transport (ABCA1, LDLR, and SCARB1) and estradiol production (SULT2B1 and CYP19A1) was significantly higher in CCs, and the expression of genes and proteins involved in antiapoptosis (CRLS1, LPCAT3, and PLA2G4A) was significantly higher in MGCs. The level of estrogen in CCs was significantly higher than that in MGCs, while the progesterone level showed no significant differences. There are differences between the metabolomes of CCs and MGCs. These differences may be involved in the regulation of oocyte maturation.
Collapse
|
10
|
Mattei AM, Smailys JD, Hepworth EMW, Hinton SD. The Roles of Pseudophosphatases in Disease. Int J Mol Sci 2021; 22:ijms22136924. [PMID: 34203203 PMCID: PMC8269279 DOI: 10.3390/ijms22136924] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023] Open
Abstract
The pseudophosphatases, atypical members of the protein tyrosine phosphatase family, have emerged as bona fide signaling regulators within the past two decades. Their roles as regulators have led to a renaissance of the pseudophosphatase and pseudoenyme fields, catapulting interest from a mere curiosity to intriguing and relevant proteins to investigate. Pseudophosphatases make up approximately fourteen percent of the phosphatase family, and are conserved throughout evolution. Pseudophosphatases, along with pseudokinases, are important players in physiology and pathophysiology. These atypical members of the protein tyrosine phosphatase and protein tyrosine kinase superfamily, respectively, are rendered catalytically inactive through mutations within their catalytic active signature motif and/or other important domains required for catalysis. This new interest in the pursuit of the relevant functions of these proteins has resulted in an elucidation of their roles in signaling cascades and diseases. There is a rapid accumulation of knowledge of diseases linked to their dysregulation, such as neuropathies and various cancers. This review analyzes the involvement of pseudophosphatases in diseases, highlighting the function of various role(s) of pseudophosphatases involvement in pathologies, and thus providing a platform to strongly consider them as key therapeutic drug targets.
Collapse
|
11
|
Kasikci E, Aydemir E, Yogurtcu BM, Sahin F, Bayrak OF. Repurposing of Alexidine Dihydrochloride as an Apoptosis Initiator and Cell Cycle Inhibitor in Human Pancreatic Cancer. Anticancer Agents Med Chem 2021; 20:1956-1965. [PMID: 32384037 DOI: 10.2174/1871520620666200508085439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/30/2019] [Accepted: 01/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Highly aggressive and resistant to chemotherapy, pancreatic cancers are the fourth leading cause of cancer-related deaths in the western world. The absence of effective chemotherapeutics is leading researchers to develop novel drugs or repurpose existing chemicals. Alexidine Dihydrochloride (AD), an orally bioavailable bis-biguanide compound, is an apoptosis stimulating reagent. It induces mitochondrial damage by inhibiting a mitochondrial-specific protein tyrosine phosphatase, PTPMT1. The aim of this study was to test AD as a novel compound to induce apoptosis in a human pancreatic adenocarcinoma cell lines, Panc-1, MIA PaCa-2, AsPC-1, and Psn-1. METHODS After the IC50 value of the AD was determined by cytotoxicity assay, apoptosis was observed by a variety of methods, including the detection of early apoptosis marker Annexin V and the proteomic profile screening by apoptosis array. Multicaspase and mitochondrial depolarization were measured, and changes in the cell cycle were analyzed. RESULTS AD is found to initiate apoptosis by activating the intrinsic pathway and inhibit the cell cycle in pancreatic cancer cell lines. CONCLUSION In conclusion, considering its anti-cancer properties and bioavailability, Alexidine dihydrochloride can be considered as a potential candidate against pancreatic adenocarcinomas.
Collapse
Affiliation(s)
- Ezgi Kasikci
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Esra Aydemir
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Bekir M Yogurtcu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Omer F Bayrak
- Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul 34718, Turkey
| |
Collapse
|
12
|
Hinton SD. Pseudophosphatase MK-STYX: the atypical member of the MAP kinase phosphatases. FEBS J 2020; 287:4221-4231. [PMID: 32472731 DOI: 10.1111/febs.15426] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/25/2020] [Accepted: 05/26/2020] [Indexed: 01/03/2023]
Abstract
The regulation of the phosphorylation of mitogen-activated protein kinases (MAPKs) is essential for cellular processes such as proliferation, differentiation, survival, and death. Mutations within the MAPK signaling cascades are implicated in diseases such as cancer, neurodegenerative disorders, arthritis, obesity, and diabetes. MAPK phosphorylation is controlled by an intricate balance between MAPK kinases (enzymes that add phosphate groups) and MAPK phosphatases (MKPs) (enzymes that remove phosphate groups). MKPs are complex negative regulators of the MAPK pathway that control the amplitude and spatiotemporal regulation of MAPKs. MK-STYX (MAPK phosphoserine/threonine/tyrosine-binding protein) is a member of the MKP subfamily, which lacks the critical histidine and nucleophilic cysteine residues in the active site required for catalysis. MK-STYX does not influence the phosphorylation status of MAPK, but even so it adds to the complexity of signal transduction cascades as a signaling regulator. This review highlights the function of MK-STYX, providing insight into MK-STYX as a signal regulating molecule in the stress response, HDAC 6 dynamics, apoptosis, and neurite differentiation.
Collapse
Affiliation(s)
- Shantá D Hinton
- Department of Biology, Integrated Science Center, William & Mary, Williamsburg, VA, USA
| |
Collapse
|
13
|
Reiterer V, Pawłowski K, Desrochers G, Pause A, Sharpe HJ, Farhan H. The dead phosphatases society: a review of the emerging roles of pseudophosphatases. FEBS J 2020; 287:4198-4220. [PMID: 32484316 DOI: 10.1111/febs.15431] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Phosphatases are a diverse family of enzymes, comprising at least 10 distinct protein folds. Like most other enzyme families, many have sequence variations that predict an impairment or loss of catalytic activity classifying them as pseudophosphatases. Research on pseudoenzymes is an emerging area of interest, with new biological functions repurposed from catalytically active relatives. Here, we provide an overview of the pseudophosphatases identified to date in all major phosphatase families. We will highlight the degeneration of the various catalytic sequence motifs and discuss the challenges associated with the experimental determination of catalytic inactivity. We will also summarize the role of pseudophosphatases in various diseases and discuss the major challenges and future directions in this field.
Collapse
Affiliation(s)
| | | | - Guillaume Desrochers
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Arnim Pause
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | | | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Norway
| |
Collapse
|
14
|
Cao Y, Banks DA, Mattei AM, Riddick AT, Reed KM, Zhang AM, Pickering ES, Hinton SD. Pseudophosphatase MK-STYX Alters Histone Deacetylase 6 Cytoplasmic Localization, Decreases Its Phosphorylation, and Increases Detyrosination of Tubulin. Int J Mol Sci 2019; 20:ijms20061455. [PMID: 30909412 PMCID: PMC6470616 DOI: 10.3390/ijms20061455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/14/2022] Open
Abstract
The catalytically inactive mitogen-activated protein (MAP) kinase phosphatase, MK-STYX (MAPK (mitogen-activated protein kinase) phosphoserine/threonine/tyrosine-binding protein) interacts with the stress granule nucleator G3BP-1 (Ras-GAP (GTPase-activating protein) SH3 (Src homology 3) domain-binding protein-1), and decreases stress granule (stalled mRNA) formation. Histone deacetylase isoform 6 (HDAC6) also binds G3BP-1 and serves as a major component of stress granules. The discovery that MK-STYX and HDAC6 both interact with G3BP-1 led us to investigate the effects of MK-STYX on HDAC6 dynamics. In control HEK/293 cells, HDAC6 was cytosolic, as expected, and formed aggregates under conditions of stress. In contrast, in cells overexpressing MK-STYX, HDAC6 was both nuclear and cytosolic and the number of stress-induced aggregates significantly decreased. Immunoblots showed that MK-STYX decreases HDAC6 serine phosphorylation, protein tyrosine phosphorylation, and lysine acetylation. HDAC6 is known to regulate microtubule dynamics to form aggregates. MK-STYX did not affect the organization of microtubules, but did affect their post-translational modification. Tubulin acetylation was increased in the presence of MK-STYX. In addition, the detyrosination of tubulin was significantly increased in the presence of MK-STYX. These findings show that MK-STYX decreases the number of HDAC6-containing aggregates and alters their localization, sustains microtubule acetylation, and increases detyrosination of microtubules, implicating MK-STYX as a signaling molecule in HDAC6 activity.
Collapse
Affiliation(s)
- Yuming Cao
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA 23185, USA.
| | - Dallas A Banks
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA 23185, USA.
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| | - Andrew M Mattei
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA 23185, USA.
| | - Alexys T Riddick
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA 23185, USA.
| | - Kirstin M Reed
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA 23185, USA.
| | - Ashley M Zhang
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA 23185, USA.
| | - Emily S Pickering
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA 23185, USA.
| | - Shantá D Hinton
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA 23185, USA.
| |
Collapse
|
15
|
Monti C, Lane L, Fasano M, Alberio T. Update of the Functional Mitochondrial Human Proteome Network. J Proteome Res 2018; 17:4297-4306. [PMID: 30230342 DOI: 10.1021/acs.jproteome.8b00447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Because of the pivotal role of mitochondrial alterations in several diseases, the Human Proteome Organization (HUPO) has promoted in recent years an initiative to characterize the mitochondrial human proteome, the mitochondrial human proteome project (mt-HPP). Here we generated an updated version of the functional mitochondrial human proteome network, made by nodes (mitochondrial proteins) and edges (gold binary interactions), using data retrieved from neXtProt, the reference database for HPP metrics. The principal new concept suggested was the consideration of mitochondria-associated proteins (first interactors), which may influence mitochondrial functions. All of the proteins described as mitochondrial in the sublocation or the GO Cellular Component sections of neXtProt were considered. Their other subcellular and submitochondrial localizations have been analyzed. The network represents the effort to collect all of the high-quality binary interactions described so far for mitochondrial proteins and the possibility for the community to reuse the information collected. As a proof of principle, we mapped proteins with no function, to speculate on their role by the background knowledge of their interactors, and proteins described to be involved in Parkinson's Disease, a neurodegenerative disorder, where it is known that mitochondria play a central role.
Collapse
Affiliation(s)
- Chiara Monti
- Department of Science and High Technology and Center of Bioinformatics , University of Insubria , Busto Arsizio 21052 , Italy
| | - Lydie Lane
- Computer and Laboratory Investigation of Proteins of Human Origin (CALIPHO), SIB Swiss Institute of Bioinformatics, and Department of Microbiology and Molecular Medicine, Faculty of Medicine , University of Geneva, Centre Médical Universitaire (CMU) , 1211 Geneva 4 , Switzerland
| | - Mauro Fasano
- Department of Science and High Technology and Center of Bioinformatics , University of Insubria , Busto Arsizio 21052 , Italy
| | - Tiziana Alberio
- Department of Science and High Technology and Center of Bioinformatics , University of Insubria , Busto Arsizio 21052 , Italy
| |
Collapse
|
16
|
Hinton SD. The role of pseudophosphatases as signaling regulators. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:167-174. [PMID: 30077638 DOI: 10.1016/j.bbamcr.2018.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022]
Abstract
Pseudophosphatases are atypical members of the protein tyrosine phosphatase superfamily. Mutations within their catalytic signature motif render them catalytically inactive. Despite this lack of catalytic function, pseudophosphatases have been implicated in various diseases such as Charcot Marie-Tooth disorder, cancer, metabolic disorder, and obesity. Moreover, they have roles in various signaling networks such as spermatogenesis, apoptosis, stress response, tumorigenesis, and neurite differentiation. This review highlights the roles of pseudophosphatases as essential regulators in signaling cascades, providing insight into the function of these catalytically inactive enzymes.
Collapse
Affiliation(s)
- Shantá D Hinton
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, USA.
| |
Collapse
|
17
|
Banks DA, Dahal A, McFarland AG, Flowers BM, Stephens CA, Swack B, Gugssa A, Anderson WA, Hinton SD. MK-STYX Alters the Morphology of Primary Neurons, and Outgrowths in MK-STYX Overexpressing PC-12 Cells Develop a Neuronal Phenotype. Front Mol Biosci 2017; 4:76. [PMID: 29250526 PMCID: PMC5715325 DOI: 10.3389/fmolb.2017.00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/02/2017] [Indexed: 01/14/2023] Open
Abstract
We previously reported that the pseudophosphatase MK-STYX (mitogen activated kinase phosphoserine/threonine/tyrosine binding protein) dramatically increases the number of what appeared to be primary neurites in rat pheochromocytoma (PC-12) cells; however, the question remained whether these MK-STYX-induced outgrowths were bona fide neurites, and formed synapses. Here, we report that microtubules and microfilaments, components of the cytoskeleton that are involved in the formation of neurites, are present in MK-STYX-induced outgrowths. In addition, in response to nerve growth factor (NGF), MK-STYX-expressing cells produced more growth cones than non-MK-STYX-expressing cells, further supporting a model in which MK-STYX has a role in actin signaling. Furthermore, immunoblot analysis demonstrates that MK-STYX modulates actin expression. Transmission electron microscopy confirmed that MK-STYX-induced neurites form synapses. To determine whether these MK-STYX-induced neurites have pre-synaptic or post-synaptic properties, we used classical markers for axons and dendrites, Tau-1 and MAP2 (microtubule associated protein 2), respectively. MK-STYX induced neurites were dopaminergic and expression of both Tau-1 and MAP2 suggests that they have both axonal and dendritic properties. Further studies in rat hippocampal primary neurons demonstrated that MK-STYX altered their morphology. A significant number of primary neurons in the presence of MK-STYX had more than the normal number of primary neurites. Our data illustrate the novel findings that MK-STYX induces outgrowths in PC-12 cells that fit the criteria for neurites, have a greater number of growth cones, form synapses, and have pre-synaptic and post-synaptic properties. It also highlights that the pseudophosphatase MK-STYX significantly alters the morphology of primary neurons.
Collapse
Affiliation(s)
- Dallas A Banks
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States
| | - Arya Dahal
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States
| | - Alexander G McFarland
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States
| | - Brittany M Flowers
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States.,National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Christina A Stephens
- Department of Chemistry, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States
| | - Benjamin Swack
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States
| | - Ayele Gugssa
- Department of Biology, Howard University, Washington, DC, United States
| | | | - Shantá D Hinton
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States
| |
Collapse
|
18
|
Antagonistic roles for STYX pseudophosphatases in neurite outgrowth. Biochem Soc Trans 2017; 45:381-387. [PMID: 28408478 DOI: 10.1042/bst20160273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 12/14/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are essential players in important neuronal signaling pathways including neuronal development, plasticity, survival, learning, and memory. The inactivation of MAPKs is tightly controlled by MAPK phosphatases (MKPs), which also are important regulators of these neuronal processes. Considering that MAPKs and MKPs are major players in neuronal signaling, it follows that their misregulation is pivotal in neurodegenerative diseases such as Alzheimer's, Huntington's, Parkinson's, and amyotrophic lateral sclerosis. In contrast, the actions of their noncatalytic homologs, or pseudoenzymes, have received minimal attention as important regulators in neuronal signaling pathways and relevant diseases. There is compelling evidence, however, that pseudophosphatases, such as STYX (phospho-serine-threonine/tyrosine-binding protein) and MAPK-STYX (MK-STYX), are integral signaling molecules in regulating pathways involved in neuronal developmental processes such as neurite outgrowth. Here, we discuss how the dynamics of MK-STYX in the stress response pathway imply that this unique member of the MKP subfamily has the potential to have a major role in neuronal signaling. We further compare the actions of STYX in preventing neurite-like outgrowths and MK-STYX in inducing neurite outgrowths. The roles of these pseudophosphatases in neurite outgrowth highlight their emergence as important candidates to investigate in neurodegenerative disorders and diseases.
Collapse
|
19
|
Abstract
Pseudophosphatases regulate signal transduction cascades, but their mechanisms of action remain enigmatic. Reflecting this mystery, the prototypical pseudophosphatase STYX (phospho-serine-threonine/tyrosine-binding protein) was named with allusion to the river of the dead in Greek mythology to emphasize that these molecules are "dead" phosphatases. Although proteins with STYX domains do not catalyze dephosphorylation, this in no way precludes their having other functions as integral elements of signaling networks. Thus, understanding their roles in signaling pathways may mark them as potential novel drug targets. This chapter outlines common strategies used to characterize the functions of pseudophosphatases, using as an example MK-STYX [mitogen-activated protein kinase (MAPK) phospho-serine-threonine/tyrosine binding], which has been linked to tumorigenesis, apoptosis, and neuronal differentiation. We start with the importance of "restoring" (when possible) phosphatase activity in a pseudophosphatase so that the active mutant may be used as a comparison control throughout immunoprecipitation and mass spectrometry analyses. To this end, we provide protocols for site-directed mutagenesis, mammalian cell transfection, co-immunoprecipitation, phosphatase activity assays, and immunoblotting that we have used to investigate MK-STYX and the active mutant MK-STYXactive. We also highlight the importance of utilizing RNA interference (RNAi) "knockdown" technology to determine a cellular phenotype in various cell lines. Therefore, we outline our protocols for introducing short hairpin RNA (shRNA) expression plasmids into mammalians cells and quantifying knockdown of gene expression with real-time quantitative PCR (qPCR). A combination of cellular, molecular, biochemical, and proteomic techniques has served as powerful tools in identifying novel functions of the pseudophosphatase MK-STYX. Likewise, the information provided here should be a helpful guide to elucidating the function of other pseudophosphatases.
Collapse
Affiliation(s)
- Shantá D Hinton
- Department of Biology, 3045 Integrated Science Center, College of William and Mary, 540 Landrum Dr., Williamsburg, VA, 23187, USA.
| |
Collapse
|
20
|
Alonso A, Pulido R. The extended human PTPome: a growing tyrosine phosphatase family. FEBS J 2015; 283:1404-29. [PMID: 26573778 DOI: 10.1111/febs.13600] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/02/2015] [Accepted: 11/13/2015] [Indexed: 12/13/2022]
Abstract
Tyr phosphatases are, by definition, enzymes that dephosphorylate phospho-Tyr (pTyr) from proteins. This activity is found in several structurally diverse protein families, including the protein Tyr phosphatase (PTP), arsenate reductase, rhodanese, haloacid dehalogenase (HAD) and His phosphatase (HP) families. Most of these families include members with substrate specificity for non-pTyr substrates, such as phospho-Ser/phospho-Thr, phosphoinositides, phosphorylated carbohydrates, mRNAs, or inorganic moieties. A Cys is essential for catalysis in PTPs, rhodanese and arsenate reductase enzymes, whereas this work is performed by an Asp in HAD phosphatases and by a His in HPs, via a catalytic mechanism shared by all of the different families. The category that contains most Tyr phosphatases is the PTP family, which, although it received its name from this activity, includes Ser, Thr, inositide, carbohydrate and RNA phosphatases, as well as some inactive pseudophosphatase proteins. Here, we propose an extended collection of human Tyr phosphatases, which we call the extended human PTPome. The addition of new members (SACs, paladin, INPP4s, TMEM55s, SSU72, and acid phosphatases) to the currently categorized PTP group of enzymes means that the extended human PTPome contains up to 125 proteins, of which ~ 40 are selective for pTyr. We set criteria to ascribe proteins to the extended PTPome, and summarize the more important features of the new PTPome members in the context of their phosphatase activity and their relationship with human disease.
Collapse
Affiliation(s)
- Andrés Alonso
- Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Rafael Pulido
- Biocruces Health Research Institute, Barakaldo, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
21
|
Sobol A, Galluzzo P, Liang S, Rambo B, Skucha S, Weber MJ, Alani S, Bocchetta M. Amyloid precursor protein (APP) affects global protein synthesis in dividing human cells. J Cell Physiol 2015; 230:1064-74. [PMID: 25283437 PMCID: PMC4445069 DOI: 10.1002/jcp.24835] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/22/2014] [Indexed: 02/02/2023]
Abstract
Hypoxic non‐small cell lung cancer (NSCLC) is dependent on Notch‐1 signaling for survival. Targeting Notch‐1 by means of γ‐secretase inhibitors (GSI) proved effective in killing hypoxic NSCLC. Post‐mortem analysis of GSI‐treated, NSCLC‐burdened mice suggested enhanced phosphorylation of 4E‐BP1 at threonines 37/46 in hypoxic tumor tissues. In vitro dissection of this phenomenon revealed that Amyloid Precursor Protein (APP) inhibition was responsible for a non‐canonical 4E‐BP1 phosphorylation pattern rearrangement—a process, in part, mediated by APP regulation of the pseudophosphatase Styx. Upon APP depletion we observed modifications of eIF‐4F composition indicating increased recruitment of eIF‐4A to the mRNA cap. This phenomenon was supported by the observation that cells with depleted APP were partially resistant to silvestrol, an antibiotic that interferes with eIF‐4A assembly into eIF‐4F complexes. APP downregulation in dividing human cells increased the rate of global protein synthesis, both cap‐ and IRES‐dependent. Such an increase seemed independent of mTOR inhibition. After administration of Torin‐1, APP downregulation and Mechanistic Target of Rapamycin Complex 1 (mTORC‐1) inhibition affected 4E‐BP1 phosphorylation and global protein synthesis in opposite fashions. Additional investigations indicated that APP operates independently of mTORC‐1. Key phenomena described in this study were reversed by overexpression of the APP C‐terminal domain. The presented data suggest that APP may be a novel regulator of protein synthesis in dividing human cells, both cancerous and primary. Furthermore, APP appears to affect translation initiation using mechanisms seemingly dissimilar to mTORC‐1 regulation of cap‐dependent protein synthesis. J. Cell. Physiol. 230: 1064–1074, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anna Sobol
- Department of Pathology, Oncology Institute, Loyola University Chicago Medical Center, Maywood, Illinois
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Isrie M, Zamani Esteki M, Peeters H, Voet T, Van Houdt J, Van Paesschen W, Van Esch H. Homozygous missense mutation in STYXL1 associated with moderate intellectual disability, epilepsy and behavioural complexities. Eur J Med Genet 2015; 58:205-10. [PMID: 25724587 DOI: 10.1016/j.ejmg.2015.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/12/2015] [Indexed: 11/19/2022]
Abstract
The introduction of massive parallel sequencing has led to the identification of multiple novel genes for intellectual disability (ID) as well as epilepsy. Whereas dominant de novo mutations have been proven to be a leading cause for these disorders, they do not apply to families suggestive of an autosomal recessive inheritance pattern. In this study, we combined the use of linkage analysis with exome sequencing to elucidate the cause of moderate non-syndromic ID, epilepsy and behavioural problems in a consanguineous Asian family. A founder missense mutation was identified in STYXL1. We propose this as a novel candidate gene involved in ID, accompanied by seizures and behavioural problems. Our findings further confirm the genetic heterogeneity of cognitive disorders and genetic epilepsy.
Collapse
Affiliation(s)
- Mala Isrie
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium; Laboratory for the Genetics of Cognition, KU Leuven, Leuven, Belgium
| | - Masoud Zamani Esteki
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Hilde Peeters
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Thierry Voet
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Jeroen Van Houdt
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Wim Van Paesschen
- Department of Neurology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium; Laboratory for the Genetics of Cognition, KU Leuven, Leuven, Belgium.
| |
Collapse
|
23
|
The pseudophosphatase MK-STYX induces neurite-like outgrowths in PC12 cells. PLoS One 2014; 9:e114535. [PMID: 25479605 PMCID: PMC4257672 DOI: 10.1371/journal.pone.0114535] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/10/2014] [Indexed: 01/17/2023] Open
Abstract
The rat pheochromocytoma PC12 cell line is a widely used system to study neuronal differentiation for which sustained activation of the extracellular signaling related kinase (ERK) pathway is required. Here, we investigate the function of MK-STYX [MAPK (mitogen-activated protein kinase) phosphoserine/threonine/tyrosine-binding protein] in neuronal differentiation. MK-STYX is a member of the MAPK phosphatase (MKP) family, which is generally responsible for dephosphorylating the ERKs. However, MK-STYX lacks catalytic activity due to the absence of the nucleophilic cysteine in the active site signature motif HC(X5)R that is essential for phosphatase activity. Despite being catalytically inactive, MK-STYX has been shown to play a role in important cellular pathways, including stress responses. Here we show that PC12 cells endogenously express MK-STYX. In addition, MK-STYX, but not its catalytically active mutant, induced neurite-like outgrowths in PC12 cells. Furthermore, MK-STYX dramatically increased the number of cells with neurite extensions in response to nerve growth factor (NGF), whereas the catalytically active mutant did not. MK-STYX continued to induce neurites in the presence of a MEK (MAP kinase kinase) inhibitor suggesting that MK-STYX does not act through the Ras-ERK/MAPK pathway but is involved in another pathway whose inactivation leads to neuronal differentiation. RhoA activity assays indicated that MK-STYX induced extensions through the Rho signaling pathway. MK-STYX decreased RhoA activation, whereas RhoA activation increased when MK-STYX was down-regulated. Furthermore, MK-STYX affected downstream players of RhoA such as the actin binding protein cofilin. The presence of MK-STYX decreased the phosphorylation of cofilin in non NGF stimulated cells, but increased its phosphorylation in NGF stimulated cells, whereas knocking down MK-STYX caused an opposite effect. Taken together our data suggest that MK-STYX may be a regulator of RhoA signaling, and implicate this pseudophosphatase as a regulator of neuronal differentiation.
Collapse
|