1
|
Meng X, Chen X, Pan B, Jiang H, Si N. A novel mutation in the BTB domain impairs transcriptional repression function of KCTD1 leading to syndromic microtia. Gene 2025; 933:149012. [PMID: 39424163 DOI: 10.1016/j.gene.2024.149012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Microtia is a common birth defect affecting the external ears and encompasses a spectrum of congenital anomalies of the auricle. For some of the microtia-associated syndromes, the additional abnormalities are not easily observed or with variable expressivity. Identifying pathogenic mutations through genetic testing is of great help in recognizing these highly heterogeneous syndromes in clinical practice. We reported a novel de novo KCTD1 mutation in a Chinese patient with congenital microtia. It expands the mutational spectrum of KCTD1 and provide an additional scalp-ear-nipple patient with typical and atypical clinical presentations. The identified mutation in the BTB domain impairs the suppressive activity of the AP-2 transcription factor family and may impact on maintaining the finely tuned activity of WNT pathway, which directs stem cell development in ectoderm patterning and craniofacial development. Due to the variable expressive clinical phenotypes of syndromic microtia, genetic molecular testing could be of great help in the definite diagnosis.
Collapse
Affiliation(s)
- Xiaolu Meng
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100043, China.
| | - Xinyuan Chen
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
| | - Bo Pan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100043, China.
| | - Haiyue Jiang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100043, China.
| | - Nuo Si
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100043, China.
| |
Collapse
|
2
|
Buono L, Iside C, Pecoraro G, De Matteo A, Beneduce G, Penta de Vera d'Aragona R, Parasole R, Mirabelli P, Vitagliano L, Salvatore M, Smaldone G. A Comprehensive Analysis of the Expression Profiles of KCTD Proteins in Acute Lymphoblastic Leukemia: Evidence of Selective Expression of KCTD1 in T-ALL. J Clin Med 2023; 12:jcm12113669. [PMID: 37297863 DOI: 10.3390/jcm12113669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Acute leukemia is the most common pediatric cancer. In most cases, this disease results from the malignant transformation of either the B-cell (B-ALL) or, less frequently, T-cell progenitors (T-ALL). Recently, a marked overexpression of KCTD15, a member of the emerging class of the potassium (K) channel tetramerization domain-containing proteins (KCTDs) has been detected in both patients and continuous cell lines as in vitro model systems. Because there is growing evidence of the key, yet diversified, roles played by KCTDs in cancers, we here report an exhaustive analysis of their expression profiles in both B-ALL and T-ALL patients. Although for most KCTDs, no significant alterations were found in these pathological states, for some members of the family, significant up- and down-regulations were detected in comparison with the values found in healthy subjects in the transcriptome analysis. Among these, particularly relevant is the upregulation of the closely related KCTD1 and KCTD15 in T-ALL patients. Interestingly, KCTD1 is barely expressed in both unaffected controls and B-ALL patients. Therefore, not only does this analysis represent the first study in which the dysregulation of all KCTDs is simultaneously evaluated in specific pathological contexts, but it also provides a promising T-ALL biomarker that could be suitable for clinical applications.
Collapse
Affiliation(s)
- Lorena Buono
- IRCCS SYNLAB SDN, Via E. Gianturco 113, 80143 Naples, Italy
| | - Concetta Iside
- IRCCS SYNLAB SDN, Via E. Gianturco 113, 80143 Naples, Italy
| | | | - Antonia De Matteo
- Department of Pediatric Hemato-Oncology, Santobono-Pausilipon Children's Hospital, AORN, 80122 Naples, Italy
| | - Giuliana Beneduce
- Department of Pediatric Hemato-Oncology, Santobono-Pausilipon Children's Hospital, AORN, 80122 Naples, Italy
| | | | - Rosanna Parasole
- Department of Pediatric Hemato-Oncology, Santobono-Pausilipon Children's Hospital, AORN, 80122 Naples, Italy
| | - Peppino Mirabelli
- Department of Pediatric Hemato-Oncology, Santobono-Pausilipon Children's Hospital, AORN, 80122 Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R., 80134 Napoli, Italy
| | | | | |
Collapse
|
3
|
Wang D, Trevillian P, May S, Diakumis P, Wang Y, Colville D, Bahlo M, Greferath U, Fletcher E, Young B, Mack HG, Savige J. KCTD1 and Scalp-Ear-Nipple ('Finlay-Marks') syndrome may be associated with myopia and Thin basement membrane nephropathy through an effect on the collagen IV α3 and α4 chains. Ophthalmic Genet 2023; 44:19-27. [PMID: 36579937 DOI: 10.1080/13816810.2022.2144900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Scalp-Ear-Nipple syndrome is caused by pathogenic KCTD1 variants and characterised by a scalp defect, prominent ears, and rudimentary breasts. We describe here further clinical associations in the eye and kidney. METHODS Fifteen affected members from two unrelated families with p.(Ala30Glu) or p.(Pro31Leu) in KCTD1 were examined for ocular and renal abnormalities. The relevant proteins were studied in the eye and kidney, and the mutation consequences determined from mouse knockout models. RESULTS Five males and 10 females with a median age of 40 years (range 1-70) with pathogenic variants p.(Ala30Glu) (n = 12) or p.(Pro31Leu) (n = 3) in KCTD1 were studied. Of the 6 who underwent detailed ophthalmic examination, 5 (83%) had low myopic astigmatism, the mean spherical equivalent of 10 eyes was 2.38D, and one (17%) had hypermetropic astigmatism. One female had a divergent strabismus.Five individuals had renal cysts (5/15, 33%), with renal biopsy in one demonstrating a thinned glomerular basement membrane identical to that seen in Thin basement membrane nephropathy (AD Alport syndrome).In the eye, KCTD1 and its downstream targets, TFAP2, and the collagen IV α3 and α4 chains localised to the cornea and near the retinal amacrine cells. In the kidney, all these proteins except TFAP2 were expressed in the podocytes and distal tubules. TFAP2B and COL4A4 knockout mice also had kidney cysts, and COL4A3 and COL4A4 knockout mice had myopia. CONCLUSION Individuals with a pathogenic KCTD1 variant may have low myopic astigmatism and represent a further rare genetic cause for a thinned glomerular basement membrane.
Collapse
Affiliation(s)
- Dongmao Wang
- Department of Medicine (Northern Health and Melbourne Health), University of Melbourne, Melbourne, Australia
| | - Paul Trevillian
- Department of Nephrology, John Hunter Hospital, Newcastle, Australia
| | - Stephen May
- Renal Unit, Tamworth Hospital, Tamworth, Australia
| | - Peter Diakumis
- Department of Bioinformatics, Walter and Eliza Hall Institute, Parkville, Australia
| | - Yanyan Wang
- Department of Medicine (Northern Health and Melbourne Health), University of Melbourne, Melbourne, Australia
| | - Deb Colville
- Department of Medicine (Northern Health and Melbourne Health), University of Melbourne, Melbourne, Australia
| | - Melanie Bahlo
- Department of Bioinformatics, Walter and Eliza Hall Institute, Parkville, Australia
| | - Una Greferath
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
| | - Erica Fletcher
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
| | - Barbara Young
- Department of Pathology John Hunter Hospital, Newcastle, Australia
| | - Heather G Mack
- Department of Ophthalmology, Royal Victorian Eye and Ear Hospital, University of Melbourne, East Melbourne, Australia
| | - Judy Savige
- Department of Medicine (Northern Health and Melbourne Health), University of Melbourne, Melbourne, Australia
| |
Collapse
|
4
|
Intracellular complement C5a/C5aR1 stabilizes β-catenin to promote colorectal tumorigenesis. Cell Rep 2022; 39:110851. [PMID: 35649359 DOI: 10.1016/j.celrep.2022.110851] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/25/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Complement is operative in not only the extracellular but also the intracellular milieu. However, little is known about the role of complement activation inside tumor cells. Here, we report that intracellular C5 is cleaved by cathepsin D (CTSD) to produce C5a in lysosomes and endosomes of colonic cancer cells. After stimulation by C5a, intracellular C5aR1 assembles a complex with KCTD5/cullin3/Roc-1 and β-catenin to promote the switch of polyubiquitination of β-catenin from K48 to K63, which enhances β-catenin stability. Genetic loss or pharmacological blockade of C5aR1 dramatically impedes colorectal tumorigenesis at least by destabilizing β-catenin. In human colorectal cancer specimens, high levels of C5aR1, C5a, and CTSD are closely correlated with elevated β-catenin levels and a poor prognosis. Importantly, intracellular C5a/C5aR1-mediated β-catenin stabilization is also observed ubiquitously in other cell types. Collectively, we identify a machinery for β-catenin activation and provide a potential target for tumor prevention and treatment.
Collapse
|
5
|
Retraction: KCTD1 Suppresses Canonical Wnt Signaling Pathway by Enhancing β-catenin Degradation. PLoS One 2022; 17:e0268604. [PMID: 35550646 PMCID: PMC9097993 DOI: 10.1371/journal.pone.0268604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
KCTD15 Is Overexpressed in her2+ Positive Breast Cancer Patients and Its Silencing Attenuates Proliferation in SKBR3 CELL LINE. Diagnostics (Basel) 2022; 12:diagnostics12030591. [PMID: 35328144 PMCID: PMC8947324 DOI: 10.3390/diagnostics12030591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 12/10/2022] Open
Abstract
Studies carried out in the last decade have demonstrated that the members of the KCTD protein family play active roles in carcinogenesis. Very recently, it has been reported that KCTD15, a protein typically associated with other physio-pathological processes, is involved in medulloblastoma and leukemia. Starting with some preliminary indications that emerged from the analysis of online databases that suggested a possible overexpression of KCTD15 in breast cancer, in this study, we evaluated the expression levels of the protein in breast cancer cell lines and in patients and the effects of its silencing in the HER2+ cell model. The analysis of the KCTD15 levels indicates a significant overexpression of the protein in Luminal A and Luminal B breast cancer patients as well as in the related cell lines. The greatest level of over-expression of the protein was found in HER2+ patients and in the related SKBR3 cell line model system. The effects of KCTD15 silencing in terms of cell proliferation, cell cycle, and sensitivity to doxorubicin were evaluated in the SKBR3 cell line. Notably, the KCTD15 silencing in SKBR3 cells by CRISPR/CAS9 technology significantly attenuates their proliferation and cell cycle progression. Finally, we demonstrated that KCT15 silencing also sensitized SKBR3 cells to the cytotoxic agent doxorubicin, suggesting a possible role of the protein in anti HER2+ therapeutic strategies. Our results highlight a new possible player in HER2 breast cancer carcinogenesis, paving the way for its use in breast cancer diagnosis and therapy.
Collapse
|
7
|
Xu Y, Zheng J, Cai Z, Li W, Köhler J, Dai Y, Cheng X, Wu T, Zhang F, Wang H. Therapeutic Response-Based Reclassification of Multiple Tumor Subtypes Reveals Intrinsic Molecular Concordance of Therapy Across Histologically Disparate Cancers. Front Cell Dev Biol 2021; 9:773101. [PMID: 34869372 PMCID: PMC8632957 DOI: 10.3389/fcell.2021.773101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Cancers that are histologically defined as the same type of cancer often need a distinct therapy based on underlying heterogeneity; likewise, histologically disparate cancers can require similar treatment approaches due to intrinsic similarities. A comprehensive analysis integrated with drug response data and molecular alterations, particularly to reveal therapeutic concordance mechanisms across histologically disparate tumor subtypes, has not yet been fully exploited. In this study, we integrated pharmacological, genomic, and transcriptomic profiling data provided from the Cancer Genome Project (CGP) in a systematic in silico investigation of the pharmacological subtypes of cancers and the intrinsic concordance of molecular mechanisms leading to similar therapeutic responses across histologically disparate tumor subtypes. We further developed a novel approach to redefine cell-to-cell similarity and drug-to-drug similarity from the therapeutic concordance, providing a new point of view to study cancer heterogeneity. This study demonstrates how pharmacological and omics data can be used to systematically classify cancers in terms of response to various compounds and provides us with a purely therapy-oriented perspective to view tumor classifications independent of histology subtypes. The knowledge of pharmacological subtypes of 367 drugs are available via our website (http://www.hywanglab.cn/dtdb/), providing the resources for precision medicine in the perspective of therapeutic response-based re-classification of tumor.
Collapse
Affiliation(s)
- Yue Xu
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jie Zheng
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhaoqing Cai
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wang Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jens Köhler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Yao Dai
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaojie Cheng
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Tao Wu
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Fan Zhang
- School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiyun Wang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Butler KM, Bahrambeigi V, Merrihew A, Friez MJ, Cathey SS. Scalp-Ear-Nipple syndrome: first report of a Potassium channel tetramerization domain-containing 1 in-frame insertion and review of the literature. Clin Dysmorphol 2021; 30:167-172. [PMID: 34456244 DOI: 10.1097/mcd.0000000000000387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Pathogenic missense variants in the potassium channel tetramerization domain-containing 1 (KCTD1) gene are associated with autosomal dominant Scalp-Ear-Nipple syndrome (SENS), a type of ectodermal dysplasia characterized by aplasia cutis congenita of the scalp, hairless posterior scalp nodules, absent or rudimentary nipples, breast aplasia and external ear anomalies. We report a child with clinical features of an ectodermal dysplasia, including sparse hair, dysmorphic facial features, absent nipples, 2-3 toe syndactyly, mild atopic dermatitis and small cupped ears with overfolded helices. We also review the published cases of SENS with molecularly confirmed KCTD1 variants. METHODS AND RESULTS Using whole-exome sequencing, we identified a novel, de novo in-frame insertion in the broad-complex, tramtrack and bric-a-brac (BTB) domain of the KCTD1 gene. By comparing to the previously reported patients, we found that our patient's clinical features and molecular variant are consistent with a diagnosis of SENS. CONCLUSIONS This is only the 13th KCTD1 variant described and the first report of an in-frame insertion causing clinical features, expanding the mutational spectrum of KCTD1 and SENS.
Collapse
Affiliation(s)
| | - Vahid Bahrambeigi
- Graduate School of Biomedical Sciences, The University of Texas, MD Anderson Cancer Center UTHealth, Houston, Texas, USA
| | | | | | | |
Collapse
|
9
|
Oestrogen Activates the MAP3K1 Cascade and β-Catenin to Promote Granulosa-like Cell Fate in a Human Testis-Derived Cell Line. Int J Mol Sci 2021; 22:ijms221810046. [PMID: 34576208 PMCID: PMC8471392 DOI: 10.3390/ijms221810046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
Sex determination triggers the differentiation of the bi-potential gonad into either an ovary or testis. In non-mammalian vertebrates, the presence or absence of oestrogen dictates gonad differentiation, while in mammals, this mechanism has been supplanted by the testis-determining gene SRY. Exogenous oestrogen can override this genetic trigger to shift somatic cell fate in the gonad towards ovarian developmental pathways by limiting the bioavailability of the key testis factor SOX9 within somatic cells. Our previous work has implicated the MAPK pathway in mediating the rapid cellular response to oestrogen. We performed proteomic and phosphoproteomic analyses to investigate the precise mechanism through which oestrogen impacts these pathways to activate β-catenin-a factor essential for ovarian development. We show that oestrogen can activate β-catenin within 30 min, concomitant with the cytoplasmic retention of SOX9. This occurs through changes to the MAP3K1 cascade, suggesting this pathway is a mechanism through which oestrogen influences gonad somatic cell fate. We demonstrate that oestrogen can promote the shift from SOX9 pro-testis activity to β-catenin pro-ovary activity through activation of MAP3K1. Our findings define a previously unknown mechanism through which oestrogen can promote a switch in gonad somatic cell fate and provided novel insights into the impacts of exogenous oestrogen exposure on the testis.
Collapse
|
10
|
Smaldone G, Coppola L, Pane K, Franzese M, Beneduce G, Parasole R, Menna G, Vitagliano L, Salvatore M, Mirabelli P. KCTD15 deregulation is associated with alterations of the NF-κB signaling in both pathological and physiological model systems. Sci Rep 2021; 11:18237. [PMID: 34521919 PMCID: PMC8440651 DOI: 10.1038/s41598-021-97775-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Like other KCTD proteins, KCTD15 is involved in important albeit distinct biological processes as cancer, neural crest formation, and obesity. Here, we characterized the role of KCTD15 in different physiological/pathological states to gain insights into its diversified function(s). The silencing of KCTD15 in MLL-rearranged leukemia models induced attenuation of the NF-κB pathway associated with a downregulation of pIKK-β and pIKB-α. Conversely, the activation of peripheral blood T cells upon PMA/ionomycin stimulation remarkably upregulated KCTD15 and, simultaneously, pIKK-β and pIKB-α. Moreover, a significant upregulation of KCTD15 was also observed in CD34 hematopoietic stem/progenitor cells where the NF-κB pathway is physiologically activated. The association between KCTD15 upregulation and increased NF-κB signaling was confirmed by luciferase assay as well as KCTD15 and IKK-β proximity ligation and immunoprecipitation experiments. The observed upregulation of IKK-β by KCTD15 provides a novel and intriguing interpretative key for understanding the protein function in a wide class of physiological/pathological conditions ranging from neuronal development to cancer and obesity/diabetes.
Collapse
Affiliation(s)
| | - Luigi Coppola
- IRCCS SDN, Via E. Gianturco 113, 80143, Naples, Italy
| | - Katia Pane
- IRCCS SDN, Via E. Gianturco 113, 80143, Naples, Italy
| | | | - Giuliana Beneduce
- Department of Pediatric Hemato-Oncology, Santobono-Pausilipon Hospital, 80129, Naples, Italy
| | - Rosanna Parasole
- Department of Pediatric Hemato-Oncology, Santobono-Pausilipon Hospital, 80129, Naples, Italy
| | - Giuseppe Menna
- Department of Pediatric Hemato-Oncology, Santobono-Pausilipon Hospital, 80129, Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R., Via Mezzocannone n.16, 80134, Naples, Italy.
| | | | | |
Collapse
|
11
|
Yang M, Han YM, Han Q, Rong XZ, Liu XF, Ln XY. KCTD11 inhibits progression of lung cancer by binding to β-catenin to regulate the activity of the Wnt and Hippo pathways. J Cell Mol Med 2021; 25:9411-9426. [PMID: 34453479 PMCID: PMC8500973 DOI: 10.1111/jcmm.16883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
KCTD11 has been reported to be a potential tumour suppressor in several tumour types. However, the expression of KCTD11 and its role has not been reported in human non‐small cell lung cancer (NSCLC). Whether its potential molecular mechanism is related to its BTB domain is also unknown. The expression of KCTD11 in 139 NSCLC tissue samples was detected by immunohistochemistry, and its correlation with clinicopathological factors was analysed. The effect of KCTD11 on the biological behaviour of lung cancer cells was verified in vitro and in vivo. Its effect on the epithelial‐mesenchymal transition(EMT)process and the Wnt/β‐catenin and Hippo/YAP pathways were observed by Western blot, dual‐luciferase assay, RT‐qPCR, immunofluorescence and immunoprecipitation. KCTD11 is under‐expressed in lung cancer tissues and cells and was negatively correlated with the degree of differentiation, tumour‐node‐metastasis (TNM) stage and lymph node metastasis. Low KCTD11 expression was associated with poor prognosis. KCTD11 overexpression inhibited the proliferation and migration of lung cancer cells. Further studies indicated that KCTD11 inhibited the Wnt pathway, activated the Hippo pathway and inhibited EMT processes by inhibiting the nuclear translocation of β‐catenin and YAP. KCTD11 lost its stimulatory effect on the Hippo pathway after knock down of β‐catenin. These findings confirm that KCTD11 inhibits β‐catenin and YAP nuclear translocation as well as the malignant phenotype of lung cancer cells by interacting with β‐catenin. This provides an important experimental basis for the interaction between KCTD11, β‐catenin and YAP, further revealing the link between the Wnt and Hippo pathways.
Collapse
Affiliation(s)
- Man Yang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ya-Mei Han
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Qiang Han
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xue-Zhu Rong
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xiao-Fang Liu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xu-Yong Ln
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
12
|
Luan X, Zhou X, Fallah P, Pandya M, Lyu H, Foyle D, Burch D, Diekwisch TGH. MicroRNAs: Harbingers and shapers of periodontal inflammation. Semin Cell Dev Biol 2021; 124:85-98. [PMID: 34120836 DOI: 10.1016/j.semcdb.2021.05.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Periodontal disease is an inflammatory reaction of the periodontal tissues to oral pathogens. In the present review we discuss the intricate effects of a regulatory network of gene expression modulators, microRNAs (miRNAs), as they affect periodontal morphology, function and gene expression during periodontal disease. These miRNAs are small RNAs involved in RNA silencing and post-transcriptional regulation and affect all stages of periodontal disease, from the earliest signs of gingivitis to the regulation of periodontal homeostasis and immunity and to the involvement in periodontal tissue destruction. MiRNAs coordinate periodontal disease progression not only directly but also through long non-coding RNAs (lncRNAs), which have been demonstrated to act as endogenous sponges or decoys that regulate the expression and function of miRNAs, and which in turn suppress the targeting of mRNAs involved in the inflammatory response, cell proliferation, migration and differentiation. While the integrity of miRNA function is essential for periodontal health and immunity, miRNA sequence variations (genetic polymorphisms) contribute toward an enhanced risk for periodontal disease progression and severity. Several polymorphisms in miRNA genes have been linked to an increased risk of periodontitis, and among those, miR-146a, miR-196, and miR-499 polymorphisms have been identified as risk factors for periodontal disease. The role of miRNAs in periodontal disease progression is not limited to the host tissues but also extends to the viruses that reside in periodontal lesions, such as herpesviruses (human herpesvirus, HHV). In advanced periodontal lesions, HHV infections result in the release of cytokines from periodontal tissues and impair antibacterial immune mechanisms that promote bacterial overgrowth. In turn, controlling the exacerbation of periodontal disease by minimizing the effect of periodontal HHV in periodontal lesions may provide novel avenues for therapeutic intervention. In summary, this review highlights multiple levels of miRNA-mediated control of periodontal disease progression, (i) through their role in periodontal inflammation and the dysregulation of homeostasis, (ii) as a regulatory target of lncRNAs, (iii) by contributing toward periodontal disease susceptibility through miRNA polymorphism, and (iv) as periodontal microflora modulators via viral miRNAs.
Collapse
Affiliation(s)
- Xianghong Luan
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Xiaofeng Zhou
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA
| | - Pooria Fallah
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Mirali Pandya
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Huling Lyu
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA; Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Deborah Foyle
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Dan Burch
- Department of Pedodontics, TAMU College of Dentistry, 75246 Dallas, TX, USA
| | - Thomas G H Diekwisch
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA.
| |
Collapse
|
13
|
Angrisani A, Di Fiore A, De Smaele E, Moretti M. The emerging role of the KCTD proteins in cancer. Cell Commun Signal 2021; 19:56. [PMID: 34001146 PMCID: PMC8127222 DOI: 10.1186/s12964-021-00737-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/05/2021] [Indexed: 12/24/2022] Open
Abstract
The human family of Potassium (K+) Channel Tetramerization Domain (KCTD) proteins counts 25 members, and a significant number of them are still only partially characterized. While some of the KCTDs have been linked to neurological disorders or obesity, a growing tally of KCTDs are being associated with cancer hallmarks or involved in the modulation of specific oncogenic pathways. Indeed, the potential relevance of the variegate KCTD family in cancer warrants an updated picture of the current knowledge and highlights the need for further research on KCTD members as either putative therapeutic targets, or diagnostic/prognostic markers. Homology between family members, capability to participate in ubiquitination and degradation of different protein targets, ability to heterodimerize between members, role played in the main signalling pathways involved in development and cancer, are all factors that need to be considered in the search for new key players in tumorigenesis. In this review we summarize the recent published evidence on KCTD members' involvement in cancer. Furthermore, by integrating this information with data extrapolated from public databases that suggest new potential associations with cancers, we hypothesize that the number of KCTD family members involved in tumorigenesis (either as positive or negative modulator) may be bigger than so far demonstrated. Video abstract.
Collapse
Affiliation(s)
| | - Annamaria Di Fiore
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| | - Marta Moretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
14
|
Magnesium and Calcium Homeostasis Depend on KCTD1 Function in the Distal Nephron. Cell Rep 2021; 34:108616. [PMID: 33440155 PMCID: PMC7869691 DOI: 10.1016/j.celrep.2020.108616] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/31/2020] [Accepted: 12/17/2020] [Indexed: 11/20/2022] Open
Abstract
Magnesium (Mg2+) homeostasis depends on active transcellular Mg2+ reuptake from urine in distal convoluted tubules (DCTs) via the Mg2+ channel TRPM6, whose activity has been proposed to be regulated by EGF. Calcium (Ca2+) homeostasis depends on paracellular reabsorption in the thick ascending limbs of Henle (TALs). KCTD1 promotes terminal differentiation of TALs/DCTs, but how its deficiency affects urinary Mg2+ and Ca2+ reabsorption is unknown. Here, this study shows that DCT1-specific KCTD1 inactivation leads to hypomagnesemia despite normal TRPM6 levels because of reduced levels of the sodium chloride co-transporter NCC, whereas Mg2+ homeostasis does not depend on EGF. Moreover, KCTD1 deficiency impairs paracellular urinary Ca2+ and Mg2+ reabsorption in TALs because of reduced NKCC2/claudin-16/-19 and increased claudin-14 expression, leading to hypocalcemia and consequently to secondary hyperparathyroidism and progressive metabolic bone disease. Thus, KCTD1 regulates urinary reabsorption of Mg2+ and Ca2+ by inducing expression of NCC in DCTs and NKCC2/claudin-16/-19 in TALs.
Collapse
|
15
|
Chambers BE, Clark EG, Gatz AE, Wingert RA. Kctd15 regulates nephron segment development by repressing Tfap2a activity. Development 2020; 147:dev.191973. [PMID: 33028614 DOI: 10.1242/dev.191973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022]
Abstract
A functional vertebrate kidney relies on structural units called nephrons, which are epithelial tubules with a sequence of segments each expressing a distinct repertoire of solute transporters. The transcriptiona`l codes driving regional specification, solute transporter program activation and terminal differentiation of segment populations remain poorly understood. Here, we demonstrate that the KCTD15 paralogs kctd15a and kctd15b function in concert to restrict distal early (DE)/thick ascending limb (TAL) segment lineage assignment in the developing zebrafish pronephros by repressing Tfap2a activity. During renal ontogeny, expression of these factors colocalized with tfap2a in distal tubule precursors. kctd15a/b loss primed nephron cells to adopt distal fates by driving slc12a1, kcnj1a.1 and stc1 expression. These phenotypes were the result of Tfap2a hyperactivity, where kctd15a/b-deficient embryos exhibited increased abundance of this transcription factor. Interestingly, tfap2a reciprocally promoted kctd15a and kctd15b transcription, unveiling a circuit of autoregulation operating in nephron progenitors. Concomitant kctd15b knockdown with tfap2a overexpression further expanded the DE population. Our study reveals that a transcription factor-repressor feedback module employs tight regulation of Tfap2a and Kctd15 kinetics to control nephron segment fate choice and differentiation during kidney development.
Collapse
Affiliation(s)
- Brooke E Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Eleanor G Clark
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Allison E Gatz
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
16
|
Hu L, Chen L, Yang L, Ye Z, Huang W, Li X, Liu Q, Qiu J, Ding X. KCTD1 mutants in scalp‑ear‑nipple syndrome and AP‑2α P59A in Char syndrome reciprocally abrogate their interactions, but can regulate Wnt/β‑catenin signaling. Mol Med Rep 2020; 22:3895-3903. [PMID: 33000225 PMCID: PMC7533495 DOI: 10.3892/mmr.2020.11457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
Potassium-channel tetramerization-domain-containing 1 (KCTD1) mutations are reported to result in scalp-ear-nipple syndrome. These mutations occur in the conserved broad-complex, tramtrack and bric a brac domain, which is associated with inhibited transcriptional activity. However, the mechanisms of KCTD1 mutants have not previously been elucidated; thus, the present study aimed to investigate whether KCTD1 mutants affect their interaction with transcription factor AP-2α and their regulation of the Wnt pathway. Results from the present study demonstrated that none of the ten KCTD1 mutants had an inhibitory effect on the transcriptional activity of AP-2α. Co-immunoprecipitation assays demonstrated that certain mutants exhibited changeable localization compared with the nuclear localization of wild-type KCTD1, but no KCTD1 mutant interacted with AP-2α. Almost all KCTD1 mutants, except KCTD1 A30E and H33Q, exhibited differential inhibitory effects on regulating TOPFLASH luciferase reporter activity. In addition, the interaction region of KCTD1 to the PY motif (amino acids 59–62) in AP-2α was identified. KCTD1 exhibited no suppressive effects on the transcriptional activity of the AP-2α P59A mutant, resulting in Char syndrome, a genetic disorder characterized by a distinctive facial appearance, heart defect and hand abnormalities, by altered protein cellular localization that abolished protein interactions. However, the P59A, P60A, P61R and 4A AP-2α mutants inhibited TOPFLASH reporter activity. Moreover, AP-2α and KCTD1 inhibited β-catenin expression levels and SW480 cell viability. The present study thus identified a putative mechanism of disease-related KCTD1 mutants and AP-2α mutants by disrupting their interaction with the wildtype proteins AP-2α and KCTD1 and influencing the regulation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Lingyu Hu
- Department of Obstetrics and Gynecology, Third Xiangya Hospital of The Central South University, Changsha, Hunan 410013, P.R. China
| | - Li Chen
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Liu Yang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Zi Ye
- Yali High School of Changsha, Changsha, Hunan 410007, P.R. China
| | - Wenhuan Huang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Xinxin Li
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Qing Liu
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Junlu Qiu
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Xiaofeng Ding
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| |
Collapse
|
17
|
AP-2β/KCTD1 Control Distal Nephron Differentiation and Protect against Renal Fibrosis. Dev Cell 2020; 54:348-366.e5. [PMID: 32553120 DOI: 10.1016/j.devcel.2020.05.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/31/2020] [Accepted: 05/22/2020] [Indexed: 12/25/2022]
Abstract
The developmental mechanisms that orchestrate differentiation of specific nephron segments are incompletely understood, and the factors that maintain their terminal differentiation after nephrogenesis remain largely unknown. Here, the transcription factor AP-2β is shown to be required for the differentiation of distal tubule precursors into early stage distal convoluted tubules (DCTs) during nephrogenesis. In contrast, its downstream target KCTD1 is essential for terminal differentiation of early stage DCTs into mature DCTs, and impairment of their terminal differentiation owing to lack of KCTD1 leads to a severe salt-losing tubulopathy. Moreover, sustained KCTD1 activity in the adult maintains mature DCTs in this terminally differentiated state and prevents renal fibrosis by repressing β-catenin activity, whereas KCTD1 deficiency leads to severe renal fibrosis. Thus, the AP-2β/KCTD1 axis links a developmental pathway in the nephron to the induction and maintenance of terminal differentiation of DCTs that actively prevents their de-differentiation in the adult and protects against renal fibrosis.
Collapse
|
18
|
Singh NP, Vinod PK. Integrative analysis of DNA methylation and gene expression in papillary renal cell carcinoma. Mol Genet Genomics 2020; 295:807-824. [PMID: 32185457 DOI: 10.1007/s00438-020-01664-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 03/03/2020] [Indexed: 12/18/2022]
Abstract
Patterns of DNA methylation are significantly altered in cancers. Interpreting the functional consequences of DNA methylation requires the integration of multiple forms of data. The recent advancement in the next-generation sequencing can help to decode this relationship and in biomarker discovery. In this study, we investigated the methylation patterns of papillary renal cell carcinoma (PRCC) and its relationship with the gene expression using The Cancer Genome Atlas (TCGA) multi-omics data. We found that the promoter and body of tumor suppressor genes, microRNAs and gene clusters and families, including cadherins, protocadherins, claudins and collagens, are hypermethylated in PRCC. Hypomethylated genes in PRCC are associated with the immune function. The gene expression of several novel candidate genes, including interleukin receptor IL17RE and immune checkpoint genes HHLA2, SIRPA and HAVCR2, shows a significant correlation with DNA methylation. We also developed machine learning models using features extracted from single and multi-omics data to distinguish early and late stages of PRCC. A comparative study of different feature selection algorithms, predictive models, data integration techniques and representations of methylation data was performed. Integration of both gene expression and DNA methylation features improved the performance of models in distinguishing tumor stages. In summary, our study identifies PRCC driver genes and proposes predictive models based on both DNA methylation and gene expression. These results on PRCC will aid in targeted experiments and provide a strategy to improve the classification accuracy of tumor stages.
Collapse
Affiliation(s)
- Noor Pratap Singh
- Center for Computational Natural Sciences and Bioinformatics, IIIT Hyderabad, Hyderabad, 500032, India
| | - P K Vinod
- Center for Computational Natural Sciences and Bioinformatics, IIIT Hyderabad, Hyderabad, 500032, India.
| |
Collapse
|
19
|
Genome wide association study of incomplete hippocampal inversion in adolescents. PLoS One 2020; 15:e0227355. [PMID: 31990937 PMCID: PMC6986744 DOI: 10.1371/journal.pone.0227355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/17/2019] [Indexed: 12/23/2022] Open
Abstract
Incomplete hippocampal inversion (IHI), also called hippocampal malrotation, is an atypical presentation of the hippocampus present in about 20% of healthy individuals. Here we conducted the first genome-wide association study (GWAS) in IHI to elucidate the genetic underpinnings that may contribute to the incomplete inversion during brain development. A total of 1381 subjects contributed to the discovery cohort obtained from the IMAGEN database. The incidence rate of IHI was 26.1%. Loci with P<1e-5 were followed up in a validation cohort comprising 161 subjects from the PING study. Summary statistics from the discovery cohort were used to compute IHI heritability as well as genetic correlations with other traits. A locus on 18q11.2 (rs9952569; OR = 1.999; Z = 5.502; P = 3.755e-8) showed a significant association with the presence of IHI. A functional annotation of the locus implicated genes AQP4 and KCTD1. However, neither this locus nor the other 16 suggestive loci reached a significant p-value in the validation cohort. The h2 estimate was 0.54 (sd: 0.30) and was significant (Z = 1.8; P = 0.036). The top three genetic correlations of IHI were with traits representing either intelligence or education attainment and reached nominal P< = 0.013.
Collapse
|
20
|
KCTD15 is overexpressed in human childhood B-cell acute lymphoid leukemia. Sci Rep 2019; 9:20108. [PMID: 31882877 PMCID: PMC6934626 DOI: 10.1038/s41598-019-56701-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022] Open
Abstract
Leukemic cells originate from the malignant transformation of undifferentiated myeloid/lymphoid hematopoietic progenitors normally residing in bone marrow. As the precise molecular mechanisms underlying this heterogeneous disease are yet to be disclosed, the identification and the validation of novel actors in leukemia is of extreme importance. Here, we show that KCTD15, a member of the emerging class of KCTD ((K)potassium Channel Tetramerization Domain containing) proteins, is strongly upregulated in patients affected by B-cell type acute lymphoblastic leukemia (B-ALL) and in continuous cell lines (RS4;11, REH, TOM-1, SEM) derived from this form of childhood leukemia. Interestingly, KCTD15 downregulation induces apoptosis and cell death suggesting that it has a role in cellular homeostasis and proliferation. In addition, stimulation of normal lymphocytes with the pokeweed mitogen leads to increased KCTD15 levels in a fashion comparable to those observed in proliferating leukemic cells. In this way, the role of KCTD15 is likely not confined to the B-ALL pathological state and extends to activation and proliferation of normal lymphocytes. Collectively, data here presented indicate that KCTD15 is an important and hitherto unidentified player in childhood lymphoid leukemia, and its study could open a new scenario for the identification of altered and still unknown molecular pathways in leukemia.
Collapse
|
21
|
Functional Prediction of Candidate MicroRNAs for CRC Management Using in Silico Approach. Int J Mol Sci 2019; 20:ijms20205190. [PMID: 31635135 PMCID: PMC6834124 DOI: 10.3390/ijms20205190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 02/07/2023] Open
Abstract
Approximately 30–50% of malignant growths can be prevented by avoiding risk factors and implementing evidence-based strategies. Colorectal cancer (CRC) accounted for the second most common cancer and the third most common cause of cancer death worldwide. This cancer subtype can be reduced by early detection and patients’ management. In this study, the functional roles of the identified microRNAs were determined using an in silico pipeline. Five microRNAs identified using an in silico approach alongside their seven target genes from our previous study were used as datasets in this study. Furthermore, the secondary structure and the thermodynamic energies of the microRNAs were revealed by Mfold algorithm. The triplex binding ability of the oligonucleotide with the target promoters were analyzed by Trident. Finally, evolutionary stage-specific somatic events and co-expression analysis of the target genes in CRC were analyzed by SEECancer and GeneMANIA plugin in Cytoscape. Four of the five microRNAs have the potential to form more than one secondary structure. The ranges of the observed/expected ratio of CpG dinucleotides of these genes range from 0.60 to 1.22. Three of the candidate microRNA were capable of forming multiple triplexes along with three of the target mRNAs. Four of the total targets were involved in either early or metastatic stage-specific events while three other genes were either a product of antecedent or subsequent events of the four genes implicated in CRC. The secondary structure of the candidate microRNAs can be used to explain the different degrees of genetic regulation in CRC due to their conformational role to modulate target interaction. Furthermore, due to the regulation of important genes in the CRC pathway and the enrichment of the microRNA with triplex binding sites, they may be a useful diagnostic biomarker for the disease subtype.
Collapse
|
22
|
Teng X, Aouacheria A, Lionnard L, Metz KA, Soane L, Kamiya A, Hardwick JM. KCTD: A new gene family involved in neurodevelopmental and neuropsychiatric disorders. CNS Neurosci Ther 2019; 25:887-902. [PMID: 31197948 PMCID: PMC6566181 DOI: 10.1111/cns.13156] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
The underlying molecular basis for neurodevelopmental or neuropsychiatric disorders is not known. In contrast, mechanistic understanding of other brain disorders including neurodegeneration has advanced considerably. Yet, these do not approach the knowledge accrued for many cancers with precision therapeutics acting on well-characterized targets. Although the identification of genes responsible for neurodevelopmental and neuropsychiatric disorders remains a major obstacle, the few causally associated genes are ripe for discovery by focusing efforts to dissect their mechanisms. Here, we make a case for delving into mechanisms of the poorly characterized human KCTD gene family. Varying levels of evidence support their roles in neurocognitive disorders (KCTD3), neurodevelopmental disease (KCTD7), bipolar disorder (KCTD12), autism and schizophrenia (KCTD13), movement disorders (KCTD17), cancer (KCTD11), and obesity (KCTD15). Collective knowledge about these genes adds enhanced value, and critical insights into potential disease mechanisms have come from unexpected sources. Translation of basic research on the KCTD-related yeast protein Whi2 has revealed roles in nutrient signaling to mTORC1 (KCTD11) and an autophagy-lysosome pathway affecting mitochondria (KCTD7). Recent biochemical and structure-based studies (KCTD12, KCTD13, KCTD16) reveal mechanisms of regulating membrane channel activities through modulation of distinct GTPases. We explore how these seemingly varied functions may be disease related.
Collapse
Affiliation(s)
- Xinchen Teng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| | - Abdel Aouacheria
- ISEM, Institut des Sciences de l'Evolution de Montpellier, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | - Loïc Lionnard
- ISEM, Institut des Sciences de l'Evolution de Montpellier, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | - Kyle A. Metz
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
- Present address:
Feinberg School of MedicineNorthwestern UniversityChicagoUSA
| | - Lucian Soane
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral SciencesJohns Hopkins School of MedicineBaltimoreMaryland
| | - J. Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| |
Collapse
|
23
|
Han W, Wang Y, Fan J, Wang C. Is APC hypermethylation a diagnostic biomarker for bladder cancer? A meta-analysis. Onco Targets Ther 2018; 11:8359-8369. [PMID: 30568459 PMCID: PMC6267632 DOI: 10.2147/ott.s177601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective Numerous studies have been performed to investigate the association between APC promoter hypermethylation and bladder cancer risk. Nevertheless, the conclusion was uncertain due to small sample size, different ethnicities, and tumor subtype. Hence, to accurately assess the effect of APC promoter hypermethylation on the risk of bladder cancer, we performed the meta-analysis. Materials and methods We retrieved the relevant literatures from electronic databases such as PubMed, Web of Science, Wanfang, Vapp, and CNKI (Chinese National Knowledge Infrastructure). 95% CI and OR were calculated to evaluate the associations of APC promoter hypermethylation with risk and clinical features of bladder cancer. Heterogeneity among studies was assessed with Q test and I 2 statistic. In addition, the diagnostic sensitivity, specificity, and area under the curve (AUC) value of APC hypermethylation for bladder cancer were calculated. Results In total, 14 articles with 531 controls and 1,293 cases were included to assess the associations of APC promoter hypermethylation with the risk and clinical characteristics of bladder cancer. The significant association between APC promoter hypermethylation and bladder cancer risk was detected (OR =17.01, CI =7.40-39.07). Furthermore, the results revealed that APC promoter hypermethylation was significantly correlated with the grade of bladder tumor (pTNM stage: OR =1.84, CI =0.87-3.93; grade: OR =4.11, CI =1.62-10.43). According to the results of diagnostic evaluation, the diagnostic sensitivity, specificity, and AUC value of APC hypermethylation for bladder cancer risk were 0.52 (95% CI =0.41-0.63), 0.98 (95% CI =0.90-1.00), and 0.80 (95% CI =0.76-0.83), respectively. Conclusion This meta-analysis revealed that APC promoter hypermethylation was a risk factor for bladder cancer risk. In addition, APC promoter hypermethylation was significantly associated with the grade of bladder cancer. APC hypermethylation might be a useful biomarker for the clinical diagnosis of bladder cancer.
Collapse
Affiliation(s)
- Wei Han
- Department of Pharmacy, Central Hospital of Zibo Mining Group Limited Liability Company, Zibo, China
| | - Yutao Wang
- Shandong Institute of Prevention and Control for Endemic Disease, Thyroid Disease Prevention and Control Center, Jinan, China,
| | - Jingli Fan
- Shandong Institute of Prevention and Control for Endemic Disease, Thyroid Disease Prevention and Control Center, Jinan, China,
| | - Chunlei Wang
- Shandong Institute of Prevention and Control for Endemic Disease, Thyroid Disease Prevention and Control Center, Jinan, China,
| |
Collapse
|
24
|
Neuroglobin Regulates Wnt/β-Catenin and NFκB Signaling Pathway through Dvl1. Int J Mol Sci 2018; 19:ijms19072133. [PMID: 30041403 PMCID: PMC6073292 DOI: 10.3390/ijms19072133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022] Open
Abstract
Neuroglobin is an endogenous neuroprotective protein, but the underlying neuroprotective mechanisms remain to be elucidated. Our previous yeast two-hybrid screening study identified that Dishevelled-1, a key hub protein of Wnt/β-Catenin signaling, is an interaction partner of Neuroglobin. In this study, we further examined the role of Neuroglobin in regulating Dishevelled-1 and the downstream Wnt/β-Catenin and NFκB signaling pathway. We found that Neuroglobin directly interacts with Dishevelled-1 by co-immunoprecipitation, and the two proteins are co-localized in both cytoplasma and nucleus of SK-N-SH cells. Moreover, the ectopic expression of Neuroglobin promotes the degradation of exogenous and endogenous Dishevelled-1 through the proteasomal degradation pathway. Furthermore, our results showed that Neuroglobin significantly inhibits the luciferase activity of Topflash reporter and the expression of β-Catenin mediated by Dishevelled-1 in SK-N-SH cells. In addition, we also documented that Neuroglobin enhances TNF-α-induced NFκB activation via down-regulating Dishevelled-1. Finally, 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) assays showed that Neuroglobin is an important neuroprotectant that protects SK-N-SH cells from TNF-α-induced decrease in cell viability. Taken together, these findings demonstrated that Neuroglobin functions as an important modulator of the Wnt/β-Catenin and NFκB signaling pathway through regulating Dishevelled-1.
Collapse
|
25
|
Yang L, Qiu J, Xiao Y, Hu X, Liu Q, Chen L, Huang W, Li X, Li L, Zhang J, Ding X, Xiang S. AP-2β inhibits hepatocellular carcinoma invasion and metastasis through Slug and Snail to suppress epithelial-mesenchymal transition. Theranostics 2018; 8:3707-3721. [PMID: 30026878 PMCID: PMC6037033 DOI: 10.7150/thno.25166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/18/2018] [Indexed: 12/14/2022] Open
Abstract
Transcription factor AP-2β plays an important role in human cancer, but its clinical significance in hepatocellular carcinogenesis is largely unknown. Methods: AP-2β expression was detected in human hepatocellular cancer (HCC) tissues and cell lines. The effects of AP-2β on HCC proliferation, migration, invasion, tumor formation and metastasis were evaluated by MTT, colony formation and transwell assays in vitro and mouse experiments in vivo. The association between AP-2β and miR-27a/EMT markers in HCC cell lines and tissues was analyzed. Results: AP-2β expression was decreased in HCC tissues and cell lines. Reduced expression of AP-2β was significantly associated with more advanced tumor stages and larger tumor sizes. The overexpression of AP-2β reduced HCC proliferation, migration, invasion, tumor formation and metastasis in vitro and in vivo. Additionally, AP-2β overexpression increased the sensitivity of HCC cells to cisplatin. Moreover, AP-2β modulates the levels of EMT markers through Slug and Snail in HCC cell lines and tissues. Furthermore, oncogenic miR-27a inhibits AP-2β expression by binding to the AP-2β 3′ untranslated region (UTR) and reverses the tumor suppressive role of AP-2β. Conclusion: These results suggested that AP-2β is lowly expressed in HCC by inhibiting EMT signaling to regulate HCC cell growth and migration. Therefore, AP-2β in the novel miR-27a/AP-2β/Slug/EMT regulatory axis enhances the chemotherapeutic drug sensitivity of HCC and might represent a potential target for evaluating the treatment and prognosis of human HCC.
Collapse
|
26
|
Wong TCB, Rebbert M, Wang C, Chen X, Heffer A, Zarelli VE, Dawid IB, Zhao H. Genes regulated by potassium channel tetramerization domain containing 15 (Kctd15) in the developing neural crest. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2018; 60:159-66. [PMID: 27389986 DOI: 10.1387/ijdb.160058id] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neural crest (NC) development is controlled precisely by a regulatory network with multiple signaling pathways and the involvement of many genes. The integration and coordination of these factors are still incompletely understood. Overexpression of Wnt3a and the BMP antagonist Chordin in animal cap cells from Xenopus blastulae induces a large number of NC specific genes. We previously suggested that Potassium Channel Tetramerization Domain containing 15 (Kctd15) regulates NC formation by affecting Wnt signaling and the activity of transcription factor AP-2. In order to advance understanding of the function of Kctd15 during NC development, we performed DNA microarray assays in explants injected with Wnt3a and Chordin, and identified genes that are affected by Kctd15 overexpression. Among the many genes identified, we chose Duf domain containing protein 1 (ddcp1), Platelet-Derived Growth Factor Receptor a (pdgfra), Complement factor properdin (cfp), Zinc Finger SWIM-Type Containing 5 (zswim5), and complement component 3 (C3) to examine their expression by whole mount in situ hybridization. Our work points to a possible role for Kctd15 in the regulation of NC formation and other steps in embryonic development.
Collapse
Affiliation(s)
- Thomas C B Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Heffer A, Marquart GD, Aquilina-Beck A, Saleem N, Burgess HA, Dawid IB. Generation and characterization of Kctd15 mutations in zebrafish. PLoS One 2017; 12:e0189162. [PMID: 29216270 PMCID: PMC5720732 DOI: 10.1371/journal.pone.0189162] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/08/2017] [Indexed: 01/08/2023] Open
Abstract
Potassium channel tetramerization domain containing 15 (Kctd15) was previously found to have a role in early neural crest (NC) patterning, specifically delimiting the region where NC markers are expressed via repression of transcription factor AP-2a and inhibition of Wnt signaling. We used transcription activator-like effector nucleases (TALENs) to generate null mutations in zebrafish kctd15a and kctd15b paralogs to study the in vivo role of Kctd15. We found that while deletions producing frame-shift mutations in each paralog showed no apparent phenotype, kctd15a/b double mutant zebrafish are smaller in size and show several phenotypes including some affecting the NC, such as expansion of the early NC domain, increased pigmentation, and craniofacial defects. Both melanophore and xanthophore pigment cell numbers and early markers are up-regulated in the double mutants. While we find no embryonic craniofacial defects, adult mutants have a deformed maxillary segment and missing barbels. By confocal imaging of mutant larval brains we found that the torus lateralis (TLa), a region implicated in gustatory networks in other fish, is absent. Ablation of this brain tissue in wild type larvae mimics some aspects of the mutant growth phenotype. Thus kctd15 mutants show deficits in the development of both neural crest derivatives, and specific regions within the central nervous system, leading to a strong reduction in normal growth rates.
Collapse
Affiliation(s)
- Alison Heffer
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Gregory D. Marquart
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Allisan Aquilina-Beck
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Nabil Saleem
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Harold A. Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Igor B. Dawid
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
28
|
Sanchez M, Kolar SL, Müller S, Reyes CN, Wolf AJ, Ogawa C, Singhania R, De Carvalho DD, Arditi M, Underhill DM, Martins GA, Liu GY. O-Acetylation of Peptidoglycan Limits Helper T Cell Priming and Permits Staphylococcus aureus Reinfection. Cell Host Microbe 2017; 22:543-551.e4. [PMID: 28943328 DOI: 10.1016/j.chom.2017.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/14/2017] [Accepted: 08/16/2017] [Indexed: 12/13/2022]
Abstract
Humans do not usually develop effective immunity to Staphylococcus aureus reinfection. Using a murine model that mimics human infection, we show that lack of protective immunity to S. aureus systemic reinfection is associated with robust interleukin-10 (IL-10) production and impaired protective Th17 responses. In dendritic cell co-culture assays, priming with S. aureus promotes robust T cell proliferation, but limits Th cells polarization and production of IL-1β and other cytokines important for Th1 and Th17 differentiation. We show that O-acetylation of peptidoglycan, a mechanism utilized by S. aureus to block bacterial cell wall breakdown, limits the induction of pro-inflammatory signals required for optimal Th17 polarization. IL-10 deficiency in mice restores protective immunity to S. aureus infection, and adjuvancy with a staphylococcal peptidoglycan O-acetyltransferase mutant reduces IL-10, increases IL-1β, and promotes development of IL-17-dependent, Th cell-transferable protective immunity. Overall, our study suggests a mechanism whereby S. aureus modulates cytokines critical for induction of protective Th17 immunity.
Collapse
Affiliation(s)
- Marisel Sanchez
- Division of Pediatric Infectious Diseases, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA; Research Division of Immunology, Department of Biomedical Sciences, CSMC, Los Angeles, CA 90048, USA
| | - Stacey L Kolar
- Division of Pediatric Infectious Diseases, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA; Research Division of Immunology, Department of Biomedical Sciences, CSMC, Los Angeles, CA 90048, USA
| | - Sabrina Müller
- Division of Pediatric Infectious Diseases, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA; Research Division of Immunology, Department of Biomedical Sciences, CSMC, Los Angeles, CA 90048, USA; F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, CSMC, Los Angeles, CA 90048, USA
| | - Christopher N Reyes
- Research Division of Immunology, Department of Biomedical Sciences, CSMC, Los Angeles, CA 90048, USA; F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, CSMC, Los Angeles, CA 90048, USA
| | - Andrea J Wolf
- Research Division of Immunology, Department of Biomedical Sciences, CSMC, Los Angeles, CA 90048, USA; F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, CSMC, Los Angeles, CA 90048, USA
| | - Chihiro Ogawa
- Research Division of Immunology, Department of Biomedical Sciences, CSMC, Los Angeles, CA 90048, USA; F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, CSMC, Los Angeles, CA 90048, USA
| | - Rajat Singhania
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Moshe Arditi
- Division of Pediatric Infectious Diseases, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA; Research Division of Immunology, Department of Biomedical Sciences, CSMC, Los Angeles, CA 90048, USA
| | - David M Underhill
- Research Division of Immunology, Department of Biomedical Sciences, CSMC, Los Angeles, CA 90048, USA; F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, CSMC, Los Angeles, CA 90048, USA
| | - Gislâine A Martins
- Research Division of Immunology, Department of Biomedical Sciences, CSMC, Los Angeles, CA 90048, USA; F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, CSMC, Los Angeles, CA 90048, USA; Department of Medicine, Division of Gastroenterology, CSMC, Los Angeles, CA 90048, USA.
| | - George Y Liu
- Division of Pediatric Infectious Diseases, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA; Research Division of Immunology, Department of Biomedical Sciences, CSMC, Los Angeles, CA 90048, USA; F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, CSMC, Los Angeles, CA 90048, USA.
| |
Collapse
|
29
|
Kumar S, Rathkolb B, Sabrautzki S, Krebs S, Kemter E, Becker L, Beckers J, Bekeredjian R, Brommage R, Calzada-Wack J, Garrett L, Hölter SM, Horsch M, Klingenspor M, Klopstock T, Moreth K, Neff F, Rozman J, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Wolf E, Aigner B. Standardized, systemic phenotypic analysis reveals kidney dysfunction as main alteration of Kctd1 I27N mutant mice. J Biomed Sci 2017; 24:57. [PMID: 28818080 PMCID: PMC5559776 DOI: 10.1186/s12929-017-0365-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/09/2017] [Indexed: 12/28/2022] Open
Abstract
Background Increased levels of blood plasma urea were used as phenotypic parameter for establishing novel mouse models for kidney diseases on the genetic background of C3H inbred mice in the phenotype-driven Munich ENU mouse mutagenesis project. The phenotypically dominant mutant line HST014 was established and further analyzed. Methods Analysis of the causative mutation as well as the standardized, systemic phenotypic analysis of the mutant line was carried out. Results The causative mutation was detected in the potassium channel tetramerization domain containing 1 (Kctd1) gene which leads to the amino acid exchange Kctd1I27N thereby affecting the functional BTB domain of the protein. This line is the first mouse model harboring a Kctd1 mutation. Kctd1I27N homozygous mutant mice die perinatally. Standardized, systemic phenotypic analysis of Kctd1I27N heterozygous mutants was carried out in the German Mouse Clinic (GMC). Systematic morphological investigation of the external physical appearance did not detect the specific alterations that are described in KCTD1 mutant human patients affected by the scalp-ear-nipple (SEN) syndrome. The main pathological phenotype of the Kctd1I27N heterozygous mutant mice consists of kidney dysfunction and secondary effects thereof, without gross additional primary alterations in the other phenotypic parameters analyzed. Genome-wide transcriptome profiling analysis at the age of 4 months revealed about 100 differentially expressed genes (DEGs) in kidneys of Kctd1I27N heterozygous mutants as compared to wild-type controls. Conclusions In summary, the main alteration of the Kctd1I27N heterozygous mutants consists in kidney dysfunction. Additional analyses in 9–21 week-old heterozygous mutants revealed only few minor effects. Electronic supplementary material The online version of this article (doi:10.1186/s12929-017-0365-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sudhir Kumar
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, 81377, Munich, Germany
| | - Birgit Rathkolb
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, 81377, Munich, Germany.,German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Sibylle Sabrautzki
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Stefan Krebs
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, 81377, Munich, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, 81377, Munich, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Department of Neurology, Friedrich-Baur-Institute, University Hospital Munich, 80336, Munich, Germany
| | - Johannes Beckers
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, TU Munich, 85350, Freising-Weihenstephan, Germany
| | - Raffi Bekeredjian
- Department of Medicine III, Division of Cardiology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Robert Brommage
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Julia Calzada-Wack
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Sabine M Hölter
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Marion Horsch
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, TU Munich, 85350, Freising-Weihenstephan, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital Munich, 80336, Munich, Germany.,German Center for Vertigo and Balance Disorders, University Hospital Munich, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 80336, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), 80336, Munich, Germany
| | - Kristin Moreth
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Frauke Neff
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Molecular Nutritional Medicine, Else Kröner-Fresenius Center, TU Munich, 85350, Freising-Weihenstephan, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Valérie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, TU Munich, 85350, Freising-Weihenstephan, Germany.,German Center for Vertigo and Balance Disorders, University Hospital Munich, 81377, Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, 81377, Munich, Germany
| | - Bernhard Aigner
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, 81377, Munich, Germany.
| |
Collapse
|
30
|
Wu W, Wu F, Wang Z, Di J, Yang J, Gao P, Jiang B, Su X. CENPH Inhibits Rapamycin Sensitivity by Regulating GOLPH3-dependent mTOR Signaling Pathway in Colorectal Cancer. J Cancer 2017; 8:2163-2172. [PMID: 28819418 PMCID: PMC5560133 DOI: 10.7150/jca.19940] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/25/2017] [Indexed: 12/29/2022] Open
Abstract
Background: Centromere protein H (CENPH) is known as a fundamental component of the active centromere complex, and its overexpression is correlated with poor prognosis in various solid tumors. mTOR inhibitor rapamycin has been shown to possess antitumor activity, as well as prevent intestinal tumorigenesis. However, the prognostic value of CENPH in colorectal cancer (CRC) and the role of CENPH in rapamycin sensitivity remain unknown. Materials and methods: The effect of CENPH on the cell proliferation, clonogenicity, and cell response to rapamycin in CRC were evaluated by MTT and/or colony formation assays. For the underlying mechanisms, the interaction between CENPH and GOLPH3 were detected by co-immunoprecipitation, GST pull-down, and His-tag pull-down assays, as well as the laser scanning confocal microscopy. The status of kinases in mTOR signaling was determined by Western blot. Finally, the clinical significance of CENPH was analyzed using public CRC datasets with CENPH transcripts and clinical information. Results: CENPH inhibited CRC malignant phenotypes, conferred reduced sensitivity to rapamycin, and attenuated both mTORC1 and mTORC2 in mTOR signaling pathway through the interaction with golgi phosphoprotein 3 (GOLPH3), which has been identified as a potential oncogene and modulates the response to rapamycin. Moreover, elevated levels of CENPH were detected in CRC tissues, compared with normal colorectal tissues. High levels of CENPH expression gradually decreased according to CRC tumor stages. Patients with high CENPH expression had favorable survival. Conclusions: Our results suggest that CENPH inhibits rapamycin sensitivity by regulating GOLPH3 dependent mTOR pathway. High CENPH expression is associated with better prognosis in CRC patients. Taken together, CENPH may serve as a potential predictor for rapamycin sensitivity and therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Wei Wu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fan Wu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zaozao Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jiabo Di
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jie Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Pin Gao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Beihai Jiang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiangqian Su
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
31
|
Wang X, Sun H, Liao H, Wang C, Jiang C, Zhang Y, Cao Z. MicroRNA-155-3p Mediates TNF-α-Inhibited Cementoblast Differentiation. J Dent Res 2017; 96:1430-1437. [PMID: 28692806 DOI: 10.1177/0022034517718790] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- X. Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H. Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H. Liao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - C. Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - C. Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y. Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Z. Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
32
|
Wang F, Huang W, Hu X, Chen C, Li X, Qiu J, Liang Z, Zhang J, Li L, Wang X, Ding X, Xiang S, Zhang J. Transcription factor AP-2β suppresses cervical cancer cell proliferation by promoting the degradation of its interaction partner β-catenin. Mol Carcinog 2017; 56:1909-1923. [PMID: 28277615 DOI: 10.1002/mc.22646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 02/28/2017] [Accepted: 03/03/2017] [Indexed: 12/21/2022]
Abstract
Transcription factor AP-2β mediates the transcription of a number of genes implicated in mammalian development, cell proliferation, and carcinogenesis. Although the expression pattern of AP-2β has been analyzed in cervical cancer cell lines, the functions and molecular mechanism of AP-2β are unknown. Here, we found that AP-2β significantly inhibits TCF/LEF reporter activity. Moreover, AP-2β and β-catenin interact both in vitro through GST pull-down assays and in vivo by co-immunoprecipitation. We further identified the interaction regions to the DNA-binding domain of AP-2β and the 1-9 Armadillo repeats of β-catenin. Moreover, AP-2β binds with β-TrCP and promotes the degradation of endogenous β-catenin via the proteasomal degradation pathway. Immunohistochemistry analysis revealed a negative correlation between the two proteins in cervical cancer tissues and cell lines. Finally, functional analysis showed that AP-2β suppresses cervical cancer cell growth in vitro and in vivo by inhibiting the expression of Wnt downstream genes. Taken together, these findings demonstrated that AP-2β functions as a novel inhibitor of the Wnt/β-catenin signaling pathway in cervical cancer.
Collapse
Affiliation(s)
- Fangmei Wang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Wenhuan Huang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Xiang Hu
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Cheng Chen
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Xinxin Li
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Junlu Qiu
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Zhongheng Liang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Jianmei Zhang
- Reproductive Medicine Center, Changsha Hospital for Maternal & Child Health Care, Changsha, Hunan, China
| | - Limin Li
- College of Engineering and Design, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoqing Wang
- Xiangya Second Hospital, Central South University, Changsha, Hunan, China
| | - Xiaofeng Ding
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Jian Zhang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| |
Collapse
|
33
|
Bardag-Gorce F, Hoft RH, Wood A, Oliva J, Niihara H, Makalinao A, Thropay J, Pan D, Meepe I, Tiger K, Garcia J, Laporte A, French SW, Niihara Y. The Role of E-Cadherin in Maintaining the Barrier Function of Corneal Epithelium after Treatment with Cultured Autologous Oral Mucosa Epithelial Cell Sheet Grafts for Limbal Stem Deficiency. J Ophthalmol 2016; 2016:4805986. [PMID: 27777792 PMCID: PMC5061954 DOI: 10.1155/2016/4805986] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 11/17/2022] Open
Abstract
The role of E-cadherin in epithelial barrier function of cultured autologous oral mucosa epithelial cell sheet (CAOMECS) grafts was examined. CAOMECS were cultured on a temperature-responsive surface and grafted onto rabbit corneas with Limbal Stem Cell Deficiency (LSCD). E-cadherin levels were significantly higher in CAOMECS compared to normal and LSCD epithelium. Beta-catenin colocalized with E-cadherin in CAOMECS cell membranes while phosphorylated beta-catenin was significantly increased. ZO-1, occludin, and Cnx43 were also strongly expressed in CAOMECS. E-cadherin and beta-catenin localization at the cell membrane was reduced in LSCD corneas, while CAOMECS-grafted corneas showed a restoration of E-cadherin and beta-catenin expression. LSCD corneas did not show continuous staining for ZO-1 or for Cnx43, while CAOMECS-grafted corneas showed a positive expression of ZO-1 and Cnx43. Cascade Blue® hydrazide did not pass through CAOMECS. Because E-cadherin interactions are calcium-dependent, EGTA was used to chelate calcium and disrupt cell adhesion. EGTA-treated CAOMECS completely detached from cell culture surface, and E-cadherin levels were significantly decreased. In conclusion, E cadherin high expression contributed to CAOMECS tight and gap junction protein recruitment at the cell membrane, thus promoting cellular adhesion and a functional barrier to protect the ocular surface.
Collapse
Affiliation(s)
- Fawzia Bardag-Gorce
- Los Angeles Biomedical Research Institute (LA BioMed), Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Richard H. Hoft
- Los Angeles Biomedical Research Institute (LA BioMed), Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Andrew Wood
- Los Angeles Biomedical Research Institute (LA BioMed), Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Joan Oliva
- Los Angeles Biomedical Research Institute (LA BioMed), Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Hope Niihara
- Los Angeles Biomedical Research Institute (LA BioMed), Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Andrew Makalinao
- Los Angeles Biomedical Research Institute (LA BioMed), Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Jacquelyn Thropay
- Los Angeles Biomedical Research Institute (LA BioMed), Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Derek Pan
- Los Angeles Biomedical Research Institute (LA BioMed), Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Imara Meepe
- Los Angeles Biomedical Research Institute (LA BioMed), Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Kumar Tiger
- Los Angeles Biomedical Research Institute (LA BioMed), Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Julio Garcia
- Los Angeles Biomedical Research Institute (LA BioMed), Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Amanda Laporte
- Los Angeles Biomedical Research Institute (LA BioMed), Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Samuel W. French
- Los Angeles Biomedical Research Institute (LA BioMed), Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Yutaka Niihara
- Los Angeles Biomedical Research Institute (LA BioMed), Harbor UCLA Medical Center, Torrance, CA 90502, USA
| |
Collapse
|
34
|
Liu Z, Song F, Ma ZL, Xiong Q, Wang J, Guo D, Sun G. Bivalent Copper Ions Promote Fibrillar Aggregation of KCTD1 and Induce Cytotoxicity. Sci Rep 2016; 6:32658. [PMID: 27596723 PMCID: PMC5011690 DOI: 10.1038/srep32658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/11/2016] [Indexed: 01/04/2023] Open
Abstract
Potassium channel tetramerization domain containing 1 (KCTD1) family members have a BTB/POZ domain, which can facilitate protein-protein interactions involved in the regulation of different signaling pathways. KCTD proteins have potential Zn(2+)/Cu(2+) binding sites with currently unknown structural and functional roles. We investigated potential Cu(2+)-specific effects on KCTD1 using circular dichroism, turbidity measurement, fluorescent dye binding, proteinase K (PK) digestion, cell proliferation and apoptosis assays. These experiments indicate that the KCTD1 secondary structure assumes greater β-sheet content and the proteins aggregate into a PK-resistant form under 20 μM Cu(2+), and this β-sheet-rich aggregation with Cu(2+) promotes fibril formation, which results in increased cell toxicity by apoptosis. Our results reveal a novel role for Cu(2+) in determining the structure and function of KCTD1.
Collapse
Affiliation(s)
- Zhepeng Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Feifei Song
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Zhi-li Ma
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Qiushuang Xiong
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Jingwen Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Deyin Guo
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Guihong Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
35
|
Cyclin Y regulates the proliferation, migration, and invasion of ovarian cancer cells via Wnt signaling pathway. Tumour Biol 2016; 37:10161-75. [PMID: 26831658 DOI: 10.1007/s13277-016-4818-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/07/2016] [Indexed: 01/12/2023] Open
Abstract
This study is designated to investigate the roles of cyclin Y (CCNY) and Wnt signaling pathway in regulating ovarian cancer (OC) cell proliferation, migration, and invasion. Quantitative real-time PCR (qRT-PCR), Western blot, MTT assay, cell scratch, and transwell test were used in our study, and transplanted tumor model was constructed on nude mice. C-Myc, cyclin D1, PFTK1, ki67, OGT, and β-catenin protein expressions in tumor tissues were detected. CCNY was significantly upregulated in OC cell lines and tissues (both P < 0.05); significant association was observed between CCNY expression and clinicopathological stage, lymph node metastasis (LNM) (P < 0.05); and the CCNY expression in stages III to IV was higher than that in stages I to II, and patients with LNM had higher CCNY expression when compared with those in patients without LNM (P < 0.05); expressions of c-Myc, cyclin D, PFTK1, ki67, and OGT were upregulated in OC tissues compared with ovarian benign tissues, suggesting that these expressions were significantly different between the two groups (P < 0.05); CCNY significantly exacerbated proliferation, migration, and invasion of A2780 cells; c-Myc and cyclin D1 protein expressions increased as the expression of CCNY increased (P < 0.001); β-catenin expressions in A2780 cells with over-expression of CCNY were significantly increased in the nucleus, but significantly decreased in the cytoplasm (both P < 0.05); high expressions of CCNY exacerbated the proliferation of A2780 cells in nude mice and significantly increased c-Myc, cyclin D1, PFTK1, ki67, and OGT protein expressions in tumor tissues which were transplanted into nude mice (P < 0.01). CCNY might exacerbate the proliferation, migration, and invasion of OC cells via activating the Wnt signaling pathway. Thus, this study provides a theoretical foundation for the development of therapeutic drugs that are able to cure OC by targeting CCNY.
Collapse
|
36
|
Huang W, Chen C, Liang Z, Qiu J, Li X, Hu X, Xiang S, Ding X, Zhang J. AP-2α inhibits hepatocellular carcinoma cell growth and migration. Int J Oncol 2016; 48:1125-34. [PMID: 26780928 DOI: 10.3892/ijo.2016.3318] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/09/2015] [Indexed: 11/06/2022] Open
Abstract
Transcription factor AP-2α is involved in many types of human cancers, but its role in hepatocellular carcinogenesis is largely unknown. In this study, we found that expression of AP-2α was low in 40% of human hepatocellular cancers compared with adjacent normal tissues by immunohistochemical analysis. Moreover, AP-2α expression was low or absent in hepatocellular cancer cell lines (HepG2, Hep3B, SMMC-7721 and MHHC 97-H). Human liver cancer cell lines SMMC-7721 and Hep3B stably overexpressing AP-2α were established by lentiviral infection and puromycin screening, and the ectopic expression of AP-2α was able to inhibit hepatocellular cancer cell growth and proliferation by cell viability, MTT assay and liquid colony formation in vitro and in vivo. Furthermore, AP-2α overexpression decreased liver cancer cell migration and invasion as assessed by wound healing and Transwell assays, increasing the sensitivity of liver cancer cells to cisplatin analyzed by MTT assays. Also AP-2α overexpression suppressed the sphere formation and renewed the ability of cancer stem cells. Finally, we found that AP-2α is epigenetically modified and modulates the levels of phosphorylated extracellular signal-regulated protein kinase (ERK), β-catenin, p53, EMT, and CD133 expression in liver cancer cell lines. These results suggested that AP-2α expression is low in human hepatocellular cancers by regulating multiple signaling to affect hepatocellular cancer cell growth and migration. Therefore, AP-2α might represent a novel potential target in human hepatocellular cancer therapy.
Collapse
Affiliation(s)
- Wenhuan Huang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Cheng Chen
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Zhongheng Liang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Junlu Qiu
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Xinxin Li
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Xiang Hu
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Xiaofeng Ding
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Jian Zhang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| |
Collapse
|
37
|
Ji AX, Chu A, Nielsen TK, Benlekbir S, Rubinstein JL, Privé GG. Structural Insights into KCTD Protein Assembly and Cullin3 Recognition. J Mol Biol 2015; 428:92-107. [PMID: 26334369 DOI: 10.1016/j.jmb.2015.08.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 02/01/2023]
Abstract
Cullin3 (Cul3)-based ubiquitin E3 ligase complexes catalyze the transfer of ubiquitin from an E2 enzyme to target substrate proteins. In these assemblies, the C-terminal region of Cul3 binds Rbx1/E2-ubiquitin, while the N-terminal region interacts with various BTB (bric-à-brac, tramtrack, broad complex) domain proteins that serve as substrate adaptors. Previous crystal structures of the homodimeric BTB proteins KLHL3, KLHL11 and SPOP in complex with the N-terminal domain of Cul3 revealed the features required for Cul3 recognition in these proteins. A second class of BTB-domain-containing proteins, the KCTD proteins, is also Cul3 substrate adaptors, but these do not share many of the previously identified determinants for Cul3 binding. We report the pentameric crystal structures of the KCTD1 and KCTD9 BTB domains and identify plasticity in the KCTD1 rings. We find that the KCTD proteins 5, 6, 9 and 17 bind to Cul3 with high affinity, while the KCTD proteins 1 and 16 do not have detectable binding. Finally, we confirm the 5:5 assembly of KCTD9/Cul3 complexes by cryo-electron microscopy and provide a molecular rationale for BTB-mediated Cul3 binding specificity in the KCTD family.
Collapse
Affiliation(s)
- Alan X Ji
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Anh Chu
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Tine Kragh Nielsen
- Princess Margaret Cancer Centre, Campbell Family Institute for Cancer Research, University Health Network, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Samir Benlekbir
- The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - John L Rubinstein
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Gilbert G Privé
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Princess Margaret Cancer Centre, Campbell Family Institute for Cancer Research, University Health Network, 101 College Street, Toronto, ON, M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.
| |
Collapse
|