1
|
Ebert ET, Schwinghamer KM, Siahaan TJ. Delivery of Neuroregenerative Proteins to the Brain for Treatments of Neurodegenerative Brain Diseases. Life (Basel) 2024; 14:1456. [PMID: 39598254 PMCID: PMC11595909 DOI: 10.3390/life14111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Neurodegenerative brain diseases such as Alzheimer's disease (AD), multiple sclerosis (MS), and Parkinson's disease (PD) are difficult to treat. Unfortunately, many therapeutic agents for neurodegenerative disease only halt the progression of these diseases and do not reverse neuronal damage. There is a demand for finding solutions to reverse neuronal damage in the central nervous system (CNS) of patients with neurodegenerative brain diseases. Therefore, the purpose of this review is to discuss the potential for therapeutic agents like specific neurotrophic and growth factors in promoting CNS neuroregeneration in brain diseases. We discuss how BDNF, NGF, IGF-1, and LIF could potentially be used for the treatment of brain diseases. The molecule's different mechanisms of action in stimulating neuroregeneration and methods to analyze their efficacy are described. Methods that can be utilized to deliver these proteins to the brain are also discussed.
Collapse
Affiliation(s)
| | | | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA; (E.T.E.); (K.M.S.)
| |
Collapse
|
2
|
Dou X, Chen R, Yang J, Dai M, Long J, Sun S, Lin Y. The potential role of T-cell metabolism-related molecules in chronic neuropathic pain after nerve injury: a narrative review. Front Immunol 2023; 14:1107298. [PMID: 37266437 PMCID: PMC10229812 DOI: 10.3389/fimmu.2023.1107298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/27/2023] [Indexed: 06/03/2023] Open
Abstract
Neuropathic pain is a common type of chronic pain, primarily caused by peripheral nerve injury. Different T-cell subtypes play various roles in neuropathic pain caused by peripheral nerve damage. Peripheral nerve damage can lead to co-infiltration of neurons and other inflammatory cells, thereby altering the cellular microenvironment and affecting cellular metabolism. By elaborating on the above, we first relate chronic pain to T-cell energy metabolism. Then we summarize the molecules that have affected T-cell energy metabolism in the past five years and divide them into two categories. The first category could play a role in neuropathic pain, and we explain their roles in T-cell function and chronic pain, respectively. The second category has not yet been involved in neuropathic pain, and we focus on how they affect T-cell function by influencing T-cell metabolism. By discussing the above content, this review provides a reference for studying the direct relationship between chronic pain and T-cell metabolism and searching for potential therapeutic targets for the treatment of chronic pain on the level of T-cell energy metabolism.
Collapse
Affiliation(s)
- Xiaoke Dou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhao Long
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Ivan DC, Berve KC, Walthert S, Monaco G, Borst K, Bouillet E, Ferreira F, Lee H, Steudler J, Buch T, Prinz M, Engelhardt B, Locatelli G. Insulin-like growth factor-1 receptor controls the function of CNS-resident macrophages and their contribution to neuroinflammation. Acta Neuropathol Commun 2023; 11:35. [PMID: 36890580 PMCID: PMC9993619 DOI: 10.1186/s40478-023-01535-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
Signaling by insulin-like growth factor-1 (IGF-1) is essential for the development of the central nervous system (CNS) and regulates neuronal survival and myelination in the adult CNS. In neuroinflammatory conditions including multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), IGF-1 can regulate cellular survival and activation in a context-dependent and cell-specific manner. Notwithstanding its importance, the functional outcome of IGF-1 signaling in microglia/macrophages, which maintain CNS homeostasis and regulate neuroinflammation, remains undefined. As a result, contradictory reports on the disease-ameliorating efficacy of IGF-1 are difficult to interpret, together precluding its potential use as a therapeutic agent. To fill this gap, we here investigated the role of IGF-1 signaling in CNS-resident microglia and border associated macrophages (BAMs) by conditional genetic deletion of the receptor Igf1r in these cell types. Using a series of techniques including histology, bulk RNA sequencing, flow cytometry and intravital imaging, we show that absence of IGF-1R significantly impacted the morphology of both BAMs and microglia. RNA analysis revealed minor changes in microglia. In BAMs however, we detected an upregulation of functional pathways associated with cellular activation and a decreased expression of adhesion molecules. Notably, genetic deletion of Igf1r from CNS-resident macrophages led to a significant weight gain in mice, suggesting that absence of IGF-1R from CNS-resident myeloid cells indirectly impacts the somatotropic axis. Lastly, we observed a more severe EAE disease course upon Igf1r genetic ablation, thus highlighting an important immunomodulatory role of this signaling pathway in BAMs/microglia. Taken together, our work shows that IGF-1R signaling in CNS-resident macrophages regulates the morphology and transcriptome of these cells while significantly decreasing the severity of autoimmune CNS inflammation.
Collapse
Affiliation(s)
- Daniela C Ivan
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland
| | - Kristina Carolin Berve
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland
| | - Sabrina Walthert
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland
| | - Gianni Monaco
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Katharina Borst
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Elisa Bouillet
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland
| | - Filipa Ferreira
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Henry Lee
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland
| | - Jasmin Steudler
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland
| | - Giuseppe Locatelli
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland.
| |
Collapse
|
4
|
Locatelli G, Marques-Ferreira F, Katsoulas A, Kalaitzaki V, Krueger M, Ingold-Heppner B, Walthert S, Sankowski R, Prazeres da Costa O, Dolga A, Huber M, Gold M, Culmsee C, Waisman A, Bechmann I, Milchevskaya V, Prinz M, Tresch A, Becher B, Buch T. IGF1R expression by adult oligodendrocytes is not required in the steady-state but supports neuroinflammation. Glia 2023; 71:616-632. [PMID: 36394300 DOI: 10.1002/glia.24299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022]
Abstract
In the central nervous system (CNS), insulin-like growth factor 1 (IGF-1) regulates myelination by oligodendrocyte (ODC) precursor cells and shows anti-apoptotic properties in neuronal cells in different in vitro and in vivo systems. Previous work also suggests that IGF-1 protects ODCs from cell death and enhances remyelination in models of toxin-induced and autoimmune demyelination. However, since evidence remains controversial, the therapeutic potential of IGF-1 in demyelinating CNS conditions is unclear. To finally shed light on the function of IGF1-signaling for ODCs, we deleted insulin-like growth factor 1 receptor (IGF1R) specifically in mature ODCs of the mouse. We found that ODC survival and myelin status were unaffected by the absence of IGF1R until 15 months of age, indicating that IGF-1 signaling does not play a major role in post-mitotic ODCs during homeostasis. Notably, the absence of IGF1R did neither affect ODC survival nor myelin status upon cuprizone intoxication or induction of experimental autoimmune encephalomyelitis (EAE), models for toxic and autoimmune demyelination, respectively. Surprisingly, however, the absence of IGF1R from ODCs protected against clinical neuroinflammation in the EAE model. Together, our data indicate that IGF-1 signaling is not required for the function and survival of mature ODCs in steady-state and disease.
Collapse
Affiliation(s)
- Giuseppe Locatelli
- Institute of Experimental Immunology, University of Zurich, Zurich.,Theodor Kocher Institute, University Bern, Bern, Switzerland
| | | | - Antonis Katsoulas
- Institute of Laboratory Animal Science, University of Zurich, Zurich
| | | | - Martin Krueger
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Barbara Ingold-Heppner
- Institute of Pathology, Campus Mitte, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | | | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Olivia Prazeres da Costa
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Amalia Dolga
- Institute for Pharmacology and Clinical Pharmacy, Philipps-Universität Marburg, Marburg, Germany.,Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University of Marburg, Marburg, Germany
| | - Maike Gold
- Department of Neurology, Philipps University of Marburg, Marburg, Germany
| | - Carsten Culmsee
- Institute for Pharmacology and Clinical Pharmacy, Philipps-Universität Marburg, Marburg, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Vladislava Milchevskaya
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Achim Tresch
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich
| | - Thorsten Buch
- Institute of Experimental Immunology, University of Zurich, Zurich.,Institute of Laboratory Animal Science, University of Zurich, Zurich.,Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| |
Collapse
|
5
|
Fernando R, Caldera O, Smith TJ. Therapeutic IGF-I receptor inhibition alters fibrocyte immune phenotype in thyroid-associated ophthalmopathy. Proc Natl Acad Sci U S A 2021; 118:e2114244118. [PMID: 34949642 PMCID: PMC8719891 DOI: 10.1073/pnas.2114244118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 01/20/2023] Open
Abstract
Thyroid-associated ophthalmopathy (TAO) represents a disfiguring and potentially blinding autoimmune component of Graves' disease. It appears to be driven, at least in part, by autoantibodies targeting the thyrotropin receptor (TSHR)/insulin-like growth factor I receptor (IGF-IR) complex. Actions mediated through either TSHR or IGF-IR are dependent on IGF-IR activity. CD34+ fibrocytes, monocyte lineage cells, reside uniquely in the TAO orbit, where they masquerade as CD34+ orbital fibroblasts. Fibrocytes present antigens to T cells through their display of the major histocompatibility complex class II (MHC II) while providing costimulation through B7 proteins (CD80, CD86, and programmed death-ligand 1 [PD-L1]). Here, we demonstrate that teprotumumab, an anti-IGF-IR inhibitor, attenuates constitutive expression and induction by the thyroid-stimulating hormone of MHC II and these B7 members in CD34+ fibrocytes. These actions are mediated through reduction of respective gene transcriptional activity. Other IGF-IR inhibitors (1H7 and linsitinib) and knocking down IGF-IR gene expression had similar effects. Interrogation of circulating fibrocytes collected from patients with TAO, prior to and following teprotumumab treatment in vivo during a phase 2 clinical trial, demonstrated reductions in cell-surface MHC II and B7 proteins similar to those found following IGF-IR inhibitor treatment in vitro. Teprotumumab therapy reduces levels of interferon-γ and IL-17A expression in circulating CD4+ T cells, effects that may be indirect and mediated through actions of the drug on fibrocytes. Teprotumumab was approved by the US Food and Drug Administration for TAO. Our current findings identify potential mechanisms through which teprotumumab might be eliciting its clinical response systemically in patients with TAO, potentially by restoring immune tolerance.
Collapse
Affiliation(s)
- Roshini Fernando
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Oshadi Caldera
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105
| |
Collapse
|
6
|
Wang F, Tan YQ, Zhang J, Zhou G. Insulin-like growth factor 1 exhibits the pro-autophagic and anti-apoptotic activity on T cells of oral lichen planus. Int J Biol Macromol 2019; 133:640-646. [PMID: 31026523 DOI: 10.1016/j.ijbiomac.2019.04.158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/22/2019] [Accepted: 04/22/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Oral lichen planus (OLP) is an autoimmune mucocutaneous disease characterized by T cell infiltrating in microenvironment. T cell-mediated immune dysfunctions are of importance in the pathogenesis of OLP. Insulin-like growth factor 1 (IGF1) has profound effects on maintenance of immune functions; however, its specific mechanism in OLP remains unknown. This study aims to explore how IGF1 regulates T-cell immune functions in OLP. METHODS IGF1 in OLP lesions was stained by immunohistochemistry and immunofluorescence. Additionally, proliferation, apoptosis and autophagy of T cells were examined after stimulation with IGF1 for 24 h, respectively. Z-VAD-FMK, a pan-caspase inhibitor, was used to explore IGF1-mediated crosstalk between apoptosis and autophagy. The modulation of IGF1 on ERK and PI3K/mTOR pathway was also analyzed. RESULTS IGF1 was increased in OLP lesions and was remarkably co-located with T cells. IGF1 significantly enhanced T-cell proliferation, suppressed apoptosis and induced autophagic flux. Moreover, autophagy was induced by apoptosis inhibitor, Z-VAD-FMK, thereby reducing death of T cells. IGF1 could facilitate Z-VAD-FMK-induced autophagy and then decrease proportion of apoptotic T cells. IGF1-treated T cells also showed elevated phosphorylation of ERK, PI3K and mTOR. CONCLUSIONS IGF1 inhibited apoptosis and promoted autophagy in T cells, potentially contributing to the pathogenesis of OLP.
Collapse
Affiliation(s)
- Fang Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, PR China
| | - Ya-Qin Tan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, PR China
| | - Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, PR China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, PR China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, PR China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, PR China.
| |
Collapse
|
7
|
Santos AK, Vieira MS, Vasconcellos R, Goulart VAM, Kihara AH, Resende RR. Decoding cell signalling and regulation of oligodendrocyte differentiation. Semin Cell Dev Biol 2018; 95:54-73. [PMID: 29782926 DOI: 10.1016/j.semcdb.2018.05.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022]
Abstract
Oligodendrocytes are fundamental for the functioning of the nervous system; they participate in several cellular processes, including axonal myelination and metabolic maintenance for astrocytes and neurons. In the mammalian nervous system, they are produced through waves of proliferation and differentiation, which occur during embryogenesis. However, oligodendrocytes and their precursors continue to be generated during adulthood from specific niches of stem cells that were not recruited during development. Deficiencies in the formation and maturation of these cells can generate pathologies mainly related to myelination. Understanding the mechanisms involved in oligodendrocyte development, from the precursor to mature cell level, will allow inferring therapies and treatments for associated pathologies and disorders. Such mechanisms include cell signalling pathways that involve many growth factors, small metabolic molecules, non-coding RNAs, and transcription factors, as well as specific elements of the extracellular matrix, which act in a coordinated temporal and spatial manner according to a given stimulus. Deciphering those aspects will allow researchers to replicate them in vitro in a controlled environment and thus mimic oligodendrocyte maturation to understand the role of oligodendrocytes in myelination in pathologies and normal conditions. In this study, we review these aspects, based on the most recent in vivo and in vitro data on oligodendrocyte generation and differentiation.
Collapse
Affiliation(s)
- A K Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - M S Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - R Vasconcellos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - V A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - A H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - R R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil.
| |
Collapse
|
8
|
Parvaneh Tafreshi A, Talebi F, Ghorbani S, Bernard C, Noorbakhsh F. Altered expression of IGF-I system in neurons of the inflamed spinal cord during acute experimental autoimmune encephalomyelitis. J Comp Neurol 2017; 525:3072-3082. [PMID: 28617951 DOI: 10.1002/cne.24263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 11/09/2022]
Abstract
There is growing evidence that the impaired IGF-I system contributes to neurodegeneration. In this study, we examined the spinal cords of the EAE, the animal model of multiple sclerosis, to see if the expression of the IGF-I system is altered. To induce EAE, C57/BL6 mice were immunized with the Hooke lab MOG kit, sacrificed at the peak of the disease and their spinal cords were examined for the immunoreactivities (ir) of the IGF-I, IGF binding protein-1 (IGFBP-1) and glycogen synthase kinase 3β (GSK3β), as one major downstream molecule in the IGF-I signaling. Although neurons in the non EAE spinal cords did not show the IGF-I immunoreactivity, they were numerously positive for the IGFBP-1. In the inflamed EAE spinal cord however, the patterns of expressions were reversed, that is, a significant increased number of IGF-I expressing neurons versus a reduced number of IGFBP-1 positive neurons. Moreover, while nearly all IGF-I-ir neurons expressed GSK3β, some expressed it more intensely. Considering our previous finding where we showed a significant reduced number of the inactive (phosphorylated) but not that of the total GSK3β expressing neurons in the EAE spinal cord, it is conceivable that the intense total GSK3β expression in the IGF-I-ir neurons belongs to the active form of GSK3β known to exert neuroinflammatory effects. We therefore suggest that the altered expression of the IGF-I system including GSK3β in spinal cord neurons might involve in pathophysiological events during the EAE.
Collapse
Affiliation(s)
- Azita Parvaneh Tafreshi
- Department of Molecular Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Farideh Talebi
- Department of Immunology, Faculty of Medicine, Tehran University of Medical, Sciences, Tehran, Iran
| | - Samira Ghorbani
- Department of Immunology, Faculty of Medicine, Tehran University of Medical, Sciences, Tehran, Iran
| | - Claude Bernard
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Farshid Noorbakhsh
- Department of Immunology, Faculty of Medicine, Tehran University of Medical, Sciences, Tehran, Iran
| |
Collapse
|
9
|
Erlandsson MC, Töyrä Silfverswärd S, Nadali M, Turkkila M, Svensson MND, Jonsson IM, Andersson KME, Bokarewa MI. IGF-1R signalling contributes to IL-6 production and T cell dependent inflammation in rheumatoid arthritis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2158-2170. [PMID: 28583713 DOI: 10.1016/j.bbadis.2017.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/09/2017] [Accepted: 06/01/2017] [Indexed: 02/09/2023]
Abstract
BACKGROUND Signalling through insulin-like growth factor 1 receptor (IGF-1R) is essential for cell survival, but may turn pathogenic in uncontrolled tissue growth in tumours. In rheumatoid arthritis (RA), the IGF-1R signalling is activated and supports expansion of the inflamed synovia. AIM In the present study, we assess if disruption of IGF-1R signalling resolves arthritis. MATERIAL AND METHODS Clinical associations of IGF-1R expression in leukocytes of the peripheral blood were studied in 84 RA patients. Consequences of the IGF-1R signalling inhibition for arthritis were studied in mBSA immunised Balb/c mice treated with NT157 compound promoting degradation of insulin receptor substrates. RESULTS In RA patients, high expression of IGF-1R in leukocytes was associated with systemic inflammation as verified by higher expression of NF-kB, serum levels of IL6 and erythrocyte sedimentation rate, and higher pain perception. Additionally, phosphorylated IGF-1R and STAT3 enriched T cells infiltrate in RA synovia. Treatment with NT157 inhibited the phosphorylation of IGF-1R and STAT3 in synovia, and alleviated arthritis and joint damage in mice. It also reduced expression of IGF-1R and despaired ERK and Akt signalling in spleen T cells. This limited IL-6 production, changed RoRgt/FoxP3 balance and IL17 levels. CONCLUSION IGF-1R signalling contributes to T cell dependent inflammation in arthritis. Inhibition of IGF-1R on the level of insulin receptor substrates alleviates arthritis by restricting IL6-dependent formation of Th17 cells and may open for new treatment strategies in RA.
Collapse
Affiliation(s)
- Malin C Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Gothenburg, Sweden
| | - Sofia Töyrä Silfverswärd
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Gothenburg, Sweden
| | - Mitra Nadali
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Gothenburg, Sweden; Rheumatology Clinic, Sahlgrenska University Hospital, Gröna Stråket 12, 41346 Gothenburg, Sweden
| | - Minna Turkkila
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Gothenburg, Sweden
| | - Mattias N D Svensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Gothenburg, Sweden
| | - Ing-Marie Jonsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Gothenburg, Sweden
| | - Karin M E Andersson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Gothenburg, Sweden
| | - Maria I Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Gothenburg, Sweden; Rheumatology Clinic, Sahlgrenska University Hospital, Gröna Stråket 12, 41346 Gothenburg, Sweden.
| |
Collapse
|
10
|
Hlavica M, Delparente A, Good A, Good N, Plattner PS, Seyedsadr MS, Schwab ME, Figlewicz DP, Ineichen BV. Intrathecal insulin-like growth factor 1 but not insulin enhances myelin repair in young and aged rats. Neurosci Lett 2017; 648:41-46. [PMID: 28363754 DOI: 10.1016/j.neulet.2017.03.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/16/2017] [Accepted: 03/28/2017] [Indexed: 12/29/2022]
Abstract
One main pathological hallmark of multiple sclerosis (MS) is demyelination. Novel therapies which enhance myelin repair are urgently needed. Insulin and insulin-like growth factor 1 (IGF-1) have strong functional relationships. Here, we addressed the potential capacity of IGF-1 and insulin to enhance remyelination in an animal demyelination model in vivo. We found that chronic intrathecal infusion of IGF-1 enhanced remyelination after lysolecithin-induced demyelination in the spinal cord of young and aged rats. Aged rats showed a weaker innate remyelination capacity and are therefore a good model for progressive MS which is defined by chronic demyelination. In contrast to IGF-1, Insulin had no effect on remyelination in either age group. Our findings highlight the potential use of IGF-1 as remyelinating therapy for MS, particularly the progressive stage in which chronic demyelination is the hallmark.
Collapse
Affiliation(s)
- Martin Hlavica
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland; Cantonal Hospital St.Gallen, Department of Neurosurgery, Switzerland
| | - Aro Delparente
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Andrin Good
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Nicolas Good
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Patricia S Plattner
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Maryam S Seyedsadr
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Dianne P Figlewicz
- VA Puget Sound Health Care System, University of Washington, Seattle, WA, USA
| | - Benjamin V Ineichen
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland; University Hospital Zurich, Department of Neurology, 8091 Zurich, Switzerland.
| |
Collapse
|
11
|
Altered Autophagy-Associated Genes Expression in T Cells of Oral Lichen Planus Correlated with Clinical Features. Mediators Inflamm 2016; 2016:4867368. [PMID: 26980945 PMCID: PMC4770128 DOI: 10.1155/2016/4867368] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 01/01/2023] Open
Abstract
Oral lichen planus (OLP) is a T cell-mediated inflammatory autoimmune disease. Autophagy has emerged as a fundamental trafficking event in mediating T cell response, which plays crucial roles in innate and adaptive immunity. The present study mainly investigated the mRNA expression of autophagy-associated genes in peripheral blood T cells of OLP patients and evaluated correlations between their expression and the clinical features of OLP. Five differentially expressed autophagy-associated genes were identified by autophagy array. Quantitative real-time RT-PCR results confirmed that IGF1 expression in the peripheral blood T cells of OLP patients was significantly higher than that in controls, especially in female and middle-aged (30-50 years old) OLP patients. In addition, ATG9B mRNA levels were significantly lower in nonerosive OLP patients. However, no significant differences were found in the expression of HGS, ESR1, and SNCA between OLP patients and controls. Taken together, dysregulation of T cell autophagy may be involved in immune response of OLP and may be correlated with clinical patterns.
Collapse
|