1
|
Gurjar M, Amanipour R, Balendran V, Ghimire S, Demirhan MA, Flynn AJ, Seernaum N, Rose KP, Song Y, Hertzano R, Coate TM. EPHRIN-A1 and -A2 act as positive growth factors for developing spiral ganglion radial bundles. Dev Biol 2025:S0012-1606(25)00117-4. [PMID: 40345476 DOI: 10.1016/j.ydbio.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 04/26/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025]
Abstract
During the formation of the auditory system in mammals, spiral ganglion neurons (SGNs) form ribbon-type synapses with hair cells in the cochlea to establish the first "sensorineural" component of sound transduction. Ahead of synapse formation in the cochlea, the SGNs undergo migration and extension with developing Schwann and otic mesenchyme cells to form radial bundles, fasciculated groups of nerve fibers found between the SGN somata and hair cells. Thus far, reports have shown that Eph/Ephrin signaling is important for the formation of radial bundles. Here, we show that EPHRIN-A1 and -A2 are broadly expressed in the developing cochlea during periods of SGN peripheral axon extension. Confronting spiral ganglion explants with either EPHRIN-A1- or -A2-Fc in vitro promoted neurite extension and reduced fasciculation. EPHRIN-A1- or -A2-Fc treatments also led to increased levels of phosphorylated ERBB2 immunoreactivity in Schwann cells, suggesting a role for developing glia. Loss of Efna1 and Efna2 in mouse models led to approximately a 25% reduction in SGN peripheral axon extension, an effect that was maintained into adulthood. Overall, the data presented here indicate that EPHRIN-A1 and -A2 are important for normal patterns of cochlear innervation in that they serve as positive growth factors for developing radial bundles, possibly by stimulating Schwann cells.
Collapse
Affiliation(s)
- Mansa Gurjar
- Department of Biology, Georgetown University, Washington DC, United States
| | - Reza Amanipour
- Department of Otorhinolaryngology, University of Maryland School of Medicine, Baltimore, MD, United States; Neurotology Branch, National Institute on Deafness and Other Communication Disorders, Intramural Research Program, Bethesda, MD, United States
| | - Vinodh Balendran
- Department of Biology, Georgetown University, Washington DC, United States
| | - Satish Ghimire
- Department of Biology, Georgetown University, Washington DC, United States
| | | | - Alexander J Flynn
- Department of Biology, Georgetown University, Washington DC, United States
| | - Nidhee Seernaum
- Department of Biology, Georgetown University, Washington DC, United States
| | - Kevin P Rose
- Department of Otorhinolaryngology, University of Maryland School of Medicine, Baltimore, MD, United States; Neurotology Branch, National Institute on Deafness and Other Communication Disorders, Intramural Research Program, Bethesda, MD, United States
| | - Yang Song
- Department of Otorhinolaryngology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ronna Hertzano
- Department of Otorhinolaryngology, University of Maryland School of Medicine, Baltimore, MD, United States; Neurotology Branch, National Institute on Deafness and Other Communication Disorders, Intramural Research Program, Bethesda, MD, United States
| | - Thomas M Coate
- Department of Biology, Georgetown University, Washington DC, United States.
| |
Collapse
|
2
|
Tan J, Duron A, Sucov HM, Makita T. Placode and neural crest origins of congenital deafness in mouse models of Waardenburg-Shah syndrome. iScience 2025; 28:111680. [PMID: 39868048 PMCID: PMC11762213 DOI: 10.1016/j.isci.2024.111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/19/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025] Open
Abstract
Mutations in the human genes encoding the endothelin ligand-receptor pair EDN3 and EDNRB cause Waardenburg-Shah syndrome (WS4), which includes congenital hearing impairment. The current explanation for auditory dysfunction is defective migration of neural crest-derived melanocytes to the inner ear. We explored the role of endothelin signaling in auditory development in mice using neural crest-specific and placode-specific Ednrb mutation plus related genetic resources. On an outbred strain background, we find a normal representation of melanocytes in hearing-impaired mutant mice. Instead, our results in neural crest-specific Ednrb mutants implicate a previously unrecognized role for glial support of synapse assembly between auditory neurons and cochlear hair cells. Placode-specific Ednrb mutation also caused impaired hearing, resulting from deficient synaptic transmission. Our observations demonstrate the significant influence of genetic modifiers in auditory development, and invoke independent and separable roles for endothelin signaling in the neural crest and placode lineages to create a functional auditory circuitry.
Collapse
Affiliation(s)
- Jaime Tan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alicia Duron
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Henry M. Sucov
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Takako Makita
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
3
|
Pyott SJ, Pavlinkova G, Yamoah EN, Fritzsch B. Harmony in the Molecular Orchestra of Hearing: Developmental Mechanisms from the Ear to the Brain. Annu Rev Neurosci 2024; 47:1-20. [PMID: 38360566 PMCID: PMC11787624 DOI: 10.1146/annurev-neuro-081423-093942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Auditory processing in mammals begins in the peripheral inner ear and extends to the auditory cortex. Sound is transduced from mechanical stimuli into electrochemical signals of hair cells, which relay auditory information via the primary auditory neurons to cochlear nuclei. Information is subsequently processed in the superior olivary complex, lateral lemniscus, and inferior colliculus and projects to the auditory cortex via the medial geniculate body in the thalamus. Recent advances have provided valuable insights into the development and functioning of auditory structures, complementing our understanding of the physiological mechanisms underlying auditory processing. This comprehensive review explores the genetic mechanisms required for auditory system development from the peripheral cochlea to the auditory cortex. We highlight transcription factors and other genes with key recurring and interacting roles in guiding auditory system development and organization. Understanding these gene regulatory networks holds promise for developing novel therapeutic strategies for hearing disorders, benefiting millions globally.
Collapse
Affiliation(s)
- Sonja J Pyott
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Groningen, Graduate School of Medical Sciences, and Research School of Behavioral and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Bernd Fritzsch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA;
| |
Collapse
|
4
|
Wu Q, Li Y, Wang Q, Zhao X, Sun D, Liu B. Identification of DNA motif pairs on paired sequences based on composite heterogeneous graph. Front Genet 2024; 15:1424085. [PMID: 38952710 PMCID: PMC11215013 DOI: 10.3389/fgene.2024.1424085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/22/2024] [Indexed: 07/03/2024] Open
Abstract
Motivation The interaction between DNA motifs (DNA motif pairs) influences gene expression through partnership or competition in the process of gene regulation. Potential chromatin interactions between different DNA motifs have been implicated in various diseases. However, current methods for identifying DNA motif pairs rely on the recognition of single DNA motifs or probabilities, which may result in local optimal solutions and can be sensitive to the choice of initial values. A method for precisely identifying DNA motif pairs is still lacking. Results Here, we propose a novel computational method for predicting DNA Motif Pairs based on Composite Heterogeneous Graph (MPCHG). This approach leverages a composite heterogeneous graph model to identify DNA motif pairs on paired sequences. Compared with the existing methods, MPCHG has greatly improved the accuracy of motifs prediction. Furthermore, the predicted DNA motifs demonstrate heightened DNase accessibility than the background sequences. Notably, the two DNA motifs forming a pair exhibit functional consistency. Importantly, the interacting TF pairs obtained by predicted DNA motif pairs were significantly enriched with known interacting TF pairs, suggesting their potential contribution to chromatin interactions. Collectively, we believe that these identified DNA motif pairs held substantial implications for revealing gene transcriptional regulation under long-range chromatin interactions.
Collapse
Affiliation(s)
- Qiuqin Wu
- School of Mathematics, Shandong University, Jinan, China
| | - Yang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Qi Wang
- School of Mathematics, Shandong University, Jinan, China
| | - Xiaoyu Zhao
- School of Mathematics, Shandong University, Jinan, China
| | - Duanchen Sun
- School of Mathematics, Shandong University, Jinan, China
| | - Bingqiang Liu
- School of Mathematics, Shandong University, Jinan, China
| |
Collapse
|
5
|
Hayashi Y. Signaling pathways regulating the immune function of cochlear supporting cells and their involvement in cochlear pathophysiology. Glia 2024; 72:665-676. [PMID: 37933494 DOI: 10.1002/glia.24476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 11/08/2023]
Abstract
The inner ear, including the cochlea, used to be regarded as an immune-privileged site because of its immunologically isolated environment caused by the blood-labyrinthine barrier. Cochlear resident macrophages, which originate from the yolk sac or fetal liver during the embryonic stage and are maintained after birth, are distributed throughout various regions of the cochlear duct. Intriguingly, these cells are absent in the organ of Corti, where hair cells (HCs) and supporting cells (SCs) are located, except for a limited number of ionized calcium-binding adapter molecule 1 (Iba1)-positive cells. Instead, SCs exert glial functions varying from a quiescent to an emergency state. Notably, SCs acquire the nature of macrophages and begin to secrete inflammatory cytokines during viral infection in the organ of Corti, which is ostensibly unprotected owing to the lack of general resident macrophages. This review provides an overview of both positive and negative functions of SCs enabled to acquire macrophage phenotypes upon viral infection focusing on the signaling pathways that regulate these functions. The former function protects HCs from viral infection by inducting type I interferons, and the latter function induces HC death by necroptosis, leading to sensorineural hearing loss. Thus, SCs play contradictory roles as immune cells with acquired macrophage phenotypes; thereby, they are favorable and unfavorable to HCs, which play a pivotal role in hearing function.
Collapse
Affiliation(s)
- Yushi Hayashi
- Department of Molecular and Medical Genetics, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
6
|
Strepay D, Olszewski RT, Nixon S, Korrapati S, Adadey S, Griffith AJ, Su Y, Liu J, Vishwasrao H, Gu S, Saunders T, Roux I, Hoa M. Transgenic Tg(Kcnj10-ZsGreen) fluorescent reporter mice allow visualization of intermediate cells in the stria vascularis. Sci Rep 2024; 14:3038. [PMID: 38321040 PMCID: PMC10847169 DOI: 10.1038/s41598-024-52663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
The stria vascularis (SV) is a stratified epithelium in the lateral wall of the mammalian cochlea, responsible for both endolymphatic ion homeostasis and generation of the endocochlear potential (EP) critical for normal hearing. The SV has three layers consisting predominantly of basal, intermediate, and marginal cells. Intermediate and marginal cells form an intricate interdigitated network of cell projections making discrimination of the cells challenging. To enable intermediate cell visualization, we engineered by BAC transgenesis, reporter mouse lines expressing ZsGreen fluorescent protein under the control of Kcnj10 promoter and regulatory sequences. Kcnj10 encodes KCNJ10 protein (also known as Kir4.1 or Kir1.2), an ATP-sensitive inwardly-rectifying potassium channel critical to EP generation, highly expressed in SV intermediate cells. In these transgenic mice, ZsGreen fluorescence mimics Kcnj10 endogenous expression in the cochlea and was detected in the intermediate cells of the SV, in the inner phalangeal cells, Hensen's, Deiters' and pillar cells, in a subset of spiral ganglion neurons, and in glial cells. We show that expression of the transgene in hemizygous mice does not alter auditory function, nor EP. These transgenic Tg(Kcnj10-ZsGreen) mice allow live and fixed tissue visualization of ZsGreen-expressing intermediate cells and will facilitate future studies of stria vascularis cell function.
Collapse
Affiliation(s)
- Dillon Strepay
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Rafal T Olszewski
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Sydney Nixon
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Soumya Korrapati
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Samuel Adadey
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Yijun Su
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Jiamin Liu
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Harshad Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Shoujun Gu
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Thomas Saunders
- Transgenic Animal Model Core, Biomedical Research Core Facility, University of Michigan, Ann Arbor, MI, USA
| | - Isabelle Roux
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, USA
| | - Michael Hoa
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA.
| |
Collapse
|
7
|
Warren B, Eberl D. What can insects teach us about hearing loss? J Physiol 2024; 602:297-316. [PMID: 38128023 DOI: 10.1113/jp281281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Over the last three decades, insects have been utilized to provide a deep and fundamental understanding of many human diseases and disorders. Here, we present arguments for insects as models to understand general principles underlying hearing loss. Despite ∼600 million years since the last common ancestor of vertebrates and invertebrates, we share an overwhelming degree of genetic homology particularly with respect to auditory organ development and maintenance. Despite the anatomical differences between human and insect auditory organs, both share physiological principles of operation. We explain why these observations are expected and highlight areas in hearing loss research in which insects can provide insight. We start by briefly introducing the evolutionary journey of auditory organs, the reasons for using insect auditory organs for hearing loss research, and the tools and approaches available in insects. Then, the first half of the review focuses on auditory development and auditory disorders with a genetic cause. The second half analyses the physiological and genetic consequences of ageing and short- and long-term changes as a result of noise exposure. We finish with complex age and noise interactions in auditory systems. In this review, we present some of the evidence and arguments to support the use of insects to study mechanisms and potential treatments for hearing loss in humans. Obviously, insects cannot fully substitute for all aspects of human auditory function and loss of function, although there are many important questions that can be addressed in an animal model for which there are important ethical, practical and experimental advantages.
Collapse
Affiliation(s)
- Ben Warren
- Neurogenetics Group, College of Life Sciences, University of Leicester, Leicester, UK
| | - Daniel Eberl
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
8
|
Strepay D, Olszewski RT, Nixon S, Korrapati S, Adadey S, Griffith AJ, Su Y, Liu J, Vishwasrao H, Gu S, Saunders T, Roux I, Hoa M. Transgenic Tg(Kcnj10-ZsGreen) Fluorescent Reporter Mice Allow Visualization of Intermediate Cells in the Stria Vascularis. RESEARCH SQUARE 2023:rs.3.rs-3393161. [PMID: 37886521 PMCID: PMC10602146 DOI: 10.21203/rs.3.rs-3393161/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The stria vascularis (SV) is a stratified epithelium in the lateral wall of the mammalian cochlea, responsible for both endolymphatic ion homeostasis and generation of the endocochlear potential (EP) critical for normal hearing. The SV has three layers consisting predominantly of basal, intermediate, and marginal cells. Intermediate and marginal cells form an intricate interdigitated network of cell projections making discrimination of the cells challenging. To enable intermediate cell visualization, we engineered by BAC transgenesis, reporter mouse lines expressing ZsGreen fluorescent protein under the control of Kcnj10 promoter and regulatory sequences. Kcnj10 encodes KCNJ10 protein (also known as Kir4.1 or Kir1.2), an ATP-sensitive inwardly-rectifying potassium channel critical to EP generation, highly expressed in SV intermediate cells. In these transgenic mice, ZsGreen fluorescence mimics Kcnj10 endogenous expression in the cochlea and was detected in the intermediate cells of the SV, in the inner phalangeal cells, Hensen's, Deiters' and pillar cells, in a subset of spiral ganglion neurons, and in glial cells. We show that expression of the transgene in hemizygous mice does not alter auditory function, nor EP These transgenic Tg(Kcnj10-ZsGreen) mice allow live and fixed tissue visualization of ZsGreen-expressing intermediate cells and will facilitate future studies of stria vascularis cell function.
Collapse
Affiliation(s)
- Dillon Strepay
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Rafal T Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Sydney Nixon
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Soumya Korrapati
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Samuel Adadey
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Yijun Su
- Advanced Imaging and Microscopy Resource, National Institutes of Health
| | - Jiamin Liu
- Advanced Imaging and Microscopy Resource, National Institutes of Health
| | | | - Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Thomas Saunders
- Transgenic Animal Model Core, Biomedical Research Core Facility, University of Michigan
| | - Isabelle Roux
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| |
Collapse
|
9
|
Brown LN, Barth JL, Jafri S, Rumschlag JA, Jenkins TR, Atkinson C, Lang H. Complement factor B is essential for the proper function of the peripheral auditory system. Front Neurol 2023; 14:1214408. [PMID: 37560455 PMCID: PMC10408708 DOI: 10.3389/fneur.2023.1214408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
Sensorineural hearing loss is associated with dysfunction of cochlear cells. Although immune cells play a critical role in maintaining the inner ear microenvironment, the precise immune-related molecular mechanisms underlying the pathophysiology of hearing loss remain unclear. The complement cascade contributes to the regulation of immune cell activity. Additionally, activation of the complement cascade can lead to the cellular opsonization of cells and pathogens, resulting in their engulfment and elimination by phagocytes. Complement factor B (fB) is an essential activator protein in the alternative complement pathway, and variations in the fB gene are associated with age-related macular degeneration. Here we show that mice of both sexes deficient in fB functional alleles (fB-/-) demonstrate progressive hearing impairment. Transcriptomic analysis of auditory nerves from adult mice detected 706 genes that were significantly differentially expressed between fB-/- and wild-type control animals, including genes related to the extracellular matrix and neural development processes. Additionally, a subset of differentially expressed genes was related to myelin function and neural crest development. Histological and immunohistochemical investigations revealed pathological alterations in auditory nerve myelin sheathes of fB-/- mice. Pathological alterations were also seen in the stria vascularis of the cochlear lateral wall in these mice. Our results implicate fB as an integral regulator of myelin maintenance and stria vascularis integrity, underscoring the importance of understanding the involvement of immune signaling pathways in sensorineural hearing loss.
Collapse
Affiliation(s)
- LaShardai N. Brown
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Shabih Jafri
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jeffrey A. Rumschlag
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Tyreek R. Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Carl Atkinson
- Division of Pulmonary Medicine, University of Florida, Gainesville, FL, United States
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
10
|
Zine A, Fritzsch B. Early Steps towards Hearing: Placodes and Sensory Development. Int J Mol Sci 2023; 24:6994. [PMID: 37108158 PMCID: PMC10139157 DOI: 10.3390/ijms24086994] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Sensorineural hearing loss is the most prevalent sensory deficit in humans. Most cases of hearing loss are due to the degeneration of key structures of the sensory pathway in the cochlea, such as the sensory hair cells, the primary auditory neurons, and their synaptic connection to the hair cells. Different cell-based strategies to replace damaged inner ear neurosensory tissue aiming at the restoration of regeneration or functional recovery are currently the subject of intensive research. Most of these cell-based treatment approaches require experimental in vitro models that rely on a fine understanding of the earliest morphogenetic steps that underlie the in vivo development of the inner ear since its initial induction from a common otic-epibranchial territory. This knowledge will be applied to various proposed experimental cell replacement strategies to either address the feasibility or identify novel therapeutic options for sensorineural hearing loss. In this review, we describe how ear and epibranchial placode development can be recapitulated by focusing on the cellular transformations that occur as the inner ear is converted from a thickening of the surface ectoderm next to the hindbrain known as the otic placode to an otocyst embedded in the head mesenchyme. Finally, we will highlight otic and epibranchial placode development and morphogenetic events towards progenitors of the inner ear and their neurosensory cell derivatives.
Collapse
Affiliation(s)
- Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Bernd Fritzsch
- Department of Biology, CLAS, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
11
|
Bordeynik-Cohen M, Sperber M, Ebbers L, Messika-Gold N, Krohs C, Koffler-Brill T, Noy Y, Elkon R, Nothwang HG, Avraham KB. Shared and organ-specific gene-expression programs during the development of the cochlea and the superior olivary complex. RNA Biol 2023; 20:629-640. [PMID: 37602850 PMCID: PMC10443965 DOI: 10.1080/15476286.2023.2247628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023] Open
Abstract
The peripheral and central auditory subsystems together form a complex sensory network that allows an organism to hear. The genetic programs of the two subsystems must therefore be tightly coordinated during development. Yet, their interactions and common expression pathways have never been systematically explored. MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression and are essential for normal development of the auditory system. We performed mRNA and small-RNA sequencing of organs from both auditory subsystems at three critical developmental timepoints (E16, P0, P16) to obtain a comprehensive and unbiased insight of their expression profiles. Our analysis reveals common and organ-specific expression patterns for differentially regulated mRNAs and miRNAs, which could be clustered with a particular selection of functions such as inner ear development, Wnt signalling, K+ transport, and axon guidance, based on gene ontology. Bioinformatics detected enrichment of predicted targets of specific miRNAs in the clusters and predicted regulatory interactions by monitoring opposite trends of expression of miRNAs and their targets. This approach identified six miRNAs as strong regulatory candidates for both subsystems. Among them was miR-96, an established critical factor for proper development in both subsystems, demonstrating the strength of our approach. We suggest that other miRNAs identified by this analysis are also common effectors of proper hearing acquirement. This first combined comprehensive analysis of the developmental program of the peripheral and central auditory systems provides important data and bioinformatics insights into the shared genetic program of the two sensory subsystems and their regulation by miRNAs.
Collapse
Affiliation(s)
- Mor Bordeynik-Cohen
- Laboratory of Neural and Sensory Genomics, Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Michal Sperber
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lena Ebbers
- Neurogenetics group and Cluster of Excellence Hearing4All, School of Medicine and Health Sciences and Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Naama Messika-Gold
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Constanze Krohs
- Neurogenetics group and Cluster of Excellence Hearing4All, School of Medicine and Health Sciences and Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Tal Koffler-Brill
- Laboratory of Neural and Sensory Genomics, Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yael Noy
- Laboratory of Neural and Sensory Genomics, Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hans Gerd Nothwang
- Neurogenetics group and Cluster of Excellence Hearing4All, School of Medicine and Health Sciences and Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Karen B. Avraham
- Laboratory of Neural and Sensory Genomics, Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Nomdedeu-Sancho G, Alsina B. Wiring the senses: Factors that regulate peripheral axon pathfinding in sensory systems. Dev Dyn 2023; 252:81-103. [PMID: 35972036 PMCID: PMC10087148 DOI: 10.1002/dvdy.523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 01/04/2023] Open
Abstract
Sensory neurons of the head are the ones that transmit the information about the external world to our brain for its processing. Axons from cranial sensory neurons sense different chemoattractant and chemorepulsive molecules during the journey and in the target tissue to establish the precise innervation with brain neurons and/or receptor cells. Here, we aim to unify and summarize the available information regarding molecular mechanisms guiding the different afferent sensory axons of the head. By putting the information together, we find the use of similar guidance cues in different sensory systems but in distinct combinations. In vertebrates, the number of genes in each family of guidance cues has suffered a great expansion in the genome, providing redundancy, and robustness. We also discuss recently published data involving the role of glia and mechanical forces in shaping the axon paths. Finally, we highlight the remaining questions to be addressed in the field.
Collapse
Affiliation(s)
- Gemma Nomdedeu-Sancho
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Berta Alsina
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Glover JC, Fritzsch B. Molecular mechanisms governing development of the hindbrain choroid plexus and auditory projection: A validation of the seminal observations of Wilhelm His. IBRO Neurosci Rep 2022; 13:306-313. [PMID: 36247525 PMCID: PMC9561746 DOI: 10.1016/j.ibneur.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Studies by His from 1868 to 1904 delineated the critical role of the dorsal roof plate in the development of the hindbrain choroid plexus, and of the rhombic lips in the development of hindbrain auditory centers. Modern molecular studies have confirmed these observations and placed them in a mechanistic context. Expression of the transcription factor Lmx1a/b is crucial to the development of the hindbrain choroid plexus, and also regulates the expression of Atoh1, a transcription factor that is essential for the formation of the cochlear hair cells and auditory nuclei. By contrast, development of the vestibular hair cells, vestibular ganglion and vestibular nuclei does not depend on Lmx1a/b. These findings demonstrate a common dependence on a specific gene for the hindbrain choroid plexus and the primary auditory projection from hair cells to sensory neurons to hindbrain nuclei. Thus, His' conclusions regarding the origins of specific hindbrain structures are borne out by molecular genetic experiments conducted more than a hundred years later.
Collapse
Affiliation(s)
- Joel C. Glover
- Department of Molecular Medicine, University of Oslo, Oslo, Norway
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa, IA 52242, USA
| |
Collapse
|
14
|
Szeto IYY, Chu DKH, Chen P, Chu KC, Au TYK, Leung KKH, Huang YH, Wynn SL, Mak ACY, Chan YS, Chan WY, Jauch R, Fritzsch B, Sham MH, Lovell-Badge R, Cheah KSE. SOX9 and SOX10 control fluid homeostasis in the inner ear for hearing through independent and cooperative mechanisms. Proc Natl Acad Sci U S A 2022; 119:e2122121119. [PMID: 36343245 PMCID: PMC9674217 DOI: 10.1073/pnas.2122121119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/10/2022] [Indexed: 11/09/2022] Open
Abstract
The in vivo mechanisms underlying dominant syndromes caused by mutations in SRY-Box Transcription Factor 9 (SOX9) and SOX10 (SOXE) transcription factors, when they either are expressed alone or are coexpressed, are ill-defined. We created a mouse model for the campomelic dysplasia SOX9Y440X mutation, which truncates the transactivation domain but leaves DNA binding and dimerization intact. Here, we find that SOX9Y440X causes deafness via distinct mechanisms in the endolymphatic sac (ES)/duct and cochlea. By contrast, conditional heterozygous Sox9-null mice are normal. During the ES development of Sox9Y440X/+ heterozygotes, Sox10 and genes important for ionic homeostasis are down-regulated, and there is developmental persistence of progenitors, resulting in fewer mature cells. Sox10 heterozygous null mutants also display persistence of ES/duct progenitors. By contrast, SOX10 retains its expression in the early Sox9Y440X/+ mutant cochlea. Later, in the postnatal stria vascularis, dominant interference by SOX9Y440X is implicated in impairing the normal cooperation of SOX9 and SOX10 in repressing the expression of the water channel Aquaporin 3, thereby contributing to endolymphatic hydrops. Our study shows that for a functioning endolymphatic system in the inner ear, SOX9 regulates Sox10, and depending on the cell type and target gene, it works either independently of or cooperatively with SOX10. SOX9Y440X can interfere with the activity of both SOXE factors, exerting effects that can be classified as haploinsufficient/hypomorphic or dominant negative depending on the cell/gene context. This model of disruption of transcription factor partnerships may be applicable to congenital deafness, which affects ∼0.3% of newborns, and other syndromic disorders.
Collapse
Affiliation(s)
- Irene Y. Y. Szeto
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Daniel K. H. Chu
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Peikai Chen
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Ka Chi Chu
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Tiffany Y. K. Au
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Keith K. H. Leung
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Yong-Heng Huang
- Genome Regulation Laboratory, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
| | - Sarah L. Wynn
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Angel C. Y. Mak
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Ying-Shing Chan
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Wood Yee Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ralf Jauch
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
- Genome Regulation Laboratory, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
| | - Bernd Fritzsch
- Department of Biology, College of Arts & Sciences, University of Iowa, Iowa City, IA 52242
- Department of Otolaryngology, College of Arts & Sciences, University of Iowa, Iowa City, IA 52242
| | - Mai Har Sham
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | | | - Kathryn S. E. Cheah
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| |
Collapse
|
15
|
Filova I, Pysanenko K, Tavakoli M, Vochyanova S, Dvorakova M, Bohuslavova R, Smolik O, Fabriciova V, Hrabalova P, Benesova S, Valihrach L, Cerny J, Yamoah EN, Syka J, Fritzsch B, Pavlinkova G. ISL1 is necessary for auditory neuron development and contributes toward tonotopic organization. Proc Natl Acad Sci U S A 2022; 119:e2207433119. [PMID: 36074819 PMCID: PMC9478650 DOI: 10.1073/pnas.2207433119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
A cardinal feature of the auditory pathway is frequency selectivity, represented in a tonotopic map from the cochlea to the cortex. The molecular determinants of the auditory frequency map are unknown. Here, we discovered that the transcription factor ISL1 regulates the molecular and cellular features of auditory neurons, including the formation of the spiral ganglion and peripheral and central processes that shape the tonotopic representation of the auditory map. We selectively knocked out Isl1 in auditory neurons using Neurod1Cre strategies. In the absence of Isl1, spiral ganglion neurons migrate into the central cochlea and beyond, and the cochlear wiring is profoundly reduced and disrupted. The central axons of Isl1 mutants lose their topographic projections and segregation at the cochlear nucleus. Transcriptome analysis of spiral ganglion neurons shows that Isl1 regulates neurogenesis, axonogenesis, migration, neurotransmission-related machinery, and synaptic communication patterns. We show that peripheral disorganization in the cochlea affects the physiological properties of hearing in the midbrain and auditory behavior. Surprisingly, auditory processing features are preserved despite the significant hearing impairment, revealing central auditory pathway resilience and plasticity in Isl1 mutant mice. Mutant mice have a reduced acoustic startle reflex, altered prepulse inhibition, and characteristics of compensatory neural hyperactivity centrally. Our findings show that ISL1 is one of the obligatory factors required to sculpt auditory structural and functional tonotopic maps. Still, upon Isl1 deletion, the ensuing central plasticity of the auditory pathway does not suffice to overcome developmentally induced peripheral dysfunction of the cochlea.
Collapse
Affiliation(s)
- Iva Filova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Kateryna Pysanenko
- Department of Auditory Neuroscience, Institute of Experimental Medicine Czech Academy of Sciences, 14220 Prague, Czechia
| | - Mitra Tavakoli
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Simona Vochyanova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Martina Dvorakova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Ondrej Smolik
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Valeria Fabriciova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Petra Hrabalova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Jiri Cerny
- Laboratory of Light Microscopy, Institute of Molecular Genetics Czech Academy of Sciences, 14220 Prague, Czechia
| | - Ebenezer N. Yamoah
- Department of Physiology, School of Medicine, University of Nevada, Reno, NV 89557
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine Czech Academy of Sciences, 14220 Prague, Czechia
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA 52242-1324
- Department of Otolaryngology, University of Iowa, Iowa City, IA 52242-1324
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| |
Collapse
|
16
|
Genetic insights, disease mechanisms, and biological therapeutics for Waardenburg syndrome. Gene Ther 2022; 29:479-497. [PMID: 33633356 DOI: 10.1038/s41434-021-00240-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Waardenburg syndrome (WS), also known as auditory-pigmentary syndrome, is the most common cause of syndromic hearing loss (HL), which accounts for approximately 2-5% of all patients with congenital hearing loss. WS is classified into four subtypes depending on the clinical phenotypes. Currently, pathogenic mutations of PAX3, MITF, SOX10, EDN3, EDNRB or SNAI2 are associated with different subtypes of WS. Although supportive techniques like hearing aids, cochlear implants, or other assistive listening devices can alleviate the HL symptom, there is no cure for WS to date. Recently major progress has been achieved in preclinical studies of genetic HL in animal models, including gene delivery and stem cell replacement therapies. This review focuses on the current understandings of pathogenic mechanisms and potential biological therapeutic approaches for HL in WS, providing strategies and directions for implementing WS biological therapies, as well as possible problems to be faced, in the future.
Collapse
|
17
|
Bieniussa L, Kahraman B, Skornicka J, Schulte A, Voelker J, Jablonka S, Hagen R, Rak K. Pegylated Insulin-Like Growth Factor 1 attenuates Hair Cell Loss and promotes Presynaptic Maintenance of Medial Olivocochlear Cholinergic Fibers in the Cochlea of the Progressive Motor Neuropathy Mouse. Front Neurol 2022; 13:885026. [PMID: 35720065 PMCID: PMC9203726 DOI: 10.3389/fneur.2022.885026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
The progressive motor neuropathy (PMN) mouse is a model of an inherited motor neuropathy disease with progressive neurodegeneration. Axon degeneration associates with homozygous mutations of the TBCE gene encoding the tubulin chaperone E protein. TBCE is responsible for the correct dimerization of alpha and beta-tubulin. Strikingly, the PMN mouse also develops a progressive hearing loss after normal hearing onset, characterized by degeneration of the auditory nerve and outer hair cell (OHC) loss. However, the development of this neuronal and cochlear pathology is not fully understood yet. Previous studies with pegylated insulin-like growth factor 1 (peg-IGF-1) treatment in this mouse model have been shown to expand lifespan, weight, muscle strength, and motor coordination. Accordingly, peg-IGF-1 was evaluated for an otoprotective effect. We investigated the effect of peg-IGF-1 on the auditory system by treatment starting at postnatal day 15 (p15). Histological analysis revealed positive effects on OHC synapses of medial olivocochlear (MOC) neuronal fibers and a short-term attenuation of OHC loss. Peg-IGF-1 was able to conditionally restore the disorganization of OHC synapses and maintain the provision of cholinergic acetyltransferase in presynapses. To assess auditory function, frequency-specific auditory brainstem responses and distortion product otoacoustic emissions were recorded in animals on p21 and p28. However, despite the positive effect on MOC fibers and OHC, no restoration of hearing could be achieved. The present work demonstrates that the synaptic pathology of efferent MOC fibers in PMN mice represents a particular form of “efferent auditory neuropathy.” Peg-IGF-1 showed an otoprotective effect by preventing the degeneration of OHCs and efferent synapses. However, enhanced efforts are needed to optimize the treatment to obtain detectable improvements in hearing performances.
Collapse
Affiliation(s)
- Linda Bieniussa
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Baran Kahraman
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Skornicka
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Annemarie Schulte
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Voelker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
- *Correspondence: Kristen Rak
| |
Collapse
|
18
|
Renauld JM, Khan V, Basch ML. Intermediate Cells of Dual Embryonic Origin Follow a Basal to Apical Gradient of Ingression Into the Lateral Wall of the Cochlea. Front Cell Dev Biol 2022; 10:867153. [PMID: 35372344 PMCID: PMC8964366 DOI: 10.3389/fcell.2022.867153] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/22/2022] [Indexed: 01/20/2023] Open
Abstract
Intermediate cells of the stria vascularis are neural crest derived melanocytes. They are essential for the establishment of the endocochlear potential in the inner ear, which allows mechanosensory hair cells to transduce sound into nerve impulses. Despite their importance for normal hearing, how these cells develop and migrate to their position in the lateral wall of the cochlea has not been studied. We find that as early as E10.5 some Schwann cell precursors in the VIIIth ganglion begin to express melanocyte specific markers while neural crest derived melanoblasts migrate into the otic vesicle. Intermediate cells of both melanoblast and Schwann cell precursor origin ingress into the lateral wall of the cochlea starting at around E15.5 following a basal to apical gradient during embryonic development, and continue to proliferate postnatally.
Collapse
Affiliation(s)
- Justine M Renauld
- Department of Otolaryngology, Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Vibhuti Khan
- Department of Otolaryngology, Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Martín L Basch
- Department of Otolaryngology, Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Genetics and Genome Sciences, Case Western Reserve School of Medicine, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States.,Department of Otolaryngology, Head and Neck Surgery, University Hospitals, Cleveland, OH, United States
| |
Collapse
|
19
|
Elliott KL, Fritzsch B, Yamoah EN, Zine A. Age-Related Hearing Loss: Sensory and Neural Etiology and Their Interdependence. Front Aging Neurosci 2022; 14:814528. [PMID: 35250542 PMCID: PMC8891613 DOI: 10.3389/fnagi.2022.814528] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
Age-related hearing loss (ARHL) is a common, increasing problem for older adults, affecting about 1 billion people by 2050. We aim to correlate the different reductions of hearing from cochlear hair cells (HCs), spiral ganglion neurons (SGNs), cochlear nuclei (CN), and superior olivary complex (SOC) with the analysis of various reasons for each one on the sensory deficit profiles. Outer HCs show a progressive loss in a basal-to-apical gradient, and inner HCs show a loss in a apex-to-base progression that results in ARHL at high frequencies after 70 years of age. In early neonates, SGNs innervation of cochlear HCs is maintained. Loss of SGNs results in a considerable decrease (~50% or more) of cochlear nuclei in neonates, though the loss is milder in older mice and humans. The dorsal cochlear nuclei (fusiform neurons) project directly to the inferior colliculi while most anterior cochlear nuclei reach the SOC. Reducing the number of neurons in the medial nucleus of the trapezoid body (MNTB) affects the interactions with the lateral superior olive to fine-tune ipsi- and contralateral projections that may remain normal in mice, possibly humans. The inferior colliculi receive direct cochlear fibers and second-order fibers from the superior olivary complex. Loss of the second-order fibers leads to hearing loss in mice and humans. Although ARHL may arise from many complex causes, HC degeneration remains the more significant problem of hearing restoration that would replace the cochlear implant. The review presents recent findings of older humans and mice with hearing loss.
Collapse
Affiliation(s)
- Karen L. Elliott
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, United States
- *Correspondence: Bernd Fritzsch
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, Montpellier, France
| |
Collapse
|
20
|
Langlie J, Finberg A, Bencie NB, Mittal J, Omidian H, Omidi Y, Mittal R, Eshraghi AA. Recent advancements in cell-based models for auditory disorders. BIOIMPACTS 2022; 12:155-169. [PMID: 35411298 PMCID: PMC8905588 DOI: 10.34172/bi.2022.23900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/09/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022]
Abstract
![]()
Introduction: Cell-based models play an important role in understanding the pathophysiology and etiology of auditory disorders. For the auditory system, models have primarily focused on restoring inner and outer hair cells. However, they have largely underrepresented the surrounding structures and cells that support the function of the hair cells.
Methods: In this article, we will review recent advancements in the evolution of cell-based models of auditory disorders in their progression towards three dimensional (3D) models and organoids that more closely mimic the pathophysiology in vivo.
Results: With the elucidation of the molecular targets and transcription factors required to generate diverse cell lines of the components of inner ear, research is starting to progress from two dimensional (2D) models to a greater 3D approach. Of note, the 3D models of the inner ear, including organoids, are relatively new and emerging in the field. As 3D models of the inner ear continue to evolve in complexity, their role in modeling disease will grow as they bridge the gap between cell culture and in vivo models.
Conclusion: Using 3D cell models to understand the etiology and molecular mechanisms underlying auditory disorders holds great potential for developing more targeted and effective novel therapeutics.
Collapse
Affiliation(s)
- Jake Langlie
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ariel Finberg
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nathalie B. Bencie
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jeenu Mittal
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Rahul Mittal
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Adrien A. Eshraghi
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
21
|
Pingault V, Zerad L, Bertani-Torres W, Bondurand N. SOX10: 20 years of phenotypic plurality and current understanding of its developmental function. J Med Genet 2021; 59:105-114. [PMID: 34667088 PMCID: PMC8788258 DOI: 10.1136/jmedgenet-2021-108105] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/19/2021] [Indexed: 12/25/2022]
Abstract
SOX10 belongs to a family of 20 SRY (sex-determining region Y)-related high mobility group box-containing (SOX) proteins, most of which contribute to cell type specification and differentiation of various lineages. The first clue that SOX10 is essential for development, especially in the neural crest, came with the discovery that heterozygous mutations occurring within and around SOX10 cause Waardenburg syndrome type 4. Since then, heterozygous mutations have been reported in Waardenburg syndrome type 2 (Waardenburg syndrome type without Hirschsprung disease), PCWH or PCW (peripheral demyelinating neuropathy, central dysmyelination, Waardenburg syndrome, with or without Hirschsprung disease), intestinal manifestations beyond Hirschsprung (ie, chronic intestinal pseudo-obstruction), Kallmann syndrome and cancer. All of these diseases are consistent with the regulatory role of SOX10 in various neural crest derivatives (melanocytes, the enteric nervous system, Schwann cells and olfactory ensheathing cells) and extraneural crest tissues (inner ear, oligodendrocytes). The recent evolution of medical practice in constitutional genetics has led to the identification of SOX10 variants in atypical contexts, such as isolated hearing loss or neurodevelopmental disorders, making them more difficult to classify in the absence of both a typical phenotype and specific expertise. Here, we report novel mutations and review those that have already been published and their functional consequences, along with current understanding of SOX10 function in the affected cell types identified through in vivo and in vitro models. We also discuss research options to increase our understanding of the origin of the observed phenotypic variability and improve the diagnosis and medical care of affected patients.
Collapse
Affiliation(s)
- Veronique Pingault
- Department of Embryology and Genetics of Malformations, INSERM UMR 1163, Université de Paris and Institut Imagine, Paris, France .,Service de Génétique des Maladies Rares, AP-HP, Hopital Necker-Enfants Malades, Paris, France
| | - Lisa Zerad
- Department of Embryology and Genetics of Malformations, INSERM UMR 1163, Université de Paris and Institut Imagine, Paris, France
| | - William Bertani-Torres
- Department of Embryology and Genetics of Malformations, INSERM UMR 1163, Université de Paris and Institut Imagine, Paris, France
| | - Nadege Bondurand
- Department of Embryology and Genetics of Malformations, INSERM UMR 1163, Université de Paris and Institut Imagine, Paris, France
| |
Collapse
|
22
|
Wen J, Song J, Bai Y, Liu Y, Cai X, Mei L, Ma L, He C, Feng Y. A Model of Waardenburg Syndrome Using Patient-Derived iPSCs With a SOX10 Mutation Displays Compromised Maturation and Function of the Neural Crest That Involves Inner Ear Development. Front Cell Dev Biol 2021; 9:720858. [PMID: 34426786 PMCID: PMC8379019 DOI: 10.3389/fcell.2021.720858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022] Open
Abstract
Waardenburg syndrome (WS) is an autosomal dominant inherited disorder that is characterized by sensorineural hearing loss and abnormal pigmentation. SOX10 is one of its main pathogenicity genes. The generation of patient-specific induced pluripotent stem cells (iPSCs) is an efficient means to investigate the mechanisms of inherited human disease. In our work, we set up an iPSC line derived from a WS patient with SOX10 mutation and differentiated into neural crest cells (NCCs), a key cell type involved in inner ear development. Compared with control-derived iPSCs, the SOX10 mutant iPSCs showed significantly decreased efficiency of development and differentiation potential at the stage of NCCs. After that, we carried out high-throughput RNA-seq and evaluated the transcriptional misregulation at every stage. Transcriptome analysis of differentiated NCCs showed widespread gene expression alterations, and the differentially expressed genes (DEGs) were enriched in gene ontology terms of neuron migration, skeletal system development, and multicellular organism development, indicating that SOX10 has a pivotal part in the differentiation of NCCs. It's worth noting that, a significant enrichment among the nominal DEGs for genes implicated in inner ear development was found, as well as several genes connected to the inner ear morphogenesis. Based on the protein-protein interaction network, we chose four candidate genes that could be regulated by SOX10 in inner ear development, namely, BMP2, LGR5, GBX2, and GATA3. In conclusion, SOX10 deficiency in this WS subject had a significant impact on the gene expression patterns throughout NCC development in the iPSC model. The DEGs most significantly enriched in inner ear development and morphogenesis may assist in identifying the underlying basis for the inner ear malformation in subjects with WS.
Collapse
Affiliation(s)
- Jie Wen
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Song
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yijiang Bai
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yalan Liu
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinzhang Cai
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lingyun Mei
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Ma
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Chufeng He
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Feng
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
23
|
Fritzsch B. An Integrated Perspective of Evolution and Development: From Genes to Function to Ear, Lateral Line and Electroreception. DIVERSITY 2021; 13:364. [PMID: 35505776 PMCID: PMC9060560 DOI: 10.3390/d13080364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Four sensory systems (vestibular, lateral line, electroreception, auditory) are unique and project exclusively to the brainstem of vertebrates. All sensory neurons depend on a common set of genes (Eya1, Sox2, Neurog1, Neurod1) that project to a dorsal nucleus and an intermediate nucleus, which differentiate into the vestibular ear, lateral line and electroreception in vertebrates. In tetrapods, a loss of two sensory systems (lateral line, electroreception) leads to the development of a unique ear and auditory system in amniotes. Lmx1a/b, Gdf7, Wnt1/3a, BMP4/7 and Atoh1 define the lateral line, electroreception and auditory nuclei. In contrast, vestibular nuclei depend on Neurog1/2, Ascl1, Ptf1a and Olig3, among others, to develop an independent origin of the vestibular nuclei. A common origin of hair cells depends on Eya1, Sox2 and Atoh1, which generate the mechanosensory cells. Several proteins define the polarity of hair cells in the ear and lateral line. A unique connection of stereocilia requires CDH23 and PCDH15 for connections and TMC1/2 proteins to perceive mechanosensory input. Electroreception has no polarity, and a different system is used to drive electroreceptors. All hair cells function by excitation via ribbons to activate neurons that innervate the distinct target areas. An integrated perspective is presented to understand the gain and loss of different sensory systems.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology & Department of Otolaryngology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
24
|
Kohrman D, Borges BC, Cassinotti L, Ji L, Corfas G. Axon-glia interactions in the ascending auditory system. Dev Neurobiol 2021; 81:546-567. [PMID: 33561889 PMCID: PMC9004231 DOI: 10.1002/dneu.22813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/25/2020] [Accepted: 02/05/2021] [Indexed: 11/09/2022]
Abstract
The auditory system detects and encodes sound information with high precision to provide a high-fidelity representation of the environment and communication. In mammals, detection occurs in the peripheral sensory organ (the cochlea) containing specialized mechanosensory cells (hair cells) that initiate the conversion of sound-generated vibrations into action potentials in the auditory nerve. Neural activity in the auditory nerve encodes information regarding the intensity and frequency of sound stimuli, which is transmitted to the auditory cortex through the ascending neural pathways. Glial cells are critical for precise control of neural conduction and synaptic transmission throughout the pathway, allowing for the precise detection of the timing, frequency, and intensity of sound signals, including the sub-millisecond temporal fidelity is necessary for tasks such as sound localization, and in humans, for processing complex sounds including speech and music. In this review, we focus on glia and glia-like cells that interact with hair cells and neurons in the ascending auditory pathway and contribute to the development, maintenance, and modulation of neural circuits and transmission in the auditory system. We also discuss the molecular mechanisms of these interactions, their impact on hearing and on auditory dysfunction associated with pathologies of each cell type.
Collapse
Affiliation(s)
- David Kohrman
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Beatriz C. Borges
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Luis Cassinotti
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Lingchao Ji
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Gabriel Corfas
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
Elliott KL, Pavlinkova G, Chizhikov VV, Yamoah EN, Fritzsch B. Neurog1, Neurod1, and Atoh1 are essential for spiral ganglia, cochlear nuclei, and cochlear hair cell development. Fac Rev 2021; 10:47. [PMID: 34131657 PMCID: PMC8170689 DOI: 10.12703/r/10-47] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We review the molecular basis of three related basic helix–loop–helix (bHLH) genes (Neurog1, Neurod1, and Atoh1) and upstream regulators Eya1/Six1, Sox2, Pax2, Gata3, Fgfr2b, Foxg1, and Lmx1a/b during the development of spiral ganglia, cochlear nuclei, and cochlear hair cells. Neuronal development requires early expression of Neurog1, followed by its downstream target Neurod1, which downregulates Atoh1 expression. In contrast, hair cells and cochlear nuclei critically depend on Atoh1 and require Neurod1 and Neurog1 expression for various aspects of development. Several experiments show a partial uncoupling of Atoh1/Neurod1 (spiral ganglia and cochlea) and Atoh1/Neurog1/Neurod1 (cochlear nuclei). In this review, we integrate the cellular and molecular mechanisms that regulate the development of auditory system and provide novel insights into the restoration of hearing loss, beyond the limited generation of lost sensory neurons and hair cells.
Collapse
Affiliation(s)
- Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Gabriela Pavlinkova
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Victor V Chizhikov
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
26
|
Elliott KL, Pavlínková G, Chizhikov VV, Yamoah EN, Fritzsch B. Development in the Mammalian Auditory System Depends on Transcription Factors. Int J Mol Sci 2021; 22:ijms22084189. [PMID: 33919542 PMCID: PMC8074135 DOI: 10.3390/ijms22084189] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022] Open
Abstract
We review the molecular basis of several transcription factors (Eya1, Sox2), including the three related genes coding basic helix–loop–helix (bHLH; see abbreviations) proteins (Neurog1, Neurod1, Atoh1) during the development of spiral ganglia, cochlear nuclei, and cochlear hair cells. Neuronal development requires Neurog1, followed by its downstream target Neurod1, to cross-regulate Atoh1 expression. In contrast, hair cells and cochlear nuclei critically depend on Atoh1 and require Neurod1 expression for interactions with Atoh1. Upregulation of Atoh1 following Neurod1 loss changes some vestibular neurons’ fate into “hair cells”, highlighting the significant interplay between the bHLH genes. Further work showed that replacing Atoh1 by Neurog1 rescues some hair cells from complete absence observed in Atoh1 null mutants, suggesting that bHLH genes can partially replace one another. The inhibition of Atoh1 by Neurod1 is essential for proper neuronal cell fate, and in the absence of Neurod1, Atoh1 is upregulated, resulting in the formation of “intraganglionic” HCs. Additional genes, such as Eya1/Six1, Sox2, Pax2, Gata3, Fgfr2b, Foxg1, and Lmx1a/b, play a role in the auditory system. Finally, both Lmx1a and Lmx1b genes are essential for the cochlear organ of Corti, spiral ganglion neuron, and cochlear nuclei formation. We integrate the mammalian auditory system development to provide comprehensive insights beyond the limited perception driven by singular investigations of cochlear neurons, cochlear hair cells, and cochlear nuclei. A detailed analysis of gene expression is needed to understand better how upstream regulators facilitate gene interactions and mammalian auditory system development.
Collapse
Affiliation(s)
- Karen L. Elliott
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA;
| | - Gabriela Pavlínková
- Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czechia;
| | - Victor V. Chizhikov
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA;
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA;
- Correspondence:
| |
Collapse
|
27
|
Sitko AA, Goodrich LV. Making sense of neural development by comparing wiring strategies for seeing and hearing. Science 2021; 371:eaaz6317. [PMID: 33414193 PMCID: PMC8034811 DOI: 10.1126/science.aaz6317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability to perceive and interact with the world depends on a diverse array of neural circuits specialized for carrying out specific computations. Each circuit is assembled using a relatively limited number of molecules and common developmental steps, from cell fate specification to activity-dependent synaptic refinement. Given this shared toolkit, how do individual circuits acquire their characteristic properties? We explore this question by comparing development of the circuitry for seeing and hearing, highlighting a few examples where differences in each system's sensory demands necessitate different developmental strategies.
Collapse
Affiliation(s)
- A A Sitko
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - L V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Chizhikov VV, Iskusnykh IY, Fattakhov N, Fritzsch B. Lmx1a and Lmx1b are Redundantly Required for the Development of Multiple Components of the Mammalian Auditory System. Neuroscience 2021; 452:247-264. [PMID: 33246067 PMCID: PMC7780644 DOI: 10.1016/j.neuroscience.2020.11.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
The inner ear, projections, and brainstem nuclei are essential components of the auditory and vestibular systems. It is believed that the evolution of complex systems depends on duplicated sets of genes. The contribution of duplicated genes to auditory or vestibular system development, however, is poorly understood. We describe that Lmx1a and Lmx1b, which originate from the invertebrate Lmx1b-like gene, redundantly regulate development of multiple essential components of the mammalian auditory/vestibular systems. Combined, but not individual, loss of Lmx1a/b eliminated the auditory inner ear organ of Corti (OC) and disrupted the spiral ganglion, which was preceded by a diminished expression of their critical regulator Pax2. Innervation of the remaining inner ear vestibular organs revealed unusual sizes or shapes and was more affected compared to Lmx1a/b single-gene mutants. Individual loss of Lmx1a/b genes did not disrupt brainstem auditory nuclei or inner ear central projections. Combined loss of Lmx1a/b, however, eliminated excitatory neurons in cochlear/vestibular nuclei, and also the expression of a master regulator Atoh1 in their progenitors in the lower rhombic lip (RL). Finally, in Lmx1a/b double mutants, vestibular afferents aberrantly projected to the roof plate. This phenotype was associated with altered expression of Wnt3a, a secreted ligand of the Wnt pathway that regulates pathfinding of inner ear projections. Thus, Lmx1a/b are redundantly required for the development of the mammalian inner ear, inner ear central projections, and cochlear/vestibular nuclei.
Collapse
Affiliation(s)
- Victor V Chizhikov
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Igor Y Iskusnykh
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nikolai Fattakhov
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa, IA 52242, USA.
| |
Collapse
|
29
|
Kersigo J, Gu L, Xu L, Pan N, Vijayakuma S, Jones T, Shibata SB, Fritzsch B, Hansen MR. Effects of Neurod1 Expression on Mouse and Human Schwannoma Cells. Laryngoscope 2021; 131:E259-E270. [PMID: 32438526 PMCID: PMC7772964 DOI: 10.1002/lary.28671] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The objective was to explore the effect of the proneuronal transcription factor neurogenic differentiation 1 (Neurod1, ND1) on Schwann cells (SC) and schwannoma cell proliferation. METHODS Using a variety of transgenic mouse lines, we investigated how expression of Neurod1 effects medulloblastoma (MB) growth, schwannoma tumor progression, vestibular function, and SC cell proliferation. Primary human vestibular schwannoma (VS) cell cultures were transduced with adenoviral vectors expressing Neurod1. Cell proliferation was assessed by 5-ethynyl-2'-deoxyuridine (EdU) uptake. STUDY DESIGN Basic science investigation. RESULTS Expression of Neurod1 reduced the growth of slow-growing but not fast-growing MB models. Gene transfer of Neurod1 in human schwannoma cultures significantly reduced cell proliferation in dose-dependent way. Deletion of the neurofibromatosis type 2 (Nf2) tumor-suppressor gene via Cre expression in SCs led to increased intraganglionic SC proliferation and mildly reduced vestibular sensory-evoked potentials (VsEP) responses compared to age-matched wild-type littermates. The effect of Neurod1-induced expression on intraganglionic SC proliferation in animals lacking Nf2 was mild and highly variable. Sciatic nerve axotomy significantly increased SC proliferation in wild-type and Nf2-null animals, and expression of Neurod1 reduced the proliferative capacity of both wild-type and Nf2-null SCs following nerve injury. CONCLUSION Expression of Neurod1 reduces slow-growing MB progression and reduces human SC proliferation in primary VS cultures. In a genetic mouse model of schwannomas, we find some effects of Neurod1 expression; however, the high variability indicates that more tightly regulated Neurod1 expression levels that mimic our in vitro data are needed to fully validate Neurod1 effects on schwannoma progression. LEVEL OF EVIDENCE NA Laryngoscope, 131:E259-E270, 2021.
Collapse
Affiliation(s)
- Jennifer Kersigo
- Department of Biology, University of Lowa, Lowa City, Lowa, U.S.A
| | - Lintao Gu
- Department of Otolaryngology, University of Lowa, Lowa City, Lowa, U.S.A
- Decibel Pharmaceutical, Boston, Massachusetts, U.S.A
| | - Linjing Xu
- Department of Otolaryngology, University of Lowa, Lowa City, Lowa, U.S.A
| | - Ning Pan
- Department of Biology, University of Lowa, Lowa City, Lowa, U.S.A
- Department of Special Education & Communication Disorders, University of Nebraska, Lincoln, Nebraska, U.S.A
| | - Sarath Vijayakuma
- Department of Otolaryngology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Timothy Jones
- Department of Otolaryngology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Seiji B Shibata
- Department of Otolaryngology, University of Lowa, Lowa City, Lowa, U.S.A
| | - Bernd Fritzsch
- Department of Biology, University of Lowa, Lowa City, Lowa, U.S.A
- Department of Otolaryngology, University of Lowa, Lowa City, Lowa, U.S.A
| | - Marlan R Hansen
- Department of Otolaryngology, University of Lowa, Lowa City, Lowa, U.S.A
| |
Collapse
|
30
|
Neuronal processes and glial precursors form a scaffold for wiring the developing mouse cochlea. Nat Commun 2020; 11:5866. [PMID: 33203842 PMCID: PMC7672226 DOI: 10.1038/s41467-020-19521-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/02/2020] [Indexed: 01/20/2023] Open
Abstract
In the developing nervous system, axons navigate through complex terrains that change depending on when and where outgrowth begins. For instance, in the developing cochlea, spiral ganglion neurons extend their peripheral processes through a growing and heterogeneous environment en route to their final targets, the hair cells. Although the basic principles of axon guidance are well established, it remains unclear how axons adjust strategies over time and space. Here, we show that neurons with different positions in the spiral ganglion employ different guidance mechanisms, with evidence for both glia-guided growth and fasciculation along a neuronal scaffold. Processes from neurons in the rear of the ganglion are more directed and grow faster than those from neurons at the border of the ganglion. Further, processes at the wavefront grow more efficiently when in contact with glial precursors growing ahead of them. These findings suggest a tiered mechanism for reliable axon guidance.
Collapse
|
31
|
A Novel Spontaneous Mutation of the SOX10 Gene Associated with Waardenburg Syndrome Type II. Neural Plast 2020; 2020:9260807. [PMID: 32908492 PMCID: PMC7474791 DOI: 10.1155/2020/9260807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/24/2022] Open
Abstract
Waardenburg syndrome (WS), also known as auditory-pigmentary syndrome, is the most common cause of syndromic hearing loss. It is responsible for 2–5% of congenital deafness. WS is classified into four types depending on the clinical phenotypes. Currently, pathogenic mutation of PAX3, MITF, EDNRB, EDN3, SNAI2, or SOX10 can cause corresponding types of WS. Among them, SOX10 mutation is responsible for approximately 15% of type II WS or 50% of type IV WS. We report the case of a proband in a Chinese family who was diagnosed with WS type II. Whole exome sequencing (WES) of the proband detected a novel heterozygous spontaneous mutation: SOX10 c.246delC. According to analysis based on nucleic acid and amino acid sequences, this mutation may produce a truncated protein, with loss of the HMG structure domain. Therefore, this truncated protein may fail to activate the expression of the MITF gene, which regulates melanocytic development and plays a key role in WS. Our finding expands the database of SOX10 mutations associated with WS and provides more information regarding the molecular mechanism of WS.
Collapse
|
32
|
He L, Guo JY, Qu TF, Wei W, Liu K, Peng Z, Wang GP, Gong SS. Cellular origin and response of flat epithelium in the vestibular end organs of mice to Atoh1 overexpression. Hear Res 2020; 391:107953. [DOI: 10.1016/j.heares.2020.107953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 02/01/2023]
|
33
|
Schmidt H, Fritzsch B. Npr2 null mutants show initial overshooting followed by reduction of spiral ganglion axon projections combined with near-normal cochleotopic projection. Cell Tissue Res 2019; 378:15-32. [PMID: 31201541 PMCID: PMC7243364 DOI: 10.1007/s00441-019-03050-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022]
Abstract
Npr2 (natriuretic peptide receptor 2) affects bifurcation of neural crest or placode-derived afferents upon entering the brain stem/spinal cord, leading to a lack of either rostral or caudal branches. Previous work has shown that early embryonic growth of cochlear and vestibular afferents is equally affected in this mutant but later work on postnatal Npr2 point mutations suggested some additional effects on the topology of afferent projections and mild functional defects. Using multicolor lipophilic dye tracing, we show that absence of Npr2 has little to no effect on the initial patterning of inner ear afferents with respect to their dorsoventral cochleotopic-specific projections. However, in contrast to control animals, we found a variable degree of embryonic extension of auditory afferents beyond the boundaries of the anterior cochlear nucleus into the cerebellum that emanates only from apical spiral ganglion neurons. Such expansion has previously only been reported for Hox gene mutants and implies an unclear interaction of Hox codes with Npr2-mediated afferent projection patterning to define boundaries. Some vestibular ganglion neurons expand their projections to reach the cochlear apex and the cochlear nuclei, comparable to previous findings in Neurod1 mutant mice. Before birth, such expansions are reduced or lost leading to truncated projections to the anteroventral cochlear nucleus and expansion of low-frequency fibers of the apex to the posteroventral cochlear nucleus.
Collapse
Affiliation(s)
- Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Bernd Fritzsch
- Department of Biology & Department of Otolaryngology, CLAS, University of Iowa, 128 Jefferson Avenue, Iowa City, IA, 52242, USA.
| |
Collapse
|
34
|
Sánchez-Guardado LÓ, Puelles L, Hidalgo-Sánchez M. Origin of acoustic-vestibular ganglionic neuroblasts in chick embryos and their sensory connections. Brain Struct Funct 2019; 224:2757-2774. [PMID: 31396696 DOI: 10.1007/s00429-019-01934-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/31/2019] [Indexed: 01/03/2023]
Abstract
The inner ear is a complex three-dimensional sensory structure with auditory and vestibular functions. It originates from the otic placode, which generates the sensory elements of the membranous labyrinth and all the ganglionic neuronal precursors. Neuroblast specification is the first cell differentiation event. In the chick, it takes place over a long embryonic period from the early otic cup stage to at least stage HH25. The differentiating ganglionic neurons attain a precise innervation pattern with sensory patches, a process presumably governed by a network of dendritic guidance cues which vary with the local micro-environment. To study the otic neurogenesis and topographically-ordered innervation pattern in birds, a quail-chick chimaeric graft technique was used in accordance with a previously determined fate-map of the otic placode. Each type of graft containing the presumptive domain of topologically-arranged placodal sensory areas was shown to generate neuroblasts. The differentiated grafted neuroblasts established dendritic contacts with a variety of sensory patches. These results strongly suggest that, rather than reverse-pathfinding, the relevant role in otic dendritic process guidance is played by long-range diffusing molecules.
Collapse
Affiliation(s)
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, E30100, Murcia, Spain.,Instituto Murciano de Investigaciones Biosanitarias (IMIB-Arrixaca), E30100, Murcia, Spain
| | - Matías Hidalgo-Sánchez
- Department of Cell Biology, School of Science, University of Extremadura, E06071, Badajoz, Spain.
| |
Collapse
|
35
|
Duncan JS, Fritzsch B, Houston DW, Ketchum EM, Kersigo J, Deans MR, Elliott KL. Topologically correct central projections of tetrapod inner ear afferents require Fzd3. Sci Rep 2019; 9:10298. [PMID: 31311957 PMCID: PMC6635624 DOI: 10.1038/s41598-019-46553-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/29/2019] [Indexed: 12/27/2022] Open
Abstract
Inner ear sensory afferent connections establish sensory maps between the inner ear hair cells and the vestibular and auditory nuclei to allow vestibular and sound information processing. While molecular guidance of sensory afferents to the periphery has been well studied, molecular guidance of central projections from the ear is only beginning to emerge. Disorganized central projections of spiral ganglion neurons in a Wnt/PCP pathway mutant, Prickle1, suggest the Wnt/PCP pathway plays a role in guiding cochlear afferents to the cochlear nuclei in the hindbrain, consistent with known expression of the Wnt receptor, Frizzled3 (Fzd3) in inner ear neurons. We therefore investigated the role of Wnt signaling in central pathfinding in Fzd3 mutant mice and Fzd3 morpholino treated frogs and found aberrant central projections of vestibular afferents in both cases. Ear transplantations from knockdown to control Xenopus showed that it is the Fzd3 expressed within the ear that mediates this guidance. Also, cochlear afferents of Fzd3 mutant mice lack the orderly topological organization observed in controls. Quantification of Fzd3 expression in spiral ganglion neurons show a gradient of expression with Fzd3 being higher in the apex than in the base. Together, these results suggest that a gradient of Fzd3 in inner ear afferents directs projections to the correct dorsoventral column within the hindbrain.
Collapse
Affiliation(s)
- Jeremy S Duncan
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | | | - Elizabeth M Ketchum
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | | | - Michael R Deans
- Department of Surgery, Division of Otolaryngology, and Department of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
36
|
Coate TM, Scott MK, Gurjar MC. Current concepts in cochlear ribbon synapse formation. Synapse 2019; 73:e22087. [PMID: 30592086 PMCID: PMC6573016 DOI: 10.1002/syn.22087] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
Abstract
In mammals, hair cells and spiral ganglion neurons (SGNs) in the cochlea together are sophisticated "sensorineural" structures that transduce auditory information from the outside world into the brain. Hair cells and SGNs are joined by glutamatergic ribbon-type synapses composed of a molecular machinery rivaling in complexity the mechanoelectric transduction components found at the apical side of the hair cell. The cochlear hair cell ribbon synapse has received much attention lately because of recent and important findings related to its damage (sometimes termed "synaptopathy") as a result of noise overexposure. During development, ribbon synapses between type I SGNs and inner hair cells form in the time window between birth and hearing onset and is a process coordinated with type I SGN myelination, spontaneous activity, synaptic pruning, and innervation by efferents. In this review, we highlight new findings regarding the diversity of type I SGNs and inner hair cell synapses, and the molecular mechanisms of selective hair cell targeting. Also discussed are cell adhesion molecules and protein constituents of the ribbon synapse, and how these factors participate in ribbon synapse formation. We also note interesting new insights into the morphological development of type II SGNs, and the potential for cochlear macrophages as important players in protecting SGNs. We also address recent studies demonstrating that the structural and physiological profiles of the type I SGNs do not reach full maturity until weeks after hearing onset, suggesting a protracted development that is likely modulated by activity.
Collapse
Affiliation(s)
- Thomas M. Coate
- Georgetown University, Department of Biology, 37th and O St. NW. Washington, DC. 20007. USA
| | - M. Katie Scott
- Department of Biological Sciences and Purdue Institute of Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907. USA
| | - Mansa C. Gurjar
- Georgetown University, Department of Biology, 37th and O St. NW. Washington, DC. 20007. USA
| |
Collapse
|
37
|
Fritzsch B, Elliott KL, Pavlinkova G, Duncan JS, Hansen MR, Kersigo JM. Neuronal Migration Generates New Populations of Neurons That Develop Unique Connections, Physiological Properties and Pathologies. Front Cell Dev Biol 2019; 7:59. [PMID: 31069224 PMCID: PMC6491807 DOI: 10.3389/fcell.2019.00059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Central nervous system neurons become postmitotic when radial glia cells divide to form neuroblasts. Neuroblasts may migrate away from the ventricle radially along glia fibers, in various directions or even across the midline. We present four cases of unusual migration that are variably connected to either pathology or formation of new populations of neurons with new connectivities. One of the best-known cases of radial migration involves granule cells that migrate from the external granule cell layer along radial Bergman glia fibers to become mature internal granule cells. In various medulloblastoma cases this migration does not occur and transforms the external granule cell layer into a rapidly growing tumor. Among the ocular motor neurons is one unique population that undergoes a contralateral migration and uniquely innervates the superior rectus and levator palpebrae muscles. In humans, a mutation of a single gene ubiquitously expressed in all cells, induces innervation defects only in this unique motor neuron population, leading to inability to elevate eyes or upper eyelids. One of the best-known cases for longitudinal migration is the facial branchial motor (FBM) neurons and the overlapping inner ear efferent population. We describe here molecular cues that are needed for the caudal migration of FBM to segregate these motor neurons from the differently migrating inner ear efferent population. Finally, we describe unusual migration of inner ear spiral ganglion neurons that result in aberrant connections with disruption of frequency presentation. Combined, these data identify unique migratory properties of various neuronal populations that allow them to adopt new connections but also sets them up for unique pathologies.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, United States.,Department of Otolaryngology, University of Iowa, Iowa City, IA, United States
| | - Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | | | - Jeremy S Duncan
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| | - Marlan R Hansen
- Department of Otolaryngology, University of Iowa, Iowa City, IA, United States
| | | |
Collapse
|
38
|
Fritzsch B, Elliott KL, Pavlinkova G. Primary sensory map formations reflect unique needs and molecular cues specific to each sensory system. F1000Res 2019; 8:F1000 Faculty Rev-345. [PMID: 30984379 PMCID: PMC6439788 DOI: 10.12688/f1000research.17717.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
Interaction with the world around us requires extracting meaningful signals to guide behavior. Each of the six mammalian senses (olfaction, vision, somatosensation, hearing, balance, and taste) has a unique primary map that extracts sense-specific information. Sensory systems in the periphery and their target neurons in the central nervous system develop independently and must develop specific connections for proper sensory processing. In addition, the regulation of sensory map formation is independent of and prior to central target neuronal development in several maps. This review provides an overview of the current level of understanding of primary map formation of the six mammalian senses. Cell cycle exit, combined with incompletely understood molecules and their regulation, provides chemoaffinity-mediated primary maps that are further refined by activity. The interplay between cell cycle exit, molecular guidance, and activity-mediated refinement is the basis of dominance stripes after redundant organ transplantations in the visual and balance system. A more advanced level of understanding of primary map formation could benefit ongoing restoration attempts of impaired senses by guiding proper functional connection formations of restored sensory organs with their central nervous system targets.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, USA
| | | | - Gabriela Pavlinkova
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| |
Collapse
|
39
|
Sudiwala S, Knox SM. The emerging role of cranial nerves in shaping craniofacial development. Genesis 2019; 57:e23282. [PMID: 30628162 DOI: 10.1002/dvg.23282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 12/17/2022]
Abstract
Organs and structures of the vertebrate head perform a plethora of tasks including visualization, digestion, vocalization/communication, auditory functions, and respiration in response to neuronal input. This input is primarily derived from afferent and efferent fibers of the cranial nerves (sensory and motor respectively) and efferent fibers of the cervical sympathetic trunk. Despite their essential contribution to the function and integration of processes necessary for survival, how organ innervation is established remains poorly understood. Furthermore, while it has been appreciated for some time that innervation of organs by cranial nerves is regulated in part by secreted factors and cell surface ligands expressed by those organs, whether nerves also regulate the development of facial organs is only beginning to be elucidated. This review will provide an overview of cranial nerve development in relation to the organs they innervate, and outline their known contributions to craniofacial development, thereby providing insight into how nerves may shape the organs they innervate during development. Throughout, the interaction between different cell and tissue types will be highlighted.
Collapse
Affiliation(s)
- Sonia Sudiwala
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, San Francisco, California
| | - Sarah M Knox
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, San Francisco, California
| |
Collapse
|
40
|
Macova I, Pysanenko K, Chumak T, Dvorakova M, Bohuslavova R, Syka J, Fritzsch B, Pavlinkova G. Neurod1 Is Essential for the Primary Tonotopic Organization and Related Auditory Information Processing in the Midbrain. J Neurosci 2019; 39:984-1004. [PMID: 30541910 PMCID: PMC6363931 DOI: 10.1523/jneurosci.2557-18.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/17/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
Hearing depends on extracting frequency, intensity, and temporal properties from sound to generate an auditory map for acoustical signal processing. How physiology intersects with molecular specification to fine tune the developing properties of the auditory system that enable these aspects remains unclear. We made a novel conditional deletion model that eliminates the transcription factor NEUROD1 exclusively in the ear. These mice (both sexes) develop a truncated frequency range with no neuroanatomically recognizable mapping of spiral ganglion neurons onto distinct locations in the cochlea nor a cochleotopic map presenting topographically discrete projections to the cochlear nuclei. The disorganized primary cochleotopic map alters tuning properties of the inferior colliculus units, which display abnormal frequency, intensity, and temporal sound coding. At the behavioral level, animals show alterations in the acoustic startle response, consistent with altered neuroanatomical and physiological properties. We demonstrate that absence of the primary afferent topology during embryonic development leads to dysfunctional tonotopy of the auditory system. Such effects have never been investigated in other sensory systems because of the lack of comparable single gene mutation models.SIGNIFICANCE STATEMENT All sensory systems form a topographical map of neuronal projections from peripheral sensory organs to the brain. Neuronal projections in the auditory pathway are cochleotopically organized, providing a tonotopic map of sound frequencies. Primary sensory maps typically arise by molecular cues, requiring physiological refinements. Past work has demonstrated physiologic plasticity in many senses without ever molecularly undoing the specific mapping of an entire primary sensory projection. We genetically manipulated primary auditory neurons to generate a scrambled cochleotopic projection. Eliminating tonotopic representation to auditory nuclei demonstrates the inability of physiological processes to restore a tonotopic presentation of sound in the midbrain. Our data provide the first insights into the limits of physiology-mediated brainstem plasticity during the development of the auditory system.
Collapse
Affiliation(s)
- Iva Macova
- Institute of Biotechnology CAS, Vestec, Czechia 25250
- Faculty of Science, Charles University, Prague, Czechia 12843
| | | | - Tetyana Chumak
- Institute of Experimental Medicine CAS, Prague, Czechia 14220
| | - Martina Dvorakova
- Institute of Biotechnology CAS, Vestec, Czechia 25250
- Faculty of Science, Charles University, Prague, Czechia 12843
| | | | - Josef Syka
- Institute of Experimental Medicine CAS, Prague, Czechia 14220
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, and
| | | |
Collapse
|
41
|
Ritter KE, Martin DM. Neural crest contributions to the ear: Implications for congenital hearing disorders. Hear Res 2018; 376:22-32. [PMID: 30455064 DOI: 10.1016/j.heares.2018.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/30/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022]
Abstract
Congenital hearing disorders affect millions of children worldwide and can significantly impact acquisition of speech and language. Efforts to identify the developmental genetic etiologies of conductive and sensorineural hearing losses have revealed critical roles for cranial neural crest cells (NCCs) in ear development. Cranial NCCs contribute to all portions of the ear, and defects in neural crest development can lead to neurocristopathies associated with profound hearing loss. The molecular mechanisms governing the development of neural crest derivatives within the ear are partially understood, but many questions remain. In this review, we describe recent advancements in determining neural crest contributions to the ear, how they inform our understanding of neurocristopathies, and highlight new avenues for further research using bioinformatic approaches.
Collapse
Affiliation(s)
- K Elaine Ritter
- Department of Pediatrics, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Donna M Martin
- Department of Pediatrics, The University of Michigan Medical School, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
42
|
Gordy C, Straka H, Houston DW, Fritzsch B, Elliott KL. Transplantation of Ears Provides Insights into Inner Ear Afferent Pathfinding Properties. Dev Neurobiol 2018; 78:1064-1080. [PMID: 30027559 PMCID: PMC6552669 DOI: 10.1002/dneu.22629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/15/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022]
Abstract
Numerous tissue transplantations have demonstrated that otocysts can develop into normal ears in any location in all vertebrates tested thus far, though the pattern of innervation of these transplanted ears has largely been understudied. Here, expanding on previous findings that transplanted ears demonstrate capability of local brainstem innervation and can also be innervated themselves by efferents, we show that inner ear afferents grow toward the spinal cord mostly along existing afferent and efferent fibers and preferentially enter the dorsal spinal cord. Once in the dorsal funiculus of the spinal cord, they can grow toward the hindbrain and can diverge into vestibular nuclei. Inner ear afferents can also project along lateral line afferents. Likewise, lateral line afferents can navigate along inner ear afferents to reach hair cells in the ear. In addition, transplanted ears near the heart show growth of inner ear afferents along epibranchial placode-derived vagus afferents. Our data indicate that inner ear afferents can navigate in foreign locations, likely devoid of any local ear-specific guidance cues, along existing nerves, possibly using the nerve-associated Schwann cells as substrate to grow along. However, within the spinal cord and hindbrain, inner ear afferents can navigate to vestibular targets, likely using gradients of diffusible factors that define the dorso-ventral axis to guide them. Finally, afferents of transplanted ears functionally connect to native hindbrain vestibular circuitry, indicated by eliciting a startle behavior response, and providing excitatory input to specific sets of extraocular motoneurons.
Collapse
Affiliation(s)
- Clayton Gordy
- Department of Biology, University of Iowa, Iowa City, Iowa
- Department Biology II, Ludwig-Maximilians-University Munich, Planegg, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg, Germany
| | - Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, Planegg, Germany
| | | | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, Iowa
| | | |
Collapse
|
43
|
Elliott KL, Fritzsch B. Ear transplantations reveal conservation of inner ear afferent pathfinding cues. Sci Rep 2018; 8:13819. [PMID: 30218045 PMCID: PMC6138675 DOI: 10.1038/s41598-018-31952-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/29/2018] [Indexed: 12/18/2022] Open
Abstract
Vertebrate inner ear neurons project into the correct brainstem nuclei region before target neurons become postmitotic, or even in their absence. Moreover, afferents from transplanted ears in frogs have been shown to navigate to vestibular nuclei, suggesting that ear afferents use molecular cues to find their target. We performed heterochronic, xenoplastic, and heterotopic transplantations in chickens to investigate whether inner ear afferents are guided by conserved guidance molecules. We show that inner ear afferents can navigate to the vestibular nuclei following a delay in afferent entry and when the ear was from a different species, the mouse. These data suggest that guidance molecules are expressed for some time and are conserved across amniotes. In addition, we show that chicken ears transplanted adjacent to the spinal cord project dorsally like in the hindbrain. These results suggest that inner ear afferents navigate to the correct dorsoventral brainstem column using conserved cues.
Collapse
Affiliation(s)
- Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA.
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
44
|
Jahan I, Elliott KL, Fritzsch B. Understanding Molecular Evolution and Development of the Organ of Corti Can Provide Clues for Hearing Restoration. Integr Comp Biol 2018; 58:351-365. [PMID: 29718413 PMCID: PMC6104702 DOI: 10.1093/icb/icy019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mammalian hearing organ is a stereotyped cellular assembly with orderly innervation: two types of spiral ganglion neurons (SGNs) innervate two types of differentially distributed hair cells (HCs). HCs and SGNs evolved from single neurosensory cells through gene multiplication and diversification. Independent regulation of HCs and neuronal differentiation through expression of basic helix-loop-helix transcription factors (bHLH TFs: Atoh1, Neurog1, Neurod1) led to the evolution of vestibular HC assembly and their unique type of innervation. In ancestral mammals, a vestibular organ was transformed into the organ of Corti (OC) containing a single row of inner HC (IHC), three rows of outer HCs (OHCs), several unique supporting cell types, and a peculiar innervation distribution. Restoring the OC following long-term hearing loss is complicated by the fact that the entire organ is replaced by a flat epithelium and requires reconstructing the organ from uniform undifferentiated cell types, recapitulating both evolution and development. Finding the right sequence of gene activation during development that is useful for regeneration could benefit from an understanding of the OC evolution. Toward this end, we report on Foxg1 and Lmx1a mutants that radically alter the OC cell assembly and its innervation when mutated and may have driven the evolutionary reorganization of the basilar papilla into an OC in ancestral Therapsids. Furthermore, genetically manipulating the level of bHLH TFs changes HC type and distribution and allows inference how transformation of HCs might have happened evolutionarily. We report on how bHLH TFs regulate OHC/IHC and how misexpression (Atoh1-Cre; Atoh1f/kiNeurog1) alters HC fate and supporting cell development. Using mice with altered HC types and distribution, we demonstrate innervation changes driven by HC patterning. Using these insights, we speculate on necessary steps needed to convert a random mixture of post-mitotic precursors into the orderly OC through spatially and temporally regulated critical bHLH genes in the context of other TFs to restore normal innervation patterns.
Collapse
Affiliation(s)
- Israt Jahan
- Department of Biology, University of Iowa, 129 East Jefferson, Iowa City, IA 52242, USA
| | - Karen L Elliott
- Department of Biology, University of Iowa, 129 East Jefferson, Iowa City, IA 52242, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, 129 East Jefferson, Iowa City, IA 52242, USA
| |
Collapse
|
45
|
Novel mutation in a family with WNT1 -related osteoporosis. Eur J Med Genet 2018; 61:369-371. [DOI: 10.1016/j.ejmg.2018.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 01/26/2018] [Accepted: 01/27/2018] [Indexed: 12/30/2022]
|
46
|
Cao H, Shi J, Du J, Chen K, Dong C, Jiang D, Jiang H. MicroRNA-194 Regulates the Development and Differentiation of Sensory Patches and Statoacoustic Ganglion of Inner Ear by Fgf4. Med Sci Monit 2018; 24:1712-1723. [PMID: 29570699 PMCID: PMC5880017 DOI: 10.12659/msm.906277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background MicroRNA 194 is involved in the differentiation of various types of cells, such as adipose derived stem cells, human embryonic stem cells, and bone marrow mesenchymal stem cells. Previously, we found that miR-194 was highly expressed in the inner ear sensory patch and neurons in mice embryos. However, the role of miR-194 in the development of the inner ear and its underlying mechanism have not been elucidated yet. Material/Methods The expression level of miR-194 has been altered by using antisense morpholino oligonucleotides (MO) and synthesized miRNAs in zebrafish. Results We found that miR-194 was vastly expressed in the inner ear and central nervous system (CNS) in zebrafish. Loss of function of miR-194 could strongly affected the development of zebrafish embryos, including delayed embryonic development, edema of the pericardium, small head, axial deviation, delayed development of inner ear, closer location of two otoliths, delayed fusion of the semicircular canals, and abnormal otolith number in some cases. In addition, the behavior of zebrafish was also adversely affected with impaired balance and biased swimming route. Misexpression of miR-194 could strongly affected the development and differentiation of spiral ganglion neuron (SGN) in inner ear through Fgf4 in vitro. Similar results have also been observed that the overexpression and knockdown of miR-194 strongly disturbed the development and differentiation of the sensory patches and Statoacoustic ganglion (SAG) through Fgf4 in zebrafish in vivo. Our results indicated that miR-194 may regulate the development and differentiation of sensory patches and SAG through Fgf4. Conclusions Our data revealed a vital role of miR-194 in regulating the development and differentiation of the inner ear.
Collapse
Affiliation(s)
- Hui Cao
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Department of Otolaryngology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Jianbo Shi
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Jintao Du
- Department of Otolaryngology, West China hospital of Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Kaitian Chen
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Chang Dong
- Department of Otolaryngology, People's Hospital of Hainan Province, Haikou, Hainan, China (mainland)
| | - Di Jiang
- Department of Otolaryngology, People's Hospital of Dongguan, Dongguan, Guangdong, China (mainland)
| | - Hongyan Jiang
- Department of Otolaryngology, People's Hospital of Hainan Province, Haikou, Hainan, China (mainland)
| |
Collapse
|
47
|
Histone deacetylase 5 (HDAC5) regulates neuropathic pain through SRY-related HMG-box 10 (SOX10)-dependent mechanism in mice. Pain 2017; 159:526-539. [DOI: 10.1097/j.pain.0000000000001125] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
48
|
Brown LN, Xing Y, Noble KV, Barth JL, Panganiban CH, Smythe NM, Bridges MC, Zhu J, Lang H. Macrophage-Mediated Glial Cell Elimination in the Postnatal Mouse Cochlea. Front Mol Neurosci 2017; 10:407. [PMID: 29375297 PMCID: PMC5770652 DOI: 10.3389/fnmol.2017.00407] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022] Open
Abstract
Hearing relies on the transmission of auditory information from sensory hair cells (HCs) to the brain through the auditory nerve. This relay of information requires HCs to be innervated by spiral ganglion neurons (SGNs) in an exclusive manner and SGNs to be ensheathed by myelinating and non-myelinating glial cells. In the developing auditory nerve, mistargeted SGN axons are retracted or pruned and excessive cells are cleared in a process referred to as nerve refinement. Whether auditory glial cells are eliminated during auditory nerve refinement is unknown. Using early postnatal mice of either sex, we show that glial cell numbers decrease after the first postnatal week, corresponding temporally with nerve refinement in the developing auditory nerve. Additionally, expression of immune-related genes was upregulated and macrophage numbers increase in a manner coinciding with the reduction of glial cell numbers. Transient depletion of macrophages during early auditory nerve development, using transgenic CD11bDTR/EGFP mice, resulted in the appearance of excessive glial cells. Macrophage depletion caused abnormalities in myelin formation and transient edema of the stria vascularis. Macrophage-depleted mice also showed auditory function impairment that partially recovered in adulthood. These findings demonstrate that macrophages contribute to the regulation of glial cell number during postnatal development of the cochlea and that glial cells play a critical role in hearing onset and auditory nerve maturation.
Collapse
Affiliation(s)
- LaShardai N. Brown
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Yazhi Xing
- Department of Otorhinolaryngology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Kenyaria V. Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Clarisse H. Panganiban
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Nancy M. Smythe
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Mary C. Bridges
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Juhong Zhu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
49
|
Chagnaud BP, Engelmann J, Fritzsch B, Glover JC, Straka H. Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective. BRAIN, BEHAVIOR AND EVOLUTION 2017; 90:98-116. [PMID: 28988233 DOI: 10.1159/000456646] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Detection of motion is a feature essential to any living animal. In vertebrates, mechanosensory hair cells organized into the lateral line and vestibular systems are used to detect external water or head/body motion, respectively. While the neuronal components to detect these physical attributes are similar between the two sensory systems, the organizational pattern of the receptors in the periphery and the distribution of hindbrain afferent and efferent projections are adapted to the specific functions of the respective system. Here we provide a concise review comparing the functional organization of the vestibular and lateral line systems from the development of the organs to the wiring from the periphery and the first processing stages. The goal of this review is to highlight the similarities and differences to demonstrate how evolution caused a common neuronal substrate to adapt to different functions, one for the detection of external water stimuli and the generation of sensory maps and the other for the detection of self-motion and the generation of motor commands for immediate behavioral reactions.
Collapse
Affiliation(s)
- Boris P Chagnaud
- Ludwig-Maximilians-Universität München, Department Biology II, Division of Neurobiology, Martinsried-Planegg, Germany
| | | | | | | | | |
Collapse
|
50
|
Fritzsch B, Elliott KL. Gene, cell, and organ multiplication drives inner ear evolution. Dev Biol 2017; 431:3-15. [PMID: 28866362 DOI: 10.1016/j.ydbio.2017.08.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/27/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022]
Abstract
We review the development and evolution of the ear neurosensory cells, the aggregation of neurosensory cells into an otic placode, the evolution of novel neurosensory structures dedicated to hearing and the evolution of novel nuclei in the brain and their input dedicated to processing those novel auditory stimuli. The evolution of the apparently novel auditory system lies in duplication and diversification of cell fate transcription regulation that allows variation at the cellular level [transforming a single neurosensory cell into a sensory cell connected to its targets by a sensory neuron as well as diversifying hair cells], organ level [duplication of organ development followed by diversification and novel stimulus acquisition] and brain nuclear level [multiplication of transcription factors to regulate various neuron and neuron aggregate fate to transform the spinal cord into the unique hindbrain organization]. Tying cell fate changes driven by bHLH and other transcription factors into cell and organ changes is at the moment tentative as not all relevant factors are known and their gene regulatory network is only rudimentary understood. Future research can use the blueprint proposed here to provide both the deeper molecular evolutionary understanding as well as a more detailed appreciation of developmental networks. This understanding can reveal how an auditory system evolved through transformation of existing cell fate determining networks and thus how neurosensory evolution occurred through molecular changes affecting cell fate decision processes. Appreciating the evolutionary cascade of developmental program changes could allow identifying essential steps needed to restore cells and organs in the future.
Collapse
Affiliation(s)
- Bernd Fritzsch
- University of Iowa, Department of Biology, Iowa City, IA 52242, United States.
| | - Karen L Elliott
- University of Iowa, Department of Biology, Iowa City, IA 52242, United States
| |
Collapse
|