1
|
Xu H, Wang X, Chi G, Tan B, Wang J. Effects of Bacillus thuringiensis Genetic Engineering on Induced Volatile Organic Compounds Emission in Maize and the Attractiveness to a Parasitic Wasp. Front Bioeng Biotechnol 2019; 7:160. [PMID: 31355192 PMCID: PMC6635655 DOI: 10.3389/fbioe.2019.00160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/20/2019] [Indexed: 11/13/2022] Open
Abstract
In order to control lepidopteran and coleopteran insects, the genes expressing Bacillus thuringiensis (Bt) insecticidal proteins have been transferred into crops. Ecological risk assessments of the transgenic plants have included impacts on non-target entomophagous insects, such as parasitoid wasps. Herbivore-induced plant volatiles are considered to be important defensive traits of plants because these compounds play as an important role in recruitment of natural enemies. Here, we evaluated induced volatile emissions of maize seedlings of two Bt cultivars (5422Bt1, event Bt11 and 5422CBCL, event Mon810), and their nearly isogenic non-Bt line 5422. We damaged plants mechanically and then applied with the regurgitant of Spodoptera litura (F.) caterpillars (Lepidoptera: Noctuidae), or treated the plants with the plant hormone jasmonic acid (JA), to trigger similar defensive responses of plants. Compared to the non-Bt isoline 5422 and the Bt maize 5422CBCL, the other Bt maize 5422Bt1 released more (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) when they were all treated by artificial wounds and caterpillar regurgitant; and released more linalool, DMNT and (E)-β-farnesene when applied with JA solution. As a result, the total volatile emission of the 5422Bt1 was highest. However, the difference in volatile emission did not affect the attractiveness of the Bt maize plants to the egg parasitoid Trichogramma ostriniae Pang et Chen (Hymenoptera: Trichogrammatidae) compared to the nearly isogenic non-Bt plants. The variability of induced volatiles of maize cultivars derived from conventional breeding programs and transgenic methods are discussed.
Collapse
Affiliation(s)
- Hao Xu
- Key Laboratory of Agro-Environments in Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China.,Institute of Tropical and Subtropical Ecology, South China Agricultural University, Guangzhou, China.,School of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyi Wang
- Key Laboratory of Agro-Environments in Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China
| | - Guoliang Chi
- Key Laboratory of Agro-Environments in Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China.,Institute of Tropical and Subtropical Ecology, South China Agricultural University, Guangzhou, China
| | - Bingchang Tan
- Key Laboratory of Agro-Environments in Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China.,Institute of Tropical and Subtropical Ecology, South China Agricultural University, Guangzhou, China
| | - Jianwu Wang
- Key Laboratory of Agro-Environments in Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China.,Institute of Tropical and Subtropical Ecology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Expression of hybrid fusion protein (Cry1Ac::ASAL) in transgenic rice plants imparts resistance against multiple insect pests. Sci Rep 2018; 8:8458. [PMID: 29855556 PMCID: PMC5981619 DOI: 10.1038/s41598-018-26881-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/21/2018] [Indexed: 12/18/2022] Open
Abstract
To evolve rice varieties resistant to different groups of insect pests a fusion gene, comprising DI and DII domains of Bt Cry1Ac and carbohydrate binding domain of garlic lectin (ASAL), was constructed. Transgenic rice lines were generated and evaluated to assess the efficacy of Cry1Ac::ASAL fusion protein against three major pests, viz., yellow stem borer (YSB), leaf folder (LF) and brown planthopper (BPH). Molecular analyses of transgenic plants revealed stable integration and expression of the fusion gene. In planta insect bioassays on transgenics disclosed enhanced levels of resistance compared to the control plants. High insect mortality of YSB, LF and BPH was observed on transgenics compared to that of control plants. Furthermore, honeydew assays revealed significant decreases in the feeding ability of BPH on transgenic plants as compared to the controls. Ligand blot analysis, using BPH insects fed on cry1Ac::asal transgenic rice plants, revealed a modified receptor protein-binding pattern owing to its ability to bind to additional receptors in insects. The overall results authenticate that Cry1Ac::ASAL protein is endowed with remarkable entomotoxic effects against major lepidopteran and hemipteran insects. As such, the fusion gene appears promising and can be introduced into various other crops to control multiple insect pests.
Collapse
|
3
|
Wang ZX, Li YH, He KL, Bai SX, Zhang TT, Cai WZ, Wang ZY. Does Bt maize expressing Cry1Ac protein have adverse effects on the parasitoid Macrocentrus cingulum (Hymenoptera: Braconidae)? INSECT SCIENCE 2017; 24:599-612. [PMID: 27126195 DOI: 10.1111/1744-7917.12352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/23/2016] [Accepted: 03/06/2016] [Indexed: 06/05/2023]
Abstract
The potential effects of insect-resistant, genetically engineered (GE) crops on non-target organisms, especially on predators and parasitoids, must be evaluated before their commercial cultivation. The effects of GE maize that produces Cry1Ac toxin on the parasitoid Macrocentrus cingulum were assessed by direct bioassay and indirect bioassay. In the indirect bioassay, parasitism rate, cocoon weight and the number of M. cingulum progeny produced per host were significantly reduced when M. cingulum-parasitized Cry1Ac-susceptible Ostrinia furnacalis were fed a diet containing purified Cry1Ac; however, life-table parameters of M. cingulum were not adversely affected when the same assay was performed with Cry1Ac-resistant O. furnacalis. These results indicated that the detrimental effects detected with a Cry1Ac-susceptible host were mediated by poor host quality. In a direct bioassay, no difference in life-table parameters were detected when M. cingulum adults were directly fed a 20% honey solution with or without Cry1Ac; however, survival and longevity were significantly reduced when M. cingulum adults were fed a honey solution containing potassium arsenate, which was used as a positive control. The stability and bioactivity of Cry1Ac toxin in the food sources and Cry1Ac toxin uptake by the host insect and parasitoid were confirmed by enzyme-linked immunosorbent assay and sensitive-insect bioassays. Our results demonstrate that M. cingulum is not sensitive to Cry1Ac toxin at concentrations exceeding those encountered in Bacillus thuringiensis maize fields. This study also demonstrates the power of using resistant hosts when assessing the risk of genetically modified plants on non-target organisms and will be useful for assessing other non-target impacts.
Collapse
Affiliation(s)
- Zeng-Xia Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, MOA - CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
- Department of Entomology, China Agriculture University, Beijing, China
| | - Yun-He Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, MOA - CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Kang-Lai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, MOA - CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Shu-Xiong Bai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, MOA - CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Tian-Tao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, MOA - CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Wan-Zhi Cai
- Department of Entomology, China Agriculture University, Beijing, China
| | - Zhen-Ying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, MOA - CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| |
Collapse
|
4
|
Distribution and Metabolism of Bt-Cry1Ac Toxin in Tissues and Organs of the Cotton Bollworm, Helicoverpa armigera. Toxins (Basel) 2016; 8:toxins8070212. [PMID: 27399776 PMCID: PMC4963845 DOI: 10.3390/toxins8070212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/30/2016] [Indexed: 11/17/2022] Open
Abstract
Crystal (Cry) proteins derived from Bacillus thuringiensis (Bt) have been widely used in transgenic crops due to their toxicity against insect pests. However, the distribution and metabolism of these toxins in insect tissues and organs have remained obscure because the target insects do not ingest much toxin. In this study, several Cry1Ac-resistant strains of Helicoverpa armigera, fed artificial diets containing high doses of Cry1Ac toxin, were used to investigate the distribution and metabolism of Cry1Ac in their bodies. Cry1Ac was only detected in larvae, not in pupae or adults. Also, Cry1Ac passed through the midgut into other tissues, such as the hemolymph and fat body, but did not reach the larval integument. Metabolic tests revealed that Cry1Ac degraded most rapidly in the fat body, followed by the hemolymph, peritrophic membrane and its contents. The toxin was metabolized slowly in the midgut, but was degraded in all locations within 48 h. These findings will improve understanding of the functional mechanism of Bt toxins in target insects and the biotransfer and the bioaccumulation of Bt toxins in arthropod food webs in the Bt crop ecosystem.
Collapse
|
5
|
Xie J, De Clercq P, Pan C, Li H, Zhang Y, Pang H. Physiological effects of compensatory growth during the larval stage of the ladybird, Cryptolaemus montrouzieri. JOURNAL OF INSECT PHYSIOLOGY 2015; 83:37-42. [PMID: 26546057 DOI: 10.1016/j.jinsphys.2015.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
The growth rate of insects may vary in response to shifty environments. They may achieve compensatory growth after a period of food restriction followed by ad libitum food, which may further affect the reproductive performance and lifespan of the resulting phenotypes. However, little is known about the physiological mechanisms associated with such growth acceleration in insects. The present study examined the metabolic rate, the antioxidant enzyme activity and the gene expression of adult Cryptolaemus montrouzieri (Coleoptera: Coccinellidae) after experiencing compensatory growth during its larval stages. Starved C. montrouzieri individuals achieved a similar developmental time and adult body mass as those supplied with ad libitum food during their entire larval stage, indicating that compensatory growth occurred as a result of the switch in larval food regime. Further, the compensatory growth was found to exert effects on the physiological functions of C. montrouzieri, in terms of its metabolic rates and enzyme activities. The adults undergoing compensatory growth were characterized by a higher metabolic rate, a lower activity of the antioxidant enzymes glutathione reductase, catalase, and superoxide dismutase and a lower gene expression of P450 and trehalase. Taken together, the results indicate that although compensatory growth following food restriction in early larval life prevents developmental delay and body mass loss, the resulting adults may encounter physiological challenges affecting their fitness.
Collapse
Affiliation(s)
- Jiaqin Xie
- State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institute, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou 510275, China; Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Patrick De Clercq
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium.
| | - Chang Pan
- State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institute, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou 510275, China
| | - Haosen Li
- State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institute, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuhong Zhang
- Guangdong Entomological Institute, Guangzhou 510260, China
| | - Hong Pang
- State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institute, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|