1
|
Wei X, He Y, Yu Y, Tang S, Liu R, Guo J, Jiang Q, Zhi X, Wang X, Meng D. The Multifaceted Roles of BACH1 in Disease: Implications for Biological Functions and Therapeutic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412850. [PMID: 39887888 PMCID: PMC11905017 DOI: 10.1002/advs.202412850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/22/2024] [Indexed: 02/01/2025]
Abstract
BTB domain and CNC homolog 1 (BACH1) belongs to the family of basic leucine zipper proteins and is expressed in most mammalian tissues. It can regulate its own expression and play a role in transcriptionally activating or inhibiting downstream target genes. It has a crucial role in various biological processes, such as oxidative stress, cell cycle, heme homeostasis, and immune regulation. Recent research highlights BACH1's significant regulatory roles in a series of conditions, including stem cell pluripotency maintenance and differentiation, growth, senescence, and apoptosis. BACH1 is closely associated with cardiovascular diseases and contributes to angiogenesis, atherosclerosis, restenosis, pathological cardiac hypertrophy, myocardial infarction, and ischemia/reperfusion (I/R) injury. BACH1 promotes tumor cell proliferation and metastasis by altering tumor metabolism and the epithelial-mesenchymal transition phenotype. Moreover, BACH1 appears to show an adverse role in diseases such as neurodegenerative diseases, gastrointestinal disorders, leukemia, pulmonary fibrosis, and skin diseases. Inhibiting BACH1 may be beneficial for treating these diseases. This review summarizes the role of BACH1 and its regulatory mechanism in different cell types and diseases, proposing that precise targeted intervention of BACH1 may provide new strategies for human disease prevention and treatment.
Collapse
Affiliation(s)
- Xiangxiang Wei
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Yunquan He
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Yueyang Yu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Sichong Tang
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Ruiwen Liu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Jieyu Guo
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Qingjun Jiang
- Department of Vascular & Endovascular SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Xiuling Zhi
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Xinhong Wang
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Dan Meng
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| |
Collapse
|
2
|
Song Q, Mao X, Jing M, Fu Y, Yan W. Pathophysiological role of BACH transcription factors in digestive system diseases. Front Physiol 2023; 14:1121353. [PMID: 37228820 PMCID: PMC10203417 DOI: 10.3389/fphys.2023.1121353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
BTB and CNC homologous (BACH) proteins, including BACH1 and BACH2, are transcription factors that are widely expressed in human tissues. BACH proteins form heterodimers with small musculoaponeurotic fibrosarcoma (MAF) proteins to suppress the transcription of target genes. Furthermore, BACH1 promotes the transcription of target genes. BACH proteins regulate physiological processes, such as the differentiation of B cells and T cells, mitochondrial function, and heme homeostasis as well as pathogenesis related to inflammation, oxidative-stress damage caused by drugs, toxicants, or infections; autoimmunity disorders; and cancer angiogenesis, epithelial-mesenchymal transition, chemotherapy resistance, progression, and metabolism. In this review, we discuss the function of BACH proteins in the digestive system, including the liver, gallbladder, esophagus, stomach, small and large intestines, and pancreas. BACH proteins directly target genes or indirectly regulate downstream molecules to promote or inhibit biological phenomena such as inflammation, tumor angiogenesis, and epithelial-mesenchymal transition. BACH proteins are also regulated by proteins, miRNAs, LncRNAs, labile iron, and positive and negative feedback. Additionally, we summarize a list of regulators targeting these proteins. Our review provides a reference for future studies on targeted drugs in digestive diseases.
Collapse
Affiliation(s)
- Qianben Song
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Mao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengjia Jing
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Joshi N, Chandane Tak M, Mukherjee A. The involvement of microRNAs in HCV and HIV infection. Ther Adv Vaccines Immunother 2022; 10:25151355221106104. [PMID: 35832725 PMCID: PMC9272158 DOI: 10.1177/25151355221106104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Approximately 2.3 million people are suffering from human immunodeficiency virus (HIV)/hepatitis C virus (HCV) co-infection worldwide. Faster disease progression and increased mortality rates during the HIV/HCV co-infection have become global health concerns. Effective therapeutics against co-infection and complete infection eradication has become a mandatory requirement. The study of small non-coding RNAs in cellular processes and viral infection has so far been beneficial in various terms. Currently, microRNAs are an influential candidate for disease diagnosis and treatment. Dysregulation in miRNA expression can lead to unfavorable outcomes; hence, this exact inevitable nature has made various studies a focal point. A considerable improvement in comprehending HIV and HCV mono-infection pathogenesis is seen using miRNAs. The prominent reason behind HIV/HCV co-infection is seen to be their standard route of transmission, while some pieces of evidence also suspect viral interplay between having a role in increased viral infection. This review highlights the involvement of microRNAs in HIV/HCV co-infection, along with their contribution in HIV mono- and HCV mono-infection. We also discuss miRNAs that carry the potentiality of becoming a biomarker for viral infection and early disease progression.
Collapse
Affiliation(s)
- Nicky Joshi
- Division of Virology, ICMR-National AIDS Research Institute, Pune, India
| | | | - Anupam Mukherjee
- Scientist D & RAMANUJAN Fellow, Division of Virology, ICMR-National AIDS Research Institute, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune 411026, Maharashtra, India
| |
Collapse
|
4
|
Detsika MG, Nikitopoulou I, Veroutis D, Vassiliou AG, Jahaj E, Tsipilis S, Athanassiou N, Gakiopoulou H, Gorgoulis VG, Dimopoulou I, Orfanos SE, Kotanidou A. Increase of HO-1 Expression in Critically Ill COVID-19 Patients Is Associated with Poor Prognosis and Outcome. Antioxidants (Basel) 2022; 11:antiox11071300. [PMID: 35883791 PMCID: PMC9311906 DOI: 10.3390/antiox11071300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 02/01/2023] Open
Abstract
Heme-oxygenase (HO)-1 is a cytoprotective enzyme with strong antioxidant and anti-apoptotic properties and previous reports have also emphasized the antiviral properties of HO-1, either directly or via induction of interferons. To investigate the potential role of HO-1 in patients with coronavirus disease 2019 (COVID-19), the present study assessed changes in HO-1 expression in whole blood and tissue samples. Upregulation of HO-1 protein was observed in lung, liver, and skin tissue independently of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presence. A significant increase of blood HO-1 mRNA levels was observed in critically ill COVID-19 patients compared to those in severe COVID-19 patients and healthy controls. This increase was accompanied by significantly elevated levels of serum ferritin and bilirubin in critically ill compared to patients with severe disease. Further grouping of patients in survivors and non-survivors revealed a significant increase of blood HO-1 mRNA levels in the later. Receiver operating characteristic (ROC) analysis for prediction of ICU admission and mortality yielded an AUC of 0.705 (p = 0.016) and 0.789 (p = 0.007) respectively indicating that HO-1 increase is associated with poor COVID-19 progression and outcome. The increase in HO-1 expression observed in critically ill COVID-19 patients could serve as a mechanism to counteract increased heme levels driving coagulation and thrombosis or as an induced protective mechanism.
Collapse
Affiliation(s)
- Maria G. Detsika
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 10675 Athens, Greece; (M.G.D.); (I.N.); (A.G.V.); (E.J.); (S.T.); (N.A.); (I.D.); (S.E.O.)
| | - Ioanna Nikitopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 10675 Athens, Greece; (M.G.D.); (I.N.); (A.G.V.); (E.J.); (S.T.); (N.A.); (I.D.); (S.E.O.)
| | - Dimitris Veroutis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 10675 Athens, Greece; (D.V.); (V.G.G.)
| | - Alice G. Vassiliou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 10675 Athens, Greece; (M.G.D.); (I.N.); (A.G.V.); (E.J.); (S.T.); (N.A.); (I.D.); (S.E.O.)
| | - Edison Jahaj
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 10675 Athens, Greece; (M.G.D.); (I.N.); (A.G.V.); (E.J.); (S.T.); (N.A.); (I.D.); (S.E.O.)
| | - Stamatis Tsipilis
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 10675 Athens, Greece; (M.G.D.); (I.N.); (A.G.V.); (E.J.); (S.T.); (N.A.); (I.D.); (S.E.O.)
| | - Nikolaos Athanassiou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 10675 Athens, Greece; (M.G.D.); (I.N.); (A.G.V.); (E.J.); (S.T.); (N.A.); (I.D.); (S.E.O.)
| | - Hariklia Gakiopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 10675 Athens, Greece; (D.V.); (V.G.G.)
- Biomedical Research Foundation, Academy of Athens, 10675 Athens, Greece
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 10675 Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
| | - Ioanna Dimopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 10675 Athens, Greece; (M.G.D.); (I.N.); (A.G.V.); (E.J.); (S.T.); (N.A.); (I.D.); (S.E.O.)
| | - Stylianos E. Orfanos
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 10675 Athens, Greece; (M.G.D.); (I.N.); (A.G.V.); (E.J.); (S.T.); (N.A.); (I.D.); (S.E.O.)
| | - Anastasia Kotanidou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 10675 Athens, Greece; (M.G.D.); (I.N.); (A.G.V.); (E.J.); (S.T.); (N.A.); (I.D.); (S.E.O.)
- Correspondence:
| |
Collapse
|
5
|
Cerebral Organoids Derived from a Parkinson's Patient Exhibit Unique Pathogenesis from Chikungunya Virus Infection When Compared to a Non-Parkinson's Patient. Pathogens 2021; 10:pathogens10070913. [PMID: 34358063 PMCID: PMC8308834 DOI: 10.3390/pathogens10070913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 12/25/2022] Open
Abstract
(1) Background: Arboviruses of medical and veterinary significance have been identified on all seven continents, with every human and animal population at risk for exposure. Like arboviruses, chronic neurodegenerative diseases, like Alzheimer’s and Parkinson’s disease, are found wherever there are humans. Significant differences in baseline gene and protein expression have been determined between human-induced pluripotent stem cell lines derived from non-Parkinson’s disease individuals and from individuals with Parkinson’s disease. It was hypothesized that these inherent differences could impact cerebral organoid responses to viral infection. (2) Methods: In this study, cerebral organoids from a non-Parkinson’s and Parkinson’s patient were infected with Chikungunya virus and observed for two weeks. (3) Results: Parkinson’s organoids lost mass and exhibited a differential antiviral response different from non-Parkinson’s organoids. Neurotransmission data from both infected non-Parkinson’s and Parkinson’s organoids had dysregulation of IL-1, IL-10, and IL-6. These cytokines are associated with mood and could be contributing to persistent depression seen in patients following CHIKV infection. Both organoid types had increased expression of CXCL10, which is linked to demyelination. (4) Conclusions: The differential antiviral response of Parkinson’s organoids compared with non-Parkinson’s organoids highlights the need for more research in neurotropic infections in a neurologically compromised host.
Collapse
|
6
|
Ellwanger JH, Zambra FMB, Guimarães RL, Chies JAB. MicroRNA-Related Polymorphisms in Infectious Diseases-Tiny Changes With a Huge Impact on Viral Infections and Potential Clinical Applications. Front Immunol 2018; 9:1316. [PMID: 29963045 PMCID: PMC6010531 DOI: 10.3389/fimmu.2018.01316] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are single-stranded sequences of non-coding RNA with approximately 22 nucleotides that act posttranscriptionally on gene expression. miRNAs are important gene regulators in physiological contexts, but they also impact the pathogenesis of various diseases. The role of miRNAs in viral infections has been explored by different authors in both population-based as well as in functional studies. However, the effect of miRNA polymorphisms on the susceptibility to viral infections and on the clinical course of these diseases is still an emerging topic. Thus, this review will compile and organize the findings described in studies that evaluated the effects of genetic variations on miRNA genes and on their binding sites, in the context of human viral diseases. In addition to discussing the basic aspects of miRNAs biology, we will cover the studies that investigated miRNA polymorphisms in infections caused by hepatitis B virus, hepatitis C virus, human immunodeficiency virus, Epstein–Barr virus, and human papillomavirus. Finally, emerging topics concerning the importance of miRNA genetic variants will be presented, focusing on the context of viral infectious diseases.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Francis Maria Báo Zambra
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rafael Lima Guimarães
- Departamento de Genética, Universidade Federal do Pernambuco (UFPE), Recife, Brazil.,Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
7
|
Ivanov AV, Valuev-Elliston VT, Tyurina DA, Ivanova ON, Kochetkov SN, Bartosch B, Isaguliants MG. Oxidative stress, a trigger of hepatitis C and B virus-induced liver carcinogenesis. Oncotarget 2017; 8:3895-3932. [PMID: 27965466 PMCID: PMC5354803 DOI: 10.18632/oncotarget.13904] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Virally induced liver cancer usually evolves over long periods of time in the context of a strongly oxidative microenvironment, characterized by chronic liver inflammation and regeneration processes. They ultimately lead to oncogenic mutations in many cellular signaling cascades that drive cell growth and proliferation. Oxidative stress, induced by hepatitis viruses, therefore is one of the factors that drives the neoplastic transformation process in the liver. This review summarizes current knowledge on oxidative stress and oxidative stress responses induced by human hepatitis B and C viruses. It focuses on the molecular mechanisms by which these viruses activate cellular enzymes/systems that generate or scavenge reactive oxygen species (ROS) and control cellular redox homeostasis. The impact of an altered cellular redox homeostasis on the initiation and establishment of chronic viral infection, as well as on the course and outcome of liver fibrosis and hepatocarcinogenesis will be discussed The review neither discusses reactive nitrogen species, although their metabolism is interferes with that of ROS, nor antioxidants as potential therapeutic remedies against viral infections, both subjects meriting an independent review.
Collapse
Affiliation(s)
- Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Daria A. Tyurina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Birke Bartosch
- Inserm U1052, Cancer Research Center Lyon, University of Lyon, Lyon, France
- DevWeCan Laboratories of Excellence Network, France
| | - Maria G. Isaguliants
- Riga Stradins University, Riga, Latvia
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Induction of Heme Oxygenase-1 Deficiency and Associated Glutamate-Mediated Neurotoxicity Is a Highly Conserved HIV Phenotype of Chronic Macrophage Infection That Is Resistant to Antiretroviral Therapy. J Virol 2015; 89:10656-67. [PMID: 26269184 DOI: 10.1128/jvi.01495-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/05/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Expression of the cytoprotective enzyme heme oxygenase-1 (HO-1) is significantly reduced in the brain prefrontal cortex of HIV-positive individuals with HIV-associated neurocognitive disorders (HAND). Furthermore, this HO-1 deficiency correlates with brain viral load, markers of macrophage activation, and type I interferon responses. In vitro, HIV replication in monocyte-derived macrophages (MDM) selectively reduces HO-1 protein and RNA expression and induces production of neurotoxic levels of glutamate; correction of this HO-1 deficiency reduces neurotoxic glutamate production without an effect on HIV replication. We now demonstrate that macrophage HO-1 deficiency, and the associated neurotoxin production, is a conserved feature of infection with macrophage-tropic HIV-1 strains that correlates closely with the extent of replication, and this feature extends to HIV-2 infection. We further demonstrate that this HO-1 deficiency does not depend specifically upon the HIV-1 accessory genes nef, vpr, or vpu but rather on HIV replication, even when markedly limited. Finally, antiretroviral therapy (ART) applied to MDM after HIV infection is established does not prevent HO-1 loss or the associated neurotoxin production. This work defines a predictable relationship between HIV replication, HO-1 loss, and neurotoxin production in MDM that likely reflects processes in place in the HIV-infected brains of individuals receiving ART. It further suggests that correcting this HO-1 deficiency in HIV-infected MDM could provide neuroprotection above that provided by current ART or proposed antiviral therapies directed at limiting Nef, Vpr, or Vpu functions. The ability of HIV-2 to reduce HO-1 expression suggests that this is a conserved phenotype among macrophage-tropic human immunodeficiency viruses that could contribute to neuropathogenesis. IMPORTANCE The continued prevalence of HIV-associated neurocognitive disorders (HAND) underscores the need for adjunctive therapy that targets the neuropathological processes that persist in antiretroviral therapy (ART)-treated HIV-infected individuals. To this end, we previously identified one such possible process, a deficiency of the antioxidative and anti-inflammatory enzyme heme oxygenase-1 (HO-1) in the brains of individuals with HAND. In the present study, our findings suggest that the HO-1 deficiency associated with excess glutamate production and neurotoxicity in HIV-infected macrophages is a highly conserved phenotype of macrophage-tropic HIV strains and that this phenotype can persist in the macrophage compartment in the presence of ART. This suggests a plausible mechanism by which HIV infection of brain macrophages in ART-treated individuals could exacerbate oxidative stress and glutamate-induced neuronal injury, each of which is associated with neurocognitive dysfunction in infected individuals. Thus, therapies that rescue the HO-1 deficiency in HIV-infected individuals could provide additional neuroprotection to ART.
Collapse
|
9
|
Transcriptomic Analysis of mRNAs in Human Monocytic Cells Expressing the HIV-1 Nef Protein and Their Exosomes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:492395. [PMID: 25961023 PMCID: PMC4413250 DOI: 10.1155/2015/492395] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/16/2014] [Indexed: 02/06/2023]
Abstract
The Nef protein of human immunodeficiency virus (HIV) promotes viral replication and progression to AIDS. Besides its well-studied effects on intracellular signaling, Nef also functions through its secretion in exosomes, which are nanovesicles containing proteins, microRNAs, and mRNAs and are important for intercellular communication. Nef expression enhances exosome secretion and these exosomes can enter uninfected CD4 T cells leading to apoptotic death. We have recently reported the first miRNome analysis of exosomes secreted from Nef-expressing U937monocytic cells. Here we show genome-wide transcriptome analysis of Nef-expressing U937 cells and their exosomes. We identified four key mRNAs preferentially retained in Nef-expressing cells; these code for MECP2, HMOX1, AARSD1, and ATF2 and are important for chromatin modification and gene expression. Interestingly, their target miRNAs are exported out in exosomes. We also identified three key mRNAs selectively secreted in exosomes from Nef-expressing U937 cells and their corresponding miRNAs being preferentially retained in cells. These are AATK, SLC27A1, and CDKAL and are important in apoptosis and fatty acid transport. Thus, our study identifies selectively expressed mRNAs in Nef-expressing U937 cells and their exosomes and supports a new mode on intercellular regulation by the HIV-1 Nef protein.
Collapse
|
10
|
Abstract
Hepatitis C virus (HCV) is a global health burden with an estimated 170-200 million peoples chronically infected worldwide. HCV infection remains as an independent risk factor for chronic hepatitis, liver cirrhosis, hepatocellular carcinoma, and a major reason for liver transplantation. Discovery of direct acting antiviral (DAA) drugs have shown promising results with more than 90% success rate in clearing the HCV RNA in patients, although long-term consequences remain to be evaluated. microRNAs (miRNAs) are important players in establishment of HCV infection and target crucial host cellular factors needed for productive HCV replication and augmented cell growth. Altered expression of miRNAs is involved in the pathogenesis associated with HCV infection by controlling signaling pathways such as immune response, proliferation and apoptosis. miRNA is emerging as a means of communication between various cell types inside the liver. There is likely possibility of developing circulating miRNAs as biomarkers of disease progression and can also serve as diagnostic tool with potential of early therapeutic intervention in HCV associated end stage liver disease. This review focuses on recent studies highlighting the contribution of miRNAs in HCV life cycle and their coordinated regulation in HCV mediated liver disease progression.
Collapse
Affiliation(s)
| | - Robert Steele
- Departments of Pathology, Saint Louis University, St. Louis, Missouri, USA
| | - Ranjit Ray
- Departments of Internal Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Ratna B Ray
- Departments of Pathology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|