1
|
Bannell TAK, Cockburn JJB. The molecular structure and function of fibrocystin, the key gene product implicated in autosomal recessive polycystic kidney disease (ARPKD). Ann Hum Genet 2024; 88:58-75. [PMID: 37905714 DOI: 10.1111/ahg.12535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
Autosomal recessive polycystic kidney disease is an early onset inherited hepatorenal disorder affecting around 1 in 20,000 births with no approved specific therapies. The disease is almost always caused by variations in the polycystic kidney and hepatic disease 1 gene, which encodes fibrocystin (FC), a very large, single-pass transmembrane glycoprotein found in primary cilia, urine and urinary exosomes. By comparison to proteins involved in autosomal dominant PKD, our structural and molecular understanding of FC has lagged far behind such that there are no published experimentally determined structures of any part of the protein. Bioinformatics analyses predict that the ectodomain contains a long chain of immunoglobulin-like plexin-transcription factor domains, a protective antigen 14 domain, a tandem G8-TMEM2 homology region and a sperm protein, enterokinase and agrin domain. Here we review current knowledge on the molecular function of the protein from a structural perspective.
Collapse
Affiliation(s)
- Travis A K Bannell
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joseph J B Cockburn
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Liebau MC. Is There a Functional Role of Mitochondrial Dysfunction in the Pathogenesis of ARPKD? Front Med (Lausanne) 2021; 8:739534. [PMID: 34676227 PMCID: PMC8523777 DOI: 10.3389/fmed.2021.739534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/03/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Max Christoph Liebau
- Department of Pediatrics, Center for Molecular Medicine, and Center for Rare Diseases, University Hospital Cologne and Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Haumann S, Müller RU, Liebau MC. Metabolic Changes in Polycystic Kidney Disease as a Potential Target for Systemic Treatment. Int J Mol Sci 2020; 21:ijms21176093. [PMID: 32847032 PMCID: PMC7503958 DOI: 10.3390/ijms21176093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
Autosomal recessive and autosomal dominant polycystic kidney disease (ARPKD, ADPKD) are systemic disorders with pronounced hepatorenal phenotypes. While the main underlying genetic causes of both ARPKD and ADPKD have been well-known for years, the exact molecular mechanisms resulting in the observed clinical phenotypes in the different organs, remain incompletely understood. Recent research has identified cellular metabolic changes in PKD. These findings are of major relevance as there may be an immediate translation into clinical trials and potentially clinical practice. Here, we review important results in the field regarding metabolic changes in PKD and their modulation as a potential target of systemic treatment.
Collapse
Affiliation(s)
- Sophie Haumann
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
| | - Roman-Ulrich Müller
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, 50931 Cologne, Germany
| | - Max C. Liebau
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
- Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Correspondence: ; Tel.: +49-221-478-4359
| |
Collapse
|
4
|
Torres JA, Rezaei M, Broderick C, Lin L, Wang X, Hoppe B, Cowley BD, Savica V, Torres VE, Khan S, Holmes RP, Mrug M, Weimbs T. Crystal deposition triggers tubule dilation that accelerates cystogenesis in polycystic kidney disease. J Clin Invest 2019; 129:4506-4522. [PMID: 31361604 PMCID: PMC6763267 DOI: 10.1172/jci128503] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022] Open
Abstract
The rate of disease progression in autosomal-dominant (AD) polycystic kidney disease (PKD) exhibits high intra-familial variability suggesting that environmental factors may play a role. We hypothesized that a prevalent form of renal insult may accelerate cystic progression and investigated tubular crystal deposition. We report that calcium oxalate (CaOx) crystal deposition led to rapid tubule dilation, activation of PKD-associated signaling pathways, and hypertrophy in tubule segments along the affected nephrons. Blocking mTOR signaling blunted this response and inhibited efficient excretion of lodged crystals. This mechanism of "flushing out" crystals by purposefully dilating renal tubules has not previously been recognized. Challenging PKD rat models with CaOx crystal deposition, or inducing calcium phosphate deposition by increasing dietary phosphorous intake, led to increased cystogenesis and disease progression. In a cohort of ADPKD patients, lower levels of urinary excretion of citrate, an endogenous inhibitor of calcium crystal formation, correlated with increased disease severity. These results suggest that PKD progression may be accelerated by commonly occurring renal crystal deposition which could be therapeutically controlled by relatively simple measures.
Collapse
Affiliation(s)
- Jacob A. Torres
- University of California Santa Barbara, Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, Santa Barbara, California, USA
| | - Mina Rezaei
- University of California Santa Barbara, Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, Santa Barbara, California, USA
| | - Caroline Broderick
- University of California Santa Barbara, Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, Santa Barbara, California, USA
| | - Louis Lin
- University of California Santa Barbara, Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, Santa Barbara, California, USA
| | - Xiaofang Wang
- Mayo Clinic College of Medicine, Division of Nephrology and Hypertension, Rochester, Minnesota, USA
| | - Bernd Hoppe
- University Children’s Hospital Bonn, Division of Pediatric Nephrology, Bonn, Germany
| | - Benjamin D. Cowley
- University of Oklahoma Health Sciences Center, Department of Medicine, Section of Nephrology, Oklahoma City, Oklahoma, USA
| | - Vincenzo Savica
- University of Messina, Department of Clinical and Experimental Medicine, Messina, Italy
| | - Vicente E. Torres
- Mayo Clinic College of Medicine, Division of Nephrology and Hypertension, Rochester, Minnesota, USA
| | - Saeed Khan
- University of Florida, Department of Pathology, Gainesville, Florida, USA
| | | | - Michal Mrug
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Veterans Affairs Medical Center, Birmingham, Alabama, USA
| | - Thomas Weimbs
- University of California Santa Barbara, Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, Santa Barbara, California, USA
| |
Collapse
|
5
|
Luo C, Wu M, Su X, Yu F, Brautigan DL, Chen J, Zhou J. Protein phosphatase 1α interacts with a novel ciliary targeting sequence of polycystin-1 and regulates polycystin-1 trafficking. FASEB J 2019; 33:9945-9958. [PMID: 31157564 DOI: 10.1096/fj.201900338r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic disorder causing renal failure. Mutations of polycystic kidney disease 1 (PKD1) account for most ADPKD cases. Defective ciliary localization of polycystin-1 (PC1), a large integral membrane protein encoded by PKD1, underlies the pathogenesis of a subgroup of patients with ADPKD. However, the mechanisms by which PC1 and other ciliary proteins traffic to the primary cilium remain poorly understood. A ciliary targeting sequence (CTS) that resides in ciliary receptors is considered to function in the process. It has been reported that the VxP motif in the intracellular C-terminal tail of PC1 functions as a CTS in an ADP ribosylation factor 4 (Arf4)/ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (ASAP1)-dependent manner. However, other recent studies have revealed that this motif is dispensable for PC1 trafficking to cilia. In this study, we identified a novel CTS consisting of 8 residues (RHKVRFEG) in the PC1 C tail. We found that this motif is sufficient to bind protein phosphatase 1 (PP1)α, a ubiquitously expressed phosphatase in the phosphoprotein phosphatase (PPP) family. Mutations in this CTS motif disrupt binding with PP1α and impair ciliary localization of PC1. Additionally, short hairpin RNA-mediated knockdown of PP1α results in reduced ciliary localization of PC1 and elongated cilia, suggesting a role for PP1α in the regulation of ciliary structure and function.-Luo, C., Wu, M., Su, X., Yu, F., Brautigan, D. L., Chen, J., Zhou, J. Protein phosphatase 1α interacts with a novel ciliary targeting sequence of polycystin-1 and regulates polycystin-1 trafficking.
Collapse
Affiliation(s)
- Chong Luo
- Kidney Disease Center, The First Affiliated Hospital-College of Medicine-National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China.,Harvard Center for Polycystic Kidney Disease Research-Renal Division, Department of Medicine, Brigham and Women's Hospital-Harvard Medical School, Boston, Massachusetts, USA
| | - Maoqing Wu
- Harvard Center for Polycystic Kidney Disease Research-Renal Division, Department of Medicine, Brigham and Women's Hospital-Harvard Medical School, Boston, Massachusetts, USA
| | - Xuefeng Su
- Harvard Center for Polycystic Kidney Disease Research-Renal Division, Department of Medicine, Brigham and Women's Hospital-Harvard Medical School, Boston, Massachusetts, USA
| | - Fangyan Yu
- Harvard Center for Polycystic Kidney Disease Research-Renal Division, Department of Medicine, Brigham and Women's Hospital-Harvard Medical School, Boston, Massachusetts, USA
| | - David L Brautigan
- Center for Cell Signaling, Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital-College of Medicine-National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
| | - Jing Zhou
- Harvard Center for Polycystic Kidney Disease Research-Renal Division, Department of Medicine, Brigham and Women's Hospital-Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Liu L, Zhang L, Zhao S, Zhao XY, Min PX, Ma YD, Wang YY, Chen Y, Tang SJ, Zhang YJ, Du J, Gu L. Non-canonical Notch Signaling Regulates Actin Remodeling in Cell Migration by Activating PI3K/AKT/Cdc42 Pathway. Front Pharmacol 2019; 10:370. [PMID: 31057403 PMCID: PMC6477508 DOI: 10.3389/fphar.2019.00370] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Tumor cell migration is a critical step in cancer metastasis. Over-activated Notch pathway can promote the migration of cancer cells, especially in the breast cancer. However, the underlying mechanism of non-canonical Notch signaling in modulating the migration has not yet been clearly characterized. Here we demonstrated that DAPT, a gamma secretase inhibitor, inhibited protrusion formation and cell motility, and then reduced the migration of triple-negative breast cancer cells, through increasing the activity of Cdc42 by non-canonical Notch pathway. Phosphorylation of AKT on S473 was surprisingly increased when Notch signaling was inhibited by DAPT. Inhibition of PI3K and AKT by LY294002 and MK2206, respectively, or knockdown of AKT expression by siRNA blocked DAPT-induced activation of Cdc42. Moreover, immunofluorescence staining further showed that DAPT treatment reduced the formation of lamellipodia and induced actin cytoskeleton remodeling. Taken together, these results indicated that DAPT inhibited Notch signaling and consequently activated PI3K/AKT/Cdc42 signaling by non-canonical pathway, facilitated the formation of filopodia and inhibited the assembly of lamellipodia, and finally resulted in the decrease of migration activity of breast cancer cells.
Collapse
Affiliation(s)
- Lei Liu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Shuo Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xu-Yang Zhao
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Peng-Xiang Min
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Ya-Dong Ma
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yue-Yuan Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Si-Jie Tang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yu-Jie Zhang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Jun Du
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Luo Gu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Szabó T, Orosz P, Balogh E, Jávorszky E, Máttyus I, Bereczki C, Maróti Z, Kalmár T, Szabó AJ, Reusz G, Várkonyi I, Marián E, Gombos É, Orosz O, Madar L, Balla G, Kappelmayer J, Tory K, Balogh I. Comprehensive genetic testing in children with a clinical diagnosis of ARPKD identifies phenocopies. Pediatr Nephrol 2018; 33:1713-1721. [PMID: 29956005 DOI: 10.1007/s00467-018-3992-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/12/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Autosomal recessive polycystic kidney disease (ARPKD) is genetically one of the least heterogeneous ciliopathies, resulting primarily from mutations of PKHD1. Nevertheless, 13-20% of patients diagnosed with ARPKD are found not to carry PKHD1 mutations by sequencing. Here, we assess whether PKHD1 copy number variations or second locus mutations explain these cases. METHODS Thirty-six unrelated patients with the clinical diagnosis of ARPKD were screened for PKHD1 point mutations and copy number variations. Patients without biallelic mutations were re-evaluated and screened for second locus mutations targeted by the phenotype, followed, if negative, by clinical exome sequencing. RESULTS Twenty-eight patients (78%) carried PKHD1 point mutations, three of whom on only one allele. Two of the three patients harbored in trans either a duplication of exons 33-35 or a large deletion involving exons 1-55. All eight patients without PKHD1 mutations (22%) harbored mutations in other genes (PKD1 (n = 2), HNF1B (n = 3), NPHP1, TMEM67, PKD1/TSC2). Perinatal respiratory failure, a kidney length > +4SD and early-onset hypertension increase the likelihood of PKHD1-associated ARPKD. A patient compound heterozygous for a second and a last exon truncating PKHD1 mutation (p.Gly4013Alafs*25) presented with a moderate phenotype, indicating that fibrocystin is partially functional in the absence of its C-terminal 62 amino acids. CONCLUSIONS We found all ARPKD cases without PKHD1 point mutations to be phenocopies, and none to be explained by biallelic PKHD1 copy number variations. Screening for copy number variations is recommended in patients with a heterozygous point mutation.
Collapse
Affiliation(s)
- Tamás Szabó
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Petronella Orosz
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Ist Department of Pediatrics, Semmelweis University Budapest, Bókay J. u. 53., Budapest, 1083, Hungary
| | - Eszter Balogh
- Ist Department of Pediatrics, Semmelweis University Budapest, Bókay J. u. 53., Budapest, 1083, Hungary.,MTA-SE Lendulet Nephrogenetic Laboratory, Budapest, Hungary
| | - Eszter Jávorszky
- Ist Department of Pediatrics, Semmelweis University Budapest, Bókay J. u. 53., Budapest, 1083, Hungary.,MTA-SE Lendulet Nephrogenetic Laboratory, Budapest, Hungary
| | - István Máttyus
- Ist Department of Pediatrics, Semmelweis University Budapest, Bókay J. u. 53., Budapest, 1083, Hungary
| | - Csaba Bereczki
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Zoltán Maróti
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Tibor Kalmár
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Attila J Szabó
- Ist Department of Pediatrics, Semmelweis University Budapest, Bókay J. u. 53., Budapest, 1083, Hungary.,MTA-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - George Reusz
- Ist Department of Pediatrics, Semmelweis University Budapest, Bókay J. u. 53., Budapest, 1083, Hungary
| | - Ildikó Várkonyi
- Ist Department of Pediatrics, Semmelweis University Budapest, Bókay J. u. 53., Budapest, 1083, Hungary
| | - Erzsébet Marián
- Department of Pediatrics, Szabolcs-Szatmár-Bereg Jósa András County Hospital, Nyíregyháza, Hungary
| | - Éva Gombos
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Debrecen, Hungary
| | - Orsolya Orosz
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Debrecen, Hungary
| | - László Madar
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Debrecen, Hungary
| | - György Balla
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Kappelmayer
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Debrecen, Hungary
| | - Kálmán Tory
- Ist Department of Pediatrics, Semmelweis University Budapest, Bókay J. u. 53., Budapest, 1083, Hungary. .,MTA-SE Lendulet Nephrogenetic Laboratory, Budapest, Hungary.
| | - István Balogh
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Debrecen, Hungary.
| |
Collapse
|
8
|
Li B, Zhou C, Yi L, Xu L, Xu M. Effect and molecular mechanism of mTOR inhibitor rapamycin on temozolomide-induced autophagic death of U251 glioma cells. Oncol Lett 2017; 15:2477-2484. [PMID: 29434961 DOI: 10.3892/ol.2017.7537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 11/08/2016] [Indexed: 01/10/2023] Open
Abstract
Glioma is a malignant tumor of the glial tissue that is difficult to excise through surgery, with poor patient prognosis. The use of chemotherapeutic drugs alone to treat glioma following surgery results in a high probability of sequelae, such as tumor recurrence. The present study investigated the effects of a novel treatment combination on glioma cells and determined the molecular mechanisms underlying its action. The effect of temozolomide (TMZ) combined with rapamycin (RAPA) on the TMZ-induced autophagic death of U251 glioma cells was examined. The U251 cell line was treated with TMZ combined with RAPA, and the cell survival rate and half maximal inhibitory concentration (IC50) of TMZ/RAPA was detected using the Cell Counting Kit-8 (CCK-8) assay. Flow cytometry was used to detect changes in cell cycle distribution. The formation of acidic vesicular organelles (AVOs) in the cytoplasm was identified using fluorescence microscopy and quantitatively analyzed. Western blotting was performed to detect the expression levels of autophagy-associated proteins Beclin-1 and microtubule associated protein 1 light chain 3 alpha (MAP1LC3A)-I and II. RAPA (1.25 nM) combined with 5 µM TMZ markedly inhibited U251 cell growth. RAPA reinforced TMZ-induced autophagic death, reducing the IC50 value of treatment when combined (TMZ alone, 22.5±3.23 µM vs. TMZ and RAPA, 10.35±2.81 µM). Compared with the control group, the proportion of cells in G2/M were markedly increased following treatment with TMZ combined with RAPA. Acridine orange staining demonstrated that TMZ combined with RAPA could markedly enhance the generation of intracellular AVOs compared with TMZ or RAPA alone. In addition, Beclin-1 and LC3-II protein expression was markedly increased compared with the control and single treatment groups (P<0.05). The results of the present study indicate that RAPA reinforces TMZ-induced autophagic death of U251 glioma cells, providing a novel therapeutic combination for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Bing Li
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| | - Chun Zhou
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| | - Liang Yi
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| | - Lunshan Xu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| | - Minhui Xu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| |
Collapse
|
9
|
Wang S, Livingston MJ, Su Y, Dong Z. Reciprocal regulation of cilia and autophagy via the MTOR and proteasome pathways. Autophagy 2016; 11:607-16. [PMID: 25906314 DOI: 10.1080/15548627.2015.1023983] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Primary cilium is an organelle that plays significant roles in a number of cellular functions ranging from cell mechanosensation, proliferation, and differentiation to apoptosis. Autophagy is an evolutionarily conserved cellular function in biology and indispensable for cellular homeostasis. Both cilia and autophagy have been linked to different types of genetic and acquired human diseases. Their interaction has been suggested very recently, but the underlying mechanisms are still not fully understood. We examined autophagy in cells with suppressed cilia and measured cilium length in autophagy-activated or -suppressed cells. It was found that autophagy was repressed in cells with short cilia. Further investigation showed that MTOR activation was enhanced in cilia-suppressed cells and the MTOR inhibitor rapamycin could largely reverse autophagy suppression. In human kidney proximal tubular cells (HK2), autophagy induction was associated with cilium elongation. Conversely, autophagy inhibition by 3-methyladenine (3-MA) and chloroquine (CQ) as well as bafilomycin A1 (Baf) led to short cilia. Cilia were also shorter in cultured atg5-knockout (KO) cells and in atg7-KO kidney proximal tubular cells in mice. MG132, an inhibitor of the proteasome, could significantly restore cilium length in atg5-KO cells, being concomitant with the proteasome activity. Together, the results suggest that cilia and autophagy regulate reciprocally through the MTOR signaling pathway and ubiquitin-proteasome system.
Collapse
Key Words
- 3-MA, 3-methyladenine
- 70kDa, polypeptide 1
- ANKS6, ankyrin repeat and sterile α motif domain containing 6
- ATG/atg, autophagy-related
- Ac-TUBA, acetylated-tubulin α
- Baf, bafilomycin A1
- CF, confluence
- CQ, chloroquine
- DAPI, 4′-6-diamidino-2-phenylindole
- FBS, fetal bovine serum
- HK2, human kidney proximal tubular cells
- IFT, intraflagellar transport
- KAP3, kinesin family-associated protein 3
- KD, knockdown
- KIF3A/3B, kinesin family member 3A/3B
- KO, knockout
- LTA, lotus tetragonolobus agglutinin
- MAP1LC3B/LC3B, microtubule-associated protein 1 light chain 3 β
- MEF, mouse embryonic fibroblast
- MTOR
- MTOR, mechanistic target of rapamycin
- OFD1, oral-ficial-digital syndrome 1
- PBS, phosphate-buffered saline
- PKD, polycystic kidney disease
- RKRB, Krebs-Henseleit saline containing 25 mM NaHCO3
- RPS6KB1, ribosomal protein S6 kinase
- Rapa, rapamycin
- SD, standard deviation
- autophagy
- cilia
- polycystic kidney disease
- proteasome
Collapse
Affiliation(s)
- Shixuan Wang
- a Department of Cellular Biology and Anatomy ; Medical College of Georgia; Georgia Reagents University and Charlie Norwood VA Medical Center ; Augusta , GA USA
| | | | | | | |
Collapse
|
10
|
Su X, Wu M, Yao G, El-Jouni W, Luo C, Tabari A, Zhou J. Regulation of polycystin-1 ciliary trafficking by motifs at its C-terminus and polycystin-2 but not by cleavage at the GPS site. J Cell Sci 2015; 128:4063-73. [PMID: 26430213 DOI: 10.1242/jcs.160556] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 09/17/2015] [Indexed: 11/20/2022] Open
Abstract
Failure to localize membrane proteins to the primary cilium causes a group of diseases collectively named ciliopathies. Polycystin-1 (PC1, also known as PKD1) is a large ciliary membrane protein defective in autosomal dominant polycystic kidney disease (ADPKD). Here, we developed a large set of PC1 expression constructs and identified multiple sequences, including a coiled-coil motif in the C-terminal tail of PC1, regulating full-length PC1 trafficking to the primary cilium. Ciliary trafficking of wild-type and mutant PC1 depends on the dose of polycystin-2 (PC2, also known as PKD2), and the formation of a PC1-PC2 complex. Modulation of the ciliary trafficking module mediated by the VxP ciliary-targeting sequence and Arf4 and Asap1 does not affect the ciliary localization of full-length PC1. PC1 also promotes PC2 ciliary trafficking. PC2 mutations truncating its C-terminal tail but not those changing the VxP sequence to AxA or impairing the pore of the channel, leading to a dead channel, affect PC1 ciliary trafficking. Cleavage at the GPCR proteolytic site (GPS) of PC1 is not required for PC1 trafficking to cilia. We propose a mutually dependent model for the ciliary trafficking of PC1 and PC2, and that PC1 ciliary trafficking is regulated by multiple cis-acting elements. As all pathogenic PC1 mutations tested here are defective in ciliary trafficking, ciliary trafficking might serve as a functional read-out for ADPKD.
Collapse
Affiliation(s)
- Xuefeng Su
- Harvard Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maoqing Wu
- Harvard Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gang Yao
- Harvard Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wassim El-Jouni
- Harvard Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chong Luo
- Harvard Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Azadeh Tabari
- Harvard Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Zhou
- Harvard Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|