1
|
Comprehensive assessment of myocardial remodeling in ischemic heart disease by synchrotron propagation based X-ray phase contrast imaging. Sci Rep 2021; 11:14020. [PMID: 34234175 PMCID: PMC8263575 DOI: 10.1038/s41598-021-93054-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular research is in an ongoing quest for a superior imaging method to integrate gross-anatomical information with microanatomy, combined with quantifiable parameters of cardiac structure. In recent years, synchrotron radiation-based X-ray Phase Contrast Imaging (X-PCI) has been extensively used to characterize soft tissue in detail. The objective was to use X-PCI to comprehensively quantify ischemic remodeling of different myocardial structures, from cell to organ level, in a rat model of myocardial infarction. Myocardial infarction-induced remodeling was recreated in a well-established rodent model. Ex vivo rodent hearts were imaged by propagation based X-PCI using two configurations resulting in 5.8 µm and 0.65 µm effective pixel size images. The acquired datasets were used for a comprehensive assessment of macrostructural changes including the whole heart and vascular tree morphology, and quantification of left ventricular myocardial thickness, mass, volume, and organization. On the meso-scale, tissue characteristics were explored and compared with histopathological methods, while microstructural changes were quantified by segmentation of cardiomyocytes and calculation of cross-sectional areas. Propagation based X-PCI provides detailed visualization and quantification of morphological changes on whole organ, tissue, vascular as well as individual cellular level of the ex vivo heart, with a single, non-destructive 3D imaging modality.
Collapse
|
2
|
Vohra R, Accorsi A, Kumar A, Walter G, Girgenrath M. Magnetic Resonance Imaging Is Sensitive to Pathological Amelioration in a Model for Laminin-Deficient Congenital Muscular Dystrophy (MDC1A). PLoS One 2015; 10:e0138254. [PMID: 26379183 PMCID: PMC4575026 DOI: 10.1371/journal.pone.0138254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/27/2015] [Indexed: 11/27/2022] Open
Abstract
Purpose To elucidate the reliability of MRI as a non-invasive tool for assessing in vivo muscle health and pathological amelioration in response to Losartan (Angiotensin II Type 1 receptor blocker) in DyW mice (mouse model for Laminin-deficient Congenital Muscular Dystrophy Type 1A). Methods Multiparametric MR quantifications along with histological/biochemical analyses were utilized to measure muscle volume and composition in untreated and Losartan-treated 7-week old DyW mice. Results MRI shows that DyW mice have significantly less hind limb muscle volume and areas of hyperintensity that are absent in WT muscle. DyW mice also have significantly elevated muscle levels (suggestive of inflammation and edema). Muscle T2 returned to WT levels in response to Losartan treatment. When considering only muscle pixels without T2 elevation, DyW T2 levels are significantly lower than WT (suggestive of fibrosis) whereas Losartan-treated animals do not demonstrate this decrease in muscle T2. MRI measurements suggestive of elevated inflammation and fibrosis corroborate with increased Mac-1 positive cells as well as increased Picrosirius red staining/COL1a gene expression that is returned to WT levels in response to Losartan. Conclusions MRI is sensitive to and tightly corresponds with pathological changes in DyW mice and thus is a viable and effective non-invasive tool for assessing pathological changes.
Collapse
MESH Headings
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Disease Models, Animal
- Fibrosis/drug therapy
- Fibrosis/metabolism
- Fibrosis/pathology
- Laminin/metabolism
- Losartan/pharmacology
- Magnetic Resonance Imaging/methods
- Mice
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophies/drug therapy
- Muscular Dystrophies/metabolism
- Muscular Dystrophies/pathology
- Muscular Dystrophies, Limb-Girdle/diet therapy
- Muscular Dystrophies, Limb-Girdle/metabolism
- Muscular Dystrophies, Limb-Girdle/pathology
- Muscular Dystrophy, Animal/drug therapy
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/pathology
- Reproducibility of Results
Collapse
Affiliation(s)
- Ravneet Vohra
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Anthony Accorsi
- Department of Health Sciences, Sargent College, Boston University, Boston, MA, United States of America
| | - Ajay Kumar
- Department of Health Sciences, Sargent College, Boston University, Boston, MA, United States of America
| | - Glenn Walter
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Mahasweta Girgenrath
- Department of Health Sciences, Sargent College, Boston University, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
3
|
Wang J, Xiang B, Lin HY, Liu HY, Freed D, Arora RC, Tian GH. Collateral circulation formation determines the characteristic profiles of contrast-enhanced MRI in the infarcted myocardium of pigs. Acta Pharmacol Sin 2015; 36:463-72. [PMID: 25832427 DOI: 10.1038/aps.2014.158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/30/2014] [Indexed: 12/15/2022]
Abstract
AIM To investigate the relationship between the collateral circulation and contrast-enhanced MR signal change for myocardial infarction (MI) in pigs. METHODS Pigs underwent permanent ligation of two diagonal branches of the left anterior descending artery. First-pass perfusion (FPP) MRI (for detecting myocardial perfusion abnormalities) and delayed enhancement (DE) MRI (for estimating myocardial infarction) using Gd-DTPA were performed at 2 h, 7 d and 4 weeks after the coronary occlusion. Myocardial blood flow (MBF) was evaluated using nonradioactive red-colored microspheres. Histological examination was performed to characterize the infarcts. RESULTS Acute MI performed at 2 h afterwards was characterized by hypoenhancement in both FPP- and DE-MRI, with small and almost unchanged FPP-signal intensity (SI) and DE-SI due to negligible MBF. Subacute MI detected 7 d afterwards showed small but significantly increaseing FPP-SI, and was visible as a sluggish hyperenhancement in DE-MRI with considerably higher DE-SI compared to the normal myocardium; the MBF approached the half-normal value. Chronic MI detected at 4 weeks afterwards showed increasing FPP-SI comparable to the normal myocardium, and a rapid hyperenhancement in DE-MRI with even higher DE-SI; the MBF was close to the normal value. The MBF was correlated with FPP-SI (r=+0.94, P<0.01) and with the peak DE-SI (r=+0.92, P<0.01) at the three MI stages. Remodeled vessels were observed at intra-infarction and peri-infarction zones during the subacute and chronic periods. CONCLUSION Progressive collateral recovery determines the characteristic profiles of contrast-enhanced MRI in acute, subacute and chronic myocardial infarction in pigs. The FPP- and DE-MRI signal profiles not only depend on the loss of tissue viability and enlarged interstitial space, but also on establishing a collateral circulation.
Collapse
|
4
|
Wang J, Xiang B, Lin HY, Liu H, Freed D, Arora RC, Tian G. Differential MR delayed enhancement patterns of chronic myocardial infarction between extracellular and intravascular contrast media. PLoS One 2015; 10:e0121326. [PMID: 25816056 PMCID: PMC4376775 DOI: 10.1371/journal.pone.0121326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/30/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Because the distribution volume and mechanism of extracellular and intravascular MR contrast media differ considerably, the enhancement pattern of chronic myocardial infarction with extracellular or intravascular media might also be different. This study aims to investigate the differences in MR enhancement patterns of chronic myocardial infarction between extracellular and intravascular contrast media. MATERIALS AND METHODS Twenty pigs with myocardial infarction underwent cine MRI, first pass perfusion MRI and delayed enhancement MRI with extracellular or intravascular media at four weeks after coronary occlusion. Myocardial blood flow (MBF) was determined with microsphere measurement. The infarction histopathological changes were evaluated by hematoxylin and eosin staining and Masson's trichrome method. RESULTS Cine MRI revealed the reduced wall thickening in chronic infarction compared with normal myocardium. Moreover, significant wall thinning in chronic infarction was observed in cine MRI. Peak first-pass signal intensity didn't significantly differ between chronic infarction and normal myocardium no matter what kinds of contrast media. At the following delayed enhancement phase, extracellular media-enhanced signal intensity was significantly higher in chronic infarction than in normal myocardium. Conversely, intravascular media-enhanced signal intensity was almost equivalent among chronic infarction and normal myocardium. At four weeks after infarction, MBF in chronic infarction approached to that in normal myocardium. Large thick-walled vessels were detected at peri-infarction zones. The cardiomyocytes were replaced by scar tissue consisting of dilated blood vessels and discrete fibers of collagen. CONCLUSIONS Chronic infarction was characterized by the significantly reduced wall thickening and the definite wall thinning. First-pass myocardial perfusion defect was not detected in chronic infarction with two media due to the significantly recovered MBF and well-developed collateral vessels. Infarction remodeling enlarged the extracellular compartment, which was available for extracellular media but not accessible to intravascular media. Extracellular media identified chronic infarction as the hyper-enhancement; nonetheless, intravascular media didn't provide delayed enhancement.
Collapse
Affiliation(s)
- Jian Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Street, Wuhan, Hubei, China 430022
- National Research Council of Canada, 435 Ellice Avenue, Winnipeg, Manitoba, Canada R3B 1Y6
- Department of Physiology, Faculty of Medicine, University of Manitoba, 727 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 3P5
- * E-mail:
| | - Bo Xiang
- National Research Council of Canada, 435 Ellice Avenue, Winnipeg, Manitoba, Canada R3B 1Y6
- Department of Physiology, Faculty of Medicine, University of Manitoba, 727 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 3P5
| | - Hung Yu Lin
- National Research Council of Canada, 435 Ellice Avenue, Winnipeg, Manitoba, Canada R3B 1Y6
| | - Hongyu Liu
- Department of Cardiac Surgery, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang, China 150081
| | - Darren Freed
- National Research Council of Canada, 435 Ellice Avenue, Winnipeg, Manitoba, Canada R3B 1Y6
- Department of Physiology, Faculty of Medicine, University of Manitoba, 727 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 3P5
- Cardiac Science Program, Institute of Cardiovascular Science, St. Boniface General Hospital, 409 Tache Avenue, Winnipeg, Manitoba, Canada R2H 2A6
| | - Rakesh C. Arora
- National Research Council of Canada, 435 Ellice Avenue, Winnipeg, Manitoba, Canada R3B 1Y6
- Department of Physiology, Faculty of Medicine, University of Manitoba, 727 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 3P5
- Cardiac Science Program, Institute of Cardiovascular Science, St. Boniface General Hospital, 409 Tache Avenue, Winnipeg, Manitoba, Canada R2H 2A6
| | - Ganghong Tian
- National Research Council of Canada, 435 Ellice Avenue, Winnipeg, Manitoba, Canada R3B 1Y6
- Department of Physiology, Faculty of Medicine, University of Manitoba, 727 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 3P5
| |
Collapse
|