1
|
Romero-Hidalgo S, Sagaceta-Mejía J, Villalobos-Comparán M, Tejero ME, Domínguez-Pérez M, Jacobo-Albavera L, Posadas-Sánchez R, Vargas-Alarcón G, Posadas-Romero C, Macías-Kauffer L, Vadillo-Ortega F, Contreras-Sieck MA, Acuña-Alonzo V, Barquera R, Macín G, Binia A, Guevara-Chávez JG, Sebastián-Medina L, Menjívar M, Canizales-Quinteros S, Carnevale A, Villarreal-Molina T. Selection scan in Native Americans of Mexico identifies FADS2 rs174616: Evidence of gene-diet interactions affecting lipid levels and Delta-6-desaturase activity. Heliyon 2024; 10:e35477. [PMID: 39166092 PMCID: PMC11334880 DOI: 10.1016/j.heliyon.2024.e35477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Searching for positive selection signals across genomes has identified functional genetic variants responding to environmental change. In Native Americans of Mexico, we used the fixation index (Fst) and population branch statistic (PBS) to identify SNPs suggesting positive selection. The 103 most differentiated SNPs were tested for associations with metabolic traits, the most significant association was FADS2/rs174616 with body mass index (BMI). This variant lies within a linkage disequilibrium (LD) block independent of previously reported FADS selection signals and has not been clearly associated with metabolic phenotypes. We tested this variant in two independent cohorts with cardiometabolic data. In the Genetics of Atherosclerotic Disease (GEA) cohort, the derived allele (T) was associated with increased BMI, lower LDL-C levels and a decreased risk of subclinical atherosclerosis in women. Significant gene-diet interactions affected lipid, apolipoprotein and adiponectin levels with differences according to sex, involving mainly total and complex dietary carbohydrate%. In the Genotype-related Effects of PUFA trial, the derived allele was associated with lower Δ-6 desaturase activity and erythrocyte membrane dihomo-gamma-linolenic acid (DGLA) levels, and with increased Δ-5 desaturase activity and eicosapentaenoic acid levels. This variant interacted with dietary carbohydrate% affecting Δ-6 desaturase activity. Notably, the relationship of DGLA and other erythrocyte membrane LC-PUFA indices with HOMA-IR differed according to rs174616 genotype, which has implications regarding how these indices should be interpreted. In conclusion, this observational study identified rs174616 as a signal suggesting selection in an independent linkage disequilibrium block, was associated with cardiometabolic and erythrocyte measurements of LC-PUFA in two independent Mexican cohorts and showed significant gene-diet interactions.
Collapse
Affiliation(s)
- Sandra Romero-Hidalgo
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Janine Sagaceta-Mejía
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | - María Elizabeth Tejero
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Mayra Domínguez-Pérez
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Leonor Jacobo-Albavera
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Rosalinda Posadas-Sánchez
- Departamento de Endocrinología, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | - Gilberto Vargas-Alarcón
- Departmento de Biología Molecular y Dirección de Investigación, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Carlos Posadas-Romero
- Departamento de Endocrinología, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | - Luis Macías-Kauffer
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química UNAM e Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Felipe Vadillo-Ortega
- Unidad de Vinculación de la Facultad de Medicina UNAM en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | - Víctor Acuña-Alonzo
- Laboratorio de Genética Molecular, Escuela Nacional de Antropología e Historia, Mexico City, Mexico
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Leipzig, Germany
- Anthropology (MPI-EVA), Leipzig, Germany
| | - Gastón Macín
- Escuela Nacional de Antropología e Historia, Mexico City, Mexico
| | - Aristea Binia
- Nestlé Institute of Health Sciences, Innovation Park, EPFL, Lausanne, Switzerland
| | - Jose Guadalupe Guevara-Chávez
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Leticia Sebastián-Medina
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Martha Menjívar
- Departamento de Biología, Facultad de Química UNAM, Mexico City and Unidad Académica de Ciencias y Tecnología, UNAM-Yucatán, Mérida, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química UNAM e Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alessandra Carnevale
- Laboratorio de Enfermedades Mendelianas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Teresa Villarreal-Molina
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
2
|
Bharti N, Banerjee R, Achalare A, Kasibhatla SM, Joshi R. Estimation of genetic variation in vitiligo associated genes: Population genomics perspective. BMC Genom Data 2024; 25:72. [PMID: 39060965 PMCID: PMC11282599 DOI: 10.1186/s12863-024-01254-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Vitiligo is an auto-immune progressive depigmentation disorder of the skin due to loss of melanocytes. Genetic risk is one of the important factors for development of vitiligo. Preponderance of vitiligo in certain ethnicities is known which can be analysed by understanding the distribution of allele frequencies across normal populations. Earlier GWAS identified 108 risk alleles for vitiligo in Europeans and East Asians. In this study, 64 of these risk alleles were used for analysing their enrichment and depletion across populations (1000 Genomes Project and IndiGen) with reference to 1000 Genomes dataset. Genetic risk scores were calculated and Fisher's exact test was performed to understand statistical significance of their variation in each population with respect to 1000 Genomes dataset as reference. In addition to SNPs reported in GWAS, significant variation in allele frequencies of 1079 vitiligo-related genes were also analysed. Two-tailed Chi-square test and Bonferroni's multiple adjustment values along with fixation index (≥ 0.5) and minimum allele frequency (≥ 0.05) were calculated and used to prioritise the variants based on pairwise comparison across populations. RESULTS Risk alleles rs1043101 and rs10768122 belong to 3 prime UTR of glutamate receptor gene SLC1A2 are found to be highly enriched in the South Asian population when compared with the 'global normal' population. Intron variant rs4766578 (ATXN2) was found to be deleted in SAS, EAS and AFR and enriched in EUR and AMR1. This risk allele is found to be under positive selection in SAS, AMR1 and EUR. From the ancillary vitiligo gene list, nonsynonymous variant rs16891982 was found to be enriched in the European and the Admixed American populations and depleted in all others. rs2279238 and rs11039155 belonging to the LXR-α gene involved in regulation of metalloproteinase 2 and 9 (melanocyte precursors) were found to be associated with vitiligo in the North Indian population (in earlier study). CONCLUSION The differential enrichment/depletion profile of the risk alleles provides insight into the underlying inter-population variations. This would provide clues towards prioritisation of SNPs associated with vitiligo thereby elucidating its preponderance in different ethnic groups.
Collapse
Affiliation(s)
- Neeraj Bharti
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Innovation Park, Pashan, Pune, 411008, Maharashtra, India
| | - Ruma Banerjee
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Innovation Park, Pashan, Pune, 411008, Maharashtra, India
| | - Archana Achalare
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Innovation Park, Pashan, Pune, 411008, Maharashtra, India
| | - Sunitha Manjari Kasibhatla
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Innovation Park, Pashan, Pune, 411008, Maharashtra, India
| | - Rajendra Joshi
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Innovation Park, Pashan, Pune, 411008, Maharashtra, India.
| |
Collapse
|
3
|
Bettim CA, da Silva AV, Kahmann A, Dorn M, Alho CS, Avila E. MC1R and age heteroclassification of face phenotypes in the Rio Grande do Sul population. Int J Legal Med 2024; 138:859-872. [PMID: 38087053 DOI: 10.1007/s00414-023-03143-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/22/2023] [Indexed: 04/11/2024]
Abstract
BACKGROUND Forensic DNA phenotyping (FDP) consists of the use of methodologies for predicting externally visible characteristics (EVCs) from the genetic material of biological samples found in crime scenes and has proven to be a promising tool in aiding human identification in police activities. Currently, methods based on multiplex assays and statistical models of prediction of EVCs related to hair, skin, and iris pigmentation using panels of SNP and INDEL biomarkers have already been developed and validated by the forensic scientific community. As well as traces of pigmentation, an individual's perceived age (PA) can also be considered an EVC and its estimation in unknown individuals can be useful for the progress of investigations. Liu and colleagues (2016) were pioneers in evidencing that, in addition to lifestyle and environmental factors, the presence of SNP and INDEL variants in the MC1R gene - which encodes a transmembrane receptor responsible for regulating melanin production - seems to contribute to an individual's PA. The group highlighted the association between these MC1R gene polymorphisms and the PA in the European population, where carriers of risk haplotypes appeared to be up to 2 years older in comparison to their chronological age (CA). PURPOSE Understanding that genotype-phenotype relationships cannot be extrapolated between different population groups, this study aimed to test this hypothesis and verify the applicability of this variant panel in the Rio Grande do Sul admixed population. METHODS Based on genomic data from a sample of 261 volunteers representative of gaucho population and using a multiple linear regression (MLR) model, our group was able to verify a significant association among nine intronic variants in loci adjacent to MC1R (e.g., AFG3L1P, TUBB3, FANCA) and facial age appearance, whose PA was defined after age heteroclassification of standard frontal face images through 11 assessors. RESULTS Different from that observed in European populations, our results show that the presence of effect alleles (R) of the selected variants in our sample influenced both younger and older face phenotypes. The influence of each variant on PA is expressed as β values. CONCLUSIONS There are important molecular mechanisms behind the effects of MC1R locus on PA, and the genomic background of each population seems to be crucial to determine this influence.
Collapse
Affiliation(s)
- Cássio Augusto Bettim
- Structural Bioinformatics and Computational Biology Lab, Institute of Informatics, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Forensic Science, Porto Alegre, RS, Brazil
| | - Alexsandro Vasconcellos da Silva
- National Science and Technology Institute for Forensic Science, Porto Alegre, RS, Brazil
- Technical Scientific and Identification Sections, Superintendency of Federal Police in Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alessandro Kahmann
- National Science and Technology Institute for Forensic Science, Porto Alegre, RS, Brazil.
- National Science and Technology Institute for Children Cancer Biology and Pediatric Oncology, Porto Alegre, RS, Brazil.
- Interdisciplinary Department, Federal University of Rio Grande Do Sul, Tramandaí, RS, Brazil.
| | - Márcio Dorn
- Structural Bioinformatics and Computational Biology Lab, Institute of Informatics, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Forensic Science, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children Cancer Biology and Pediatric Oncology, Porto Alegre, RS, Brazil
| | - Clarice Sampaio Alho
- National Science and Technology Institute for Forensic Science, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children Cancer Biology and Pediatric Oncology, Porto Alegre, RS, Brazil
| | - Eduardo Avila
- National Science and Technology Institute for Forensic Science, Porto Alegre, RS, Brazil
- Technical Scientific and Identification Sections, Superintendency of Federal Police in Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children Cancer Biology and Pediatric Oncology, Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
Advancement in Human Face Prediction Using DNA. Genes (Basel) 2023; 14:genes14010136. [PMID: 36672878 PMCID: PMC9858985 DOI: 10.3390/genes14010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
The rapid improvements in identifying the genetic factors contributing to facial morphology have enabled the early identification of craniofacial syndromes. Similarly, this technology can be vital in forensic cases involving human identification from biological traces or human remains, especially when reference samples are not available in the deoxyribose nucleic acid (DNA) database. This review summarizes the currently used methods for predicting human phenotypes such as age, ancestry, pigmentation, and facial features based on genetic variations. To identify the facial features affected by DNA, various two-dimensional (2D)- and three-dimensional (3D)-scanning techniques and analysis tools are reviewed. A comparison between the scanning technologies is also presented in this review. Face-landmarking techniques and face-phenotyping algorithms are discussed in chronological order. Then, the latest approaches in genetic to 3D face shape analysis are emphasized. A systematic review of the current markers that passed the threshold of a genome-wide association (GWAS) of single nucleotide polymorphism (SNP)-face traits from the GWAS Catalog is also provided using the preferred reporting items for systematic reviews and meta-analyses (PRISMA), approach. Finally, the current challenges in forensic DNA phenotyping are analyzed and discussed.
Collapse
|
5
|
Hohl DM, González R, Di Santo Meztler GP, Patiño-Rico J, Dejean C, Avena S, Gutiérrez MDLÁ, Catanesi CI. Applicability of the IrisPlex system for eye color prediction in an admixed population from Argentina. Ann Hum Genet 2022; 86:297-327. [PMID: 35946314 DOI: 10.1111/ahg.12480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022]
Abstract
Eye color prediction based on an individual's genetic information is of interest in the field of forensic genetics. In recent years, researchers have studied different genes and markers associated with this externally visible characteristic and have developed methods for its prediction. The IrisPlex represents a validated tool for homogeneous populations, though its applicability in populations of mixed ancestry is limited, mainly regarding the prediction of intermediate eye colors. With the aim of validating the applicability of this system in an admixed population from Argentina (n = 302), we analyzed the six single nucleotide variants used in that multiplex for eye color and four additional SNPs, and evaluated its prediction ability. We also performed a genotype-phenotype association analysis. This system proved to be useful when dealing with the extreme ends of the eye color spectrum (blue and brown) but presented difficulties in determining the intermediate phenotypes (green), which were found in a large proportion of our population. We concluded that these genetic tools should be used with caution in admixed populations and that more studies are required in order to improve the prediction of intermediate phenotypes.
Collapse
Affiliation(s)
- Diana María Hohl
- Laboratorio de Diversidad Genética, Instituto Multidisciplinario de Biología Celular IMBICE (CONICET-UNLP-CIC), La Plata, Buenos Aires, Argentina
| | - Rebeca González
- Laboratorio de Diversidad Genética, Instituto Multidisciplinario de Biología Celular IMBICE (CONICET-UNLP-CIC), La Plata, Buenos Aires, Argentina
| | - Gabriela Paula Di Santo Meztler
- Centro de Investigación de Proteínas Vegetales (CIPROVE-Centro Asociado CICPBA-UNLP), Depto. de Cs. Biológicas, Facultad de Cs. Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Jessica Patiño-Rico
- Centro de Ciencias Naturales, Ambientales y Antropológicas, Universidad Maimónides, Buenos Aires, Argentina
| | - Cristina Dejean
- Centro de Ciencias Naturales, Ambientales y Antropológicas, Universidad Maimónides, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Filosofía y Letras, Instituto de Ciencias Antropológicas (ICA), Sección Antropología Biológica, Buenos Aires, Argentina
| | - Sergio Avena
- Centro de Ciencias Naturales, Ambientales y Antropológicas, Universidad Maimónides, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Buenos Aires, Argentina
| | - María De Los Ángeles Gutiérrez
- Centro de Investigaciones del Medioambiente CIM, Facultad de Ciencias Exactas-CONICET, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Cecilia Inés Catanesi
- Laboratorio de Diversidad Genética, Instituto Multidisciplinario de Biología Celular IMBICE (CONICET-UNLP-CIC), La Plata, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Buenos Aires, Argentina.,Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| |
Collapse
|
6
|
Amr A, Hinderer M, Griebel L, Deuber D, Egger C, Sedaghat-Hamedani F, Kayvanpour E, Huhn D, Haas J, Frese K, Schweig M, Marnau N, Krämer A, Durand C, Battke F, Prokosch HU, Backes M, Keller A, Schröder D, Katus HA, Frey N, Meder B. Controlling my genome with my smartphone: first clinical experiences of the PROMISE system. Clin Res Cardiol 2021; 111:638-650. [PMID: 34694434 PMCID: PMC9151530 DOI: 10.1007/s00392-021-01942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/13/2021] [Indexed: 12/01/2022]
Abstract
Background The development of Precision Medicine strategies requires high-dimensional phenotypic and genomic data, both of which are highly privacy-sensitive data types. Conventional data management systems lack the capabilities to sufficiently handle the expected large quantities of such sensitive data in a secure manner. PROMISE is a genetic data management concept that implements a highly secure platform for data exchange while preserving patient interests, privacy, and autonomy. Methods The concept of PROMISE to democratize genetic data was developed by an interdisciplinary team. It integrates a sophisticated cryptographic concept that allows only the patient to grant selective access to defined parts of his genetic information with single DNA base-pair resolution cryptography. The PROMISE system was developed for research purposes to evaluate the concept in a pilot study with nineteen cardiomyopathy patients undergoing genotyping, questionnaires, and longitudinal follow-up. Results The safety of genetic data was very important to 79%, and patients generally regarded the data as highly sensitive. More than half the patients reported that their attitude towards the handling of genetic data has changed after using the PROMISE app for 4 months (median). The patients reported higher confidence in data security and willingness to share their data with commercial third parties, including pharmaceutical companies (increase from 5 to 32%). Conclusion PROMISE democratizes genomic data by a transparent, secure, and patient-centric approach. This clinical pilot study evaluating a genetic data infrastructure is unique and shows that patient’s acceptance of data sharing can be increased by patient-centric decision-making. Graphic abstract ![]()
Collapse
Affiliation(s)
- Ali Amr
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), 69120, Heidelberg, Germany
| | - Marc Hinderer
- Chair of Medical Informatics, Friedrich Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Lena Griebel
- Chair of Medical Informatics, Friedrich Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Dominic Deuber
- Chair for Applied Cryptography, Friedrich-Alexander University Erlangen-Nürnberg, 90429, Erlangen, Germany
| | - Christoph Egger
- Chair for Applied Cryptography, Friedrich-Alexander University Erlangen-Nürnberg, 90429, Erlangen, Germany
| | - Farbod Sedaghat-Hamedani
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), 69120, Heidelberg, Germany
| | - Elham Kayvanpour
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), 69120, Heidelberg, Germany
| | - Daniel Huhn
- Department of General Internal Medicine and Psychosomatic, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Jan Haas
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), 69120, Heidelberg, Germany
| | - Karen Frese
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), 69120, Heidelberg, Germany
| | | | - Ninja Marnau
- CISPA Helmholtz Center for Information Security, 66123, Saarbrücken, Germany
| | - Annika Krämer
- Chair for Information Security and Cryptography, Saarland University, 66123, Saarbrücken, Germany
| | - Claudia Durand
- CeGaT GmbH, Center for Genomics and Transcriptomics, 72076, Tübingen, Germany
| | - Florian Battke
- CeGaT GmbH, Center for Genomics and Transcriptomics, 72076, Tübingen, Germany
| | - Hans-Ulrich Prokosch
- Chair of Medical Informatics, Friedrich Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Michael Backes
- CISPA Helmholtz Center for Information Security, 66123, Saarbrücken, Germany.,Chair for Information Security and Cryptography, Saarland University, 66123, Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Dominique Schröder
- Chair for Applied Cryptography, Friedrich-Alexander University Erlangen-Nürnberg, 90429, Erlangen, Germany
| | - Hugo A Katus
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), 69120, Heidelberg, Germany
| | - Norbert Frey
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), 69120, Heidelberg, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), 69120, Heidelberg, Germany. .,Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA, 94305, USA.
| |
Collapse
|
7
|
Carratto TMT, Marcorin L, do Valle-Silva G, de Oliveira MLG, Donadi EA, Simões AL, Castelli EC, Mendes-Junior CT. Prediction of eye and hair pigmentation phenotypes using the HIrisPlex system in a Brazilian admixed population sample. Int J Legal Med 2021; 135:1329-1339. [PMID: 33884487 DOI: 10.1007/s00414-021-02554-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/26/2021] [Indexed: 01/23/2023]
Abstract
Human pigmentation is a complex trait, probably involving more than 100 genes. Predicting phenotypes using SNPs present in those genes is important for forensic purpose. For this, the HIrisPlex tool was developed for eye and hair color prediction, with both models achieving high accuracy among Europeans. Its evaluation in admixed populations is important, since they present a higher frequency of intermediate phenotypes, and HIrisPlex has demonstrated limitations in such predictions; therefore, the performance of this tool may be impaired in such populations. Here, we evaluate the set of 24 markers from the HIrisPlex system in 328 individuals from Ribeirão Preto (SP) region, predicting eye and hair color and comparing the predictions with their real phenotypes. We used the HaloPlex Target Enrichment System and MiSeq Personal Sequencer platform for massively parallel sequencing. The prediction of eye and hair color was accomplished by the HIrisPlex online tool, using the default prediction settings. Ancestry was estimated using the SNPforID 34-plex to observe if and how an individual's ancestry background would affect predictions in this admixed sample. Our sample presented major European ancestry (70.5%), followed by African (21.1%) and Native American/East Asian (8.4%). HIrisPlex presented an overall sensitivity of 0.691 for hair color prediction, with sensitivities ranging from 0.547 to 0.782. The lowest sensitivity was observed for individuals with black hair, who present a reduced European contribution (48.4%). For eye color prediction, the overall sensitivity was 0.741, with sensitivities higher than 0.85 for blue and brown eyes, although it failed in predicting intermediate eye color. Such struggle in predicting this phenotype category is in accordance with what has been seen in previous studies involving HIrisPlex. Individuals with brown eye color are more admixed, with European ancestry decreasing to 62.6%; notwithstanding that, sensitivity for brown eyes was almost 100%. Overall sensitivity increases to 0.791 when a 0.7 threshold is set, though 12.5% of the individuals become undefined. When combining eye and hair prediction, hit rates between 51.3 and 68.9% were achieved. Despite the difficulties with intermediate phenotypes, we have shown that HIrisPlex results can be very helpful when interpreted with caution.
Collapse
Affiliation(s)
- Thássia Mayra Telles Carratto
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, SP, 14040-901, Ribeirão Preto, Brazil
| | - Letícia Marcorin
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Guilherme do Valle-Silva
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, SP, 14040-901, Ribeirão Preto, Brazil
| | | | - Eduardo Antônio Donadi
- Divisão de Imunologia Clínica, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14048-900, Brazil
| | - Aguinaldo Luiz Simões
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Erick C Castelli
- Departamento de Patologia, Faculdade de Medicina de Botucatu, Unesp - Universidade Estadual Paulista, Botucatu, SP, 18618-970, Brazil
| | - Celso Teixeira Mendes-Junior
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, SP, 14040-901, Ribeirão Preto, Brazil.
| |
Collapse
|
8
|
Palmal S, Adhikari K, Mendoza-Revilla J, Fuentes-Guajardo M, Silva de Cerqueira CC, Bonfante B, Chacón-Duque JC, Sohail A, Hurtado M, Villegas V, Granja V, Jaramillo C, Arias W, Lozano RB, Everardo-Martínez P, Gómez-Valdés J, Villamil-Ramírez H, Hünemeier T, Ramallo V, Parolin ML, Gonzalez-José R, Schüler-Faccini L, Bortolini MC, Acuña-Alonzo V, Canizales-Quinteros S, Gallo C, Poletti G, Bedoya G, Rothhammer F, Balding D, Faux P, Ruiz-Linares A. Prediction of eye, hair and skin colour in Latin Americans. Forensic Sci Int Genet 2021; 53:102517. [PMID: 33865096 DOI: 10.1016/j.fsigen.2021.102517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
Here we evaluate the accuracy of prediction for eye, hair and skin pigmentation in a dataset of > 6500 individuals from Mexico, Colombia, Peru, Chile and Brazil (including genome-wide SNP data and quantitative/categorical pigmentation phenotypes - the CANDELA dataset CAN). We evaluated accuracy in relation to different analytical methods and various phenotypic predictors. As expected from statistical principles, we observe that quantitative traits are more sensitive to changes in the prediction models than categorical traits. We find that Random Forest or Linear Regression are generally the best performing methods. We also compare the prediction accuracy of SNP sets defined in the CAN dataset (including 56, 101 and 120 SNPs for eye, hair and skin colour prediction, respectively) to the well-established HIrisPlex-S SNP set (including 6, 22 and 36 SNPs for eye, hair and skin colour prediction respectively). When training prediction models on the CAN data, we observe remarkably similar performances for HIrisPlex-S and the larger CAN SNP sets for the prediction of hair (categorical) and eye (both categorical and quantitative), while the CAN sets outperform HIrisPlex-S for quantitative, but not for categorical skin pigmentation prediction. The performance of HIrisPlex-S, when models are trained in a world-wide sample (although consisting of 80% Europeans, https://hirisplex.erasmusmc.nl), is lower relative to training in the CAN data (particularly for hair and skin colour). Altogether, our observations are consistent with common variation of eye and hair colour having a relatively simple genetic architecture, which is well captured by HIrisPlex-S, even in admixed Latin Americans (with partial European ancestry). By contrast, since skin pigmentation is a more polygenic trait, accuracy is more sensitive to prediction SNP set size, although here this effect was only apparent for a quantitative measure of skin pigmentation. Our results support the use of HIrisPlex-S in the prediction of categorical pigmentation traits for forensic purposes in Latin America, while illustrating the impact of training datasets on its accuracy.
Collapse
Affiliation(s)
- Sagnik Palmal
- UMR 7268 ADES, CNRS, Aix-Marseille Université, EFS, Faculté de Médecine Timone, Marseille 13005, France
| | - Kaustubh Adhikari
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Javier Mendoza-Revilla
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú; Unit of Human Evolutionary Genetics, Institut Pasteur, Paris 75015, France
| | - Macarena Fuentes-Guajardo
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica 1000000, Chile
| | | | - Betty Bonfante
- UMR 7268 ADES, CNRS, Aix-Marseille Université, EFS, Faculté de Médecine Timone, Marseille 13005, France
| | - Juan Camilo Chacón-Duque
- Division of Vertebrates and Anthropology, Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK
| | - Anood Sohail
- Department of Biotechnology, Kinnaird College for Women, 93 - Jail Road, Lahore 54000, Pakistan
| | - Malena Hurtado
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Valeria Villegas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Vanessa Granja
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Claudia Jaramillo
- Department of Biotechnology, Kinnaird College for Women, 93 - Jail Road, Lahore 54000, Pakistan; GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | - William Arias
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | - Rodrigo Barquera Lozano
- National Institute of Anthropology and History, Mexico City 6600, Mexico; Department of Archaeogenetics, Max Planck Institute for the Science of Human History (MPI-SHH), Jena 07745, Germany
| | | | - Jorge Gómez-Valdés
- National Institute of Anthropology and History, Mexico City 6600, Mexico
| | - Hugo Villamil-Ramírez
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City 4510, Mexico
| | - Tábita Hünemeier
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
| | - Virginia Ramallo
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil; Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn U9129ACD, Argentina
| | - Maria-Laura Parolin
- Instituto de Diversidad y Evolución Austral (IDEAus), Centro Nacional Patagónico, CONICET, Puerto Madryn, Argentina
| | - Rolando Gonzalez-José
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn U9129ACD, Argentina
| | - Lavinia Schüler-Faccini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | | | - Samuel Canizales-Quinteros
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City 4510, Mexico
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Gabriel Bedoya
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | - Francisco Rothhammer
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; Programa de Genetica Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Arica 1000000, Chile
| | - David Balding
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London WC1E 6BT, UK; Melbourne Integrative Genomics, Schools of BioSciences and Mathematics & Statistics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Pierre Faux
- UMR 7268 ADES, CNRS, Aix-Marseille Université, EFS, Faculté de Médecine Timone, Marseille 13005, France.
| | - Andrés Ruiz-Linares
- UMR 7268 ADES, CNRS, Aix-Marseille Université, EFS, Faculté de Médecine Timone, Marseille 13005, France; Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London WC1E 6BT, UK; Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, China.
| |
Collapse
|
9
|
Reis LB, Bakos RM, Vianna FSL, Macedo GS, Jacovas VC, Ribeiro-Dos-Santos AM, Santos S, Bakos L, Ashton-Prolla P. Skin pigmentation polymorphisms associated with increased risk of melanoma in a case-control sample from southern Brazil. BMC Cancer 2020; 20:1069. [PMID: 33167923 PMCID: PMC7650158 DOI: 10.1186/s12885-020-07485-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/02/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Melanoma is the most aggressive type of skin cancer and is associated with environmental and genetic risk factors. It originates in melanocytes, the pigment-producing cells. Single nucleotide polymorphisms (SNPs) in pigmentation genes have been described in melanoma risk modulation, but knowledge in the field is still limited. METHODS In a case-control approach (107 cases and 119 controls), we investigated the effect of four pigmentation gene SNPs (TYR rs1126809, HERC2 rs1129038, SLC24A5 rs1426654, and SLC45A2 rs16891982) on melanoma risk in individuals from southern Brazil using a multivariate logistic regression model and multifactor dimensionality reduction (MDR) analysis. RESULTS Two SNPs were associated with an increased risk of melanoma in a dominant model: rs1129038AA and rs1426654AA [OR = 2.094 (95% CI: 1.106-3.966), P = 2.3 10- 2 and OR = 7.126 (95% CI: 1.873-27.110), P = 4.0 10- 3, respectively]. SNP rs16891982CC was associated with a lower risk to melanoma development in a log-additive model when the allele C was inherited [OR = 0.081 (95% CI: 0.008-0.782), P = 3 10- 2]. In addition, MDR analysis showed that the combination of the rs1426654AA and rs16891982GG genotypes was associated with a higher risk for melanoma (P = 3 10- 3), with a redundant effect. CONCLUSIONS These results contribute to the current knowledge and indicate that epistatic interaction of these SNPs, with an additive or correlational effect, may be involved in modulating the risk of melanoma in individuals from a geographic region with a high incidence of the disease.
Collapse
Affiliation(s)
- Larissa B Reis
- Serviço de Pesquisa Experimental, Laboratório de Medicina Genômica, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, Porto Alegre, Rio Grande do Sul, 2350, Brazil.,Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Renato M Bakos
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Serviço de Dermatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Fernanda S L Vianna
- Serviço de Pesquisa Experimental, Laboratório de Medicina Genômica, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, Porto Alegre, Rio Grande do Sul, 2350, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Gabriel S Macedo
- Serviço de Pesquisa Experimental, Laboratório de Medicina Genômica, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, Porto Alegre, Rio Grande do Sul, 2350, Brazil
| | - Vanessa C Jacovas
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Sidney Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - Lúcio Bakos
- Serviço de Dermatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Patricia Ashton-Prolla
- Serviço de Pesquisa Experimental, Laboratório de Medicina Genômica, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, Porto Alegre, Rio Grande do Sul, 2350, Brazil. .,Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil. .,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
10
|
Le L, Escobar IE, Ho T, Lefkovith AJ, Latteri E, Haltaufderhyde KD, Dennis MK, Plowright L, Sviderskaya EV, Bennett DC, Oancea E, Marks MS. SLC45A2 protein stability and regulation of melanosome pH determine melanocyte pigmentation. Mol Biol Cell 2020; 31:2687-2702. [PMID: 32966160 PMCID: PMC7927184 DOI: 10.1091/mbc.e20-03-0200] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
SLC45A2 encodes a putative transporter expressed primarily in pigment cells. SLC45A2 mutations cause oculocutaneous albinism type 4 (OCA4) and polymorphisms are associated with pigmentation variation, but the localization, function, and regulation of SLC45A2 and its variants remain unknown. We show that SLC45A2 localizes to a cohort of mature melanosomes that only partially overlaps with the cohort expressing the chloride channel OCA2. SLC45A2 expressed ectopically in HeLa cells localizes to lysosomes and raises lysosomal pH, suggesting that in melanocytes SLC45A2 expression, like OCA2 expression, results in the deacidification of maturing melanosomes to support melanin synthesis. Interestingly, OCA2 overexpression compensates for loss of SLC45A2 expression in pigmentation. Analyses of SLC45A2- and OCA2-deficient mouse melanocytes show that SLC45A2 likely functions later during melanosome maturation than OCA2. Moreover, the light skin-associated SLC45A2 allelic F374 variant restores only moderate pigmentation to SLC45A2-deficient melanocytes due to rapid proteasome-dependent degradation resulting in lower protein expression levels in melanosomes than the dark skin-associated allelic L374 variant. Our data suggest that SLC45A2 maintains melanosome neutralization that is initially orchestrated by transient OCA2 activity to support melanization at late stages of melanosome maturation, and that a common allelic variant imparts reduced activity due to protein instability.
Collapse
Affiliation(s)
- Linh Le
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Iliana E Escobar
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912
| | - Tina Ho
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ariel J Lefkovith
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Emily Latteri
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and
| | - Kirk D Haltaufderhyde
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912
| | - Megan K Dennis
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and.,Biology Department, Marist College, Poughkeepsie, NY 12601
| | - Lynn Plowright
- Molecular & Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Elena V Sviderskaya
- Molecular & Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Dorothy C Bennett
- Molecular & Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Elena Oancea
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912
| | - Michael S Marks
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and
| |
Collapse
|
11
|
Andersen JD, Meyer OS, Simão F, Jannuzzi J, Carvalho E, Andersen MM, Pereira V, Børsting C, Morling N, Gusmão L. Skin pigmentation and genetic variants in an admixed Brazilian population of primarily European ancestry. Int J Legal Med 2020; 134:1569-1579. [PMID: 32385594 DOI: 10.1007/s00414-020-02307-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/22/2020] [Indexed: 01/16/2023]
Abstract
Although many genes have been shown to be associated with human pigmentary traits and forensic prediction assays exist (e.g. HIrisPlex-S), the genetic knowledge about skin colour remains incomplete. The highly admixed Brazilian population is an interesting study population for investigation of the complex genotype-phenotype architecture of human skin colour because of its large variation. Here, we compared variants in 22 pigmentary genes with quantitative skin pigmentation levels on the buttock, arm, and forehead areas of 266 genetically admixed Brazilian individuals. The genetic ancestry of each individual was estimated by typing 46 AIM-InDels. The mean proportion of genetic ancestry was 68.8% European, 20.8% Sub-Saharan African, and 10.4% Native American. A high correlation (adjusted R2 = 0.65, p < 0.05) was observed between nine SNPs and quantitative skin pigmentation using multiple linear regression analysis. The correlations were notably smaller between skin pigmentation and biogeographic ancestry (adjusted R2 = 0.45, p < 0.05), or markers in the leading forensic skin colour prediction system, the HIrisPlex-S (adjusted R2 = 0.54, p < 0.05). Four of the nine SNPs, OCA2 rs1448484 (rank 2), APBA2 rs4424881 (rank 4), MFSD12 rs10424065 (rank 8), and TYRP1 1408799 (rank 9) were not investigated as part of the HIrisPlex-S selection process, and therefore not included in the HIrisPlex-S model. Our results indicate that these SNPs account for a substantial part of the skin colour variation in individuals of admixed ancestry. Hence, we suggest that these SNPs are considered when developing future skin colour prediction models.
Collapse
Affiliation(s)
- Jeppe D Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen, Denmark.
| | - Olivia S Meyer
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Filipa Simão
- DNA Diagnostic Laboratory (LDD), Institute of Biology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Juliana Jannuzzi
- DNA Diagnostic Laboratory (LDD), Institute of Biology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Elizeu Carvalho
- DNA Diagnostic Laboratory (LDD), Institute of Biology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Mikkel M Andersen
- Department of Mathematical Sciences, Aalborg University, DK-9000, Aalborg, Denmark
| | - Vania Pereira
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Claus Børsting
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), Institute of Biology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Evaluation of HIrisplex-S system markers for eye, skin and hair color prediction in an admixed Brazilian population. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2019. [DOI: 10.1016/j.fsigss.2019.10.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Jablonski NG, Chaplin G. The roles of vitamin D and cutaneous vitamin D production in human evolution and health. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2018; 23:54-59. [PMID: 29606375 DOI: 10.1016/j.ijpp.2018.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
Most of the vitamin D necessary for the maintenance of human health and successful reproduction is made in the skin under the influence of a narrow portion of the electromagnetic spectrum emitted from the sun, namely ultraviolet B radiation (UVB). During the course of human evolution, skin pigmentation has evolved to afford protection against high levels of UVR while still permitting cutaneous production of vitamin D. Similar pigmentation phenotypes evolved repeatedly as the result of independent genetic events when isolated human populations dispersed into habitats of extremely low or high UVB. The gradient of skin color seen in modern human populations is evidence of the operation of two clines, one favoring photoprotection near the equator, the other favoring vitamin D production nearer the poles. Through time, human adaptations to different solar regimes have become more cultural than biological. Rapid human migrations, increasing urbanization, and changes in lifestyle have created mismatches between skin pigmentation and environmental conditions leading to vitamin D deficiency. The prevalence and significance for health of vitamin D deficiencies, and the definition of optimal levels of vitamin D in the bloodstream are subjects of intense research and debate, but two of the causes of vitamin D deficiency - lack of sun exposure and abandonment of vitamin D rich foods in the diet - are traceable to changes in human lifestyles accompanying urbanization in prehistory.
Collapse
Affiliation(s)
- Nina G Jablonski
- Department of Anthropology, The Pennsylvania State University, 409 Carpenter Building, University Park, PA 16802, United States.
| | - George Chaplin
- Department of Anthropology, The Pennsylvania State University, 409 Carpenter Building, University Park, PA 16802, United States
| |
Collapse
|
14
|
Quillen EE, Norton HL, Parra EJ, Lona-Durazo F, Ang KC, Illiescu FM, Pearson LN, Shriver MD, Lasisi T, Gokcumen O, Starr I, Lin YL, Martin AR, Jablonski NG. Shades of complexity: New perspectives on the evolution and genetic architecture of human skin. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 168 Suppl 67:4-26. [PMID: 30408154 DOI: 10.1002/ajpa.23737] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023]
Abstract
Like many highly variable human traits, more than a dozen genes are known to contribute to the full range of skin color. However, the historical bias in favor of genetic studies in European and European-derived populations has blinded us to the magnitude of pigmentation's complexity. As deliberate efforts are being made to better characterize diverse global populations and new sequencing technologies, better measurement tools, functional assessments, predictive modeling, and ancient DNA analyses become more widely accessible, we are beginning to appreciate how limited our understanding of the genetic bases of human skin color have been. Novel variants in genes not previously linked to pigmentation have been identified and evidence is mounting that there are hundreds more variants yet to be found. Even for genes that have been exhaustively characterized in European populations like MC1R, OCA2, and SLC24A5, research in previously understudied groups is leading to a new appreciation of the degree to which genetic diversity, epistatic interactions, pleiotropy, admixture, global and local adaptation, and cultural practices operate in population-specific ways to shape the genetic architecture of skin color. Furthermore, we are coming to terms with how factors like tanning response and barrier function may also have influenced selection on skin throughout human history. By examining how our knowledge of pigmentation genetics has shifted in the last decade, we can better appreciate how far we have come in understanding human diversity and the still long road ahead for understanding many complex human traits.
Collapse
Affiliation(s)
- Ellen E Quillen
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Heather L Norton
- Department of Anthropology, University of Cincinnati, Cincinnati, Ohio
| | - Esteban J Parra
- Department of Anthropology, University of Toronto - Mississauga, Mississauga, Ontario, Canada
| | - Frida Lona-Durazo
- Department of Anthropology, University of Toronto - Mississauga, Mississauga, Ontario, Canada
| | - Khai C Ang
- Department of Pathology and Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania
| | - Florin Mircea Illiescu
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.,Centro de Estudios Interculturales e Indígenas - CIIR, P. Universidad Católica de Chile, Santiago, Chile
| | - Laurel N Pearson
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Mark D Shriver
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Tina Lasisi
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Izzy Starr
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Yen-Lung Lin
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Alicia R Martin
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Nina G Jablonski
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
15
|
Hohl DM, Bezus B, Ratowiecki J, Catanesi CI. Genetic and phenotypic variability of iris color in Buenos Aires population. Genet Mol Biol 2018; 41:50-58. [PMID: 29658972 PMCID: PMC5901501 DOI: 10.1590/1678-4685-gmb-2017-0175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/31/2017] [Indexed: 11/21/2022] Open
Abstract
The aim of this work was to describe the phenotypic and genotypic variability related to iris color for the population of Buenos Aires province (Argentina), and to assess the usefulness of current methods of analysis for this country. We studied five Single Nucleotide Polymorphisms (SNPs) included in the IrisPlex kit, in 118 individuals, and we quantified eye color with Digital Iris Analysis Tool. The markers fit Hardy-Weinberg equilibrium for the whole sample, but not for rs12913832 within the group of brown eyes (LR=8.429; p=0.004). We found a remarkable association of HERC2 rs12913832 GG with blue color (p < 0.01) but the other markers did not show any association with iris color. The results for the Buenos Aires population differ from those of other populations of the world for these polymorphisms (p < 0,01). The differences we found might respond to the admixed ethnic composition of Argentina; therefore, methods of analysis used in European populations should be carefully applied when studying the population of Argentina. These findings reaffirm the importance of this investigation in the Argentinian population for people identification based on iris color.
Collapse
Affiliation(s)
- Diana María Hohl
- Laboratorio de Diversidad Genética, Instituto Multidisciplinario de Biología Celular IMBICE (CONICET-UNLP-CIC), La Plata, Buenos Aires, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Brenda Bezus
- Laboratorio de Diversidad Genética, Instituto Multidisciplinario de Biología Celular IMBICE (CONICET-UNLP-CIC), La Plata, Buenos Aires, Argentina
| | - Julia Ratowiecki
- Centro de Estudios Médicos e Investigaciones Clínicas CEMIC CONICET, Buenos Aires, Argentina
| | - Cecilia Inés Catanesi
- Laboratorio de Diversidad Genética, Instituto Multidisciplinario de Biología Celular IMBICE (CONICET-UNLP-CIC), La Plata, Buenos Aires, Argentina.,Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| |
Collapse
|
16
|
Haplotypes from the SLC45A2 gene are associated with the presence of freckles and eye, hair and skin pigmentation in Brazil. Leg Med (Tokyo) 2017; 25:43-51. [DOI: 10.1016/j.legalmed.2016.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/05/2016] [Accepted: 12/30/2016] [Indexed: 01/28/2023]
|
17
|
Andrade ES, Fracasso NC, Strazza Júnior PS, Simões AL, Mendes-Junior CT. Associations of OCA2 - HERC2 SNPs and haplotypes with human pigmentation characteristics in the Brazilian population. Leg Med (Tokyo) 2017; 24:78-83. [DOI: 10.1016/j.legalmed.2016.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/24/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
|
18
|
SLC24A5 and ASIP as phenotypic predictors in Brazilian population for forensic purposes. Leg Med (Tokyo) 2015; 17:261-6. [PMID: 25801600 DOI: 10.1016/j.legalmed.2015.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/26/2015] [Accepted: 03/04/2015] [Indexed: 11/20/2022]
Abstract
Pigmentation is a variable and complex trait in humans and it is determined by the interaction of environmental factors, age, disease, hormones, exposure to ultraviolet radiation and genetic factors, including pigmentation genes. Many polymorphisms of these genes have been associated with phenotypic diversity of skin, eyes and hair color in homogeneous populations. Phenotype prediction from biological samples using genetic information has benefited forensic area in some countries, leading some criminal investigations. Herein, we evaluated the association between polymorphisms in the genes SLC24A5 (rs1426654) and ASIP (rs6058017) with skin, eyes and hair colors, in 483 healthy individuals from Brazilian population for attainable use in forensic practice. The volunteers answered a questionnaire where they self-reported their skin, eye and hair colors. The polymorphic homozygous genotype of rs1426654∗A and rs6058017∗A in SLC24A5 and ASIP respectively, showed strongest association with fairer skin (OR 47.8; CI 14.1-161.6 and OR 8.6; CI 2.5-29.8); SLC24A5 alone showed associations with blue eyes (OR 20.7; CI 1.2-346.3) and blond hair (OR 26.6; CI 1.5-460.9). Our data showed that polymorphic genotypes (AA), in both genes, are correlated with characteristics of light pigmentation, while the ancestral genotype (GG) is related to darker traits, corroborating with previous studies in European and African populations. These associations show that specific molecular information of an individual may be useful to access some phenotypic features in an attempt to help forensic investigations, not only on crime scene samples but also in cases of face reconstructions in unknown bodies.
Collapse
|