1
|
Znachorova T, Dudko N, Ming H, Jiang Z, Fulka H. The timing of pronuclear transfer critically affects the developmental competence and quality of embryos. Mol Hum Reprod 2024; 30:gaae024. [PMID: 38991843 PMCID: PMC11262804 DOI: 10.1093/molehr/gaae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Pronuclear transfer has been successfully used in human-assisted reproduction to suppress the adverse effects of a defective oocyte cytoplasm or to bypass an idiopathic developmental arrest. However, the effects of the initial parental genome remodelling in a defective cytoplasm on the subsequent development after pronucleus transfer have not been systematically studied. By performing pronuclear transfer in pre-replication and post-replication mouse embryos, we show that the timing of the procedure plays a critical role. Although apparently morphologically normal blastocysts were obtained in both pre- and post-replication pronuclear transfer groups, post-replication pronuclear transfer led to a decrease in developmental competence and profound changes in embryonic gene expression. By inhibiting the replication in the abnormal cytoplasm before pronuclear transfer into a healthy cytoplasm, the developmental potential of embryos could be largely restored. This shows that the conditions under which the first embryonic replication occurs strongly influence developmental potential. Although pronuclear transfer is the method of choice for mitigating the impact of a faulty oocyte cytoplasm on early development, our results show that the timing of this intervention should be restricted to the pre-replication phase.
Collapse
Affiliation(s)
- Tereza Znachorova
- Department of Cell Nucleus Plasticity, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Nataliia Dudko
- Department of Cell Nucleus Plasticity, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hao Ming
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Zongliang Jiang
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Helena Fulka
- Department of Cell Nucleus Plasticity, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Biology of Reproduction, Institute of Animal Science, Prague, Czech Republic
| |
Collapse
|
2
|
Nishino R, Nomura-Komoike K, Iida T, Fujieda H. Cell cycle-dependent activation of proneural transcription factor expression and reactive gliosis in rat Müller glia. Sci Rep 2023; 13:22712. [PMID: 38123648 PMCID: PMC10733309 DOI: 10.1038/s41598-023-50222-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
Retinal Müller glia have a capacity to regenerate neurons in lower vertebrates like zebrafish, but such ability is extremely limited in mammals. In zebrafish, Müller glia proliferate after injury, which promotes their neurogenic reprogramming while inhibiting reactive gliosis. In mammals, however, how the cell cycle affects the fate of Müller glia after injury remains unclear. Here, we focused on the expression of proneural transcription factors, Ngn2 and Ascl1, and a gliosis marker glial fibrillary acidic protein (GFAP) in rat Müller glia after N-methyl-N-nitrosourea (MNU)-induced photoreceptor injury and analyzed the role of Müller glia proliferation in the regulation of their expression using retinal explant cultures. Thymidine-induced G1/S arrest of Müller glia proliferation significantly hampered the expression of Ascl1, Ngn2, and GFAP, and release from the arrest induced their upregulation. The migration of Müller glia nuclei into the outer nuclear layer was also shown to be cell cycle-dependent. These data suggest that, unlike the situation in zebrafish, cell cycle progression of Müller glia in mammals promotes both neurogenic reprogramming and reactive gliosis, which may be one of the mechanisms underlying the limited regenerative capacity of the mammalian retina.
Collapse
Affiliation(s)
- Reiko Nishino
- Department of Anatomy and Neurobiology, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
- Department of Ophthalmology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Kaori Nomura-Komoike
- Department of Anatomy and Neurobiology, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Tomohiro Iida
- Department of Ophthalmology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroki Fujieda
- Department of Anatomy and Neurobiology, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
3
|
Navarro-Serna S, Piñeiro-Silva C, Luongo C, Parrington J, Romar R, Gadea J. Effect of Aphidicolin, a Reversible Inhibitor of Eukaryotic Nuclear DNA Replication, on the Production of Genetically Modified Porcine Embryos by CRISPR/Cas9. Int J Mol Sci 2022; 23:ijms23042135. [PMID: 35216252 PMCID: PMC8880323 DOI: 10.3390/ijms23042135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 01/27/2023] Open
Abstract
Mosaicism is the most important limitation for one-step gene editing in embryos by CRISPR/Cas9 because cuts and repairs sometimes take place after the first DNA replication of the zygote. To try to minimize the risk of mosaicism, in this study a reversible DNA replication inhibitor was used after the release of CRISPR/Cas9 in the cell. There is no previous information on the use of aphidicolin in porcine embryos, so the reversible inhibition of DNA replication and the effect on embryo development of different concentrations of this drug was first evaluated. The effect of incubation with aphidicolin was tested with CRISPR/Cas9 at different concentrations and different delivery methodologies. As a result, the reversible inhibition of DNA replication was observed, and it was concentration dependent. An optimal concentration of 0.5 μM was established and used for subsequent experiments. Following the use of this drug with CRISPR/Cas9, a halving of mosaicism was observed together with a detrimental effect on embryo development. In conclusion, the use of reversible inhibition of DNA replication offers a way to reduce mosaicism. Nevertheless, due to the reduction in embryo development, it would be necessary to reach a balance for its use to be feasible.
Collapse
Affiliation(s)
- Sergio Navarro-Serna
- Department of Physiology, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (S.N.-S.); (C.P.-S.); (C.L.); (R.R.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Celia Piñeiro-Silva
- Department of Physiology, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (S.N.-S.); (C.P.-S.); (C.L.); (R.R.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Chiara Luongo
- Department of Physiology, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (S.N.-S.); (C.P.-S.); (C.L.); (R.R.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - John Parrington
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK;
| | - Raquel Romar
- Department of Physiology, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (S.N.-S.); (C.P.-S.); (C.L.); (R.R.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Joaquín Gadea
- Department of Physiology, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (S.N.-S.); (C.P.-S.); (C.L.); (R.R.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
- Correspondence:
| |
Collapse
|
4
|
Cell division- and DNA replication-free reprogramming of somatic nuclei for embryonic transcription. iScience 2021; 24:103290. [PMID: 34849463 PMCID: PMC8609233 DOI: 10.1016/j.isci.2021.103290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/03/2021] [Accepted: 10/13/2021] [Indexed: 01/01/2023] Open
Abstract
Nuclear transfer systems represent the efficient means to reprogram a cell and in theory provide a basis for investigating the development of endangered species. However, conventional nuclear transfer using oocytes of laboratory animals does not allow reprogramming of cross-species nuclei owing to defects in cell divisions and activation of embryonic genes. Here, we show that somatic nuclei transferred into mouse four-cell embryos arrested at the G2/M phase undergo reprogramming toward the embryonic state. Remarkably, genome-wide transcriptional reprogramming is induced within a day, and ZFP281 is important for this replication-free reprogramming. This system further enables transcriptional reprogramming of cells from Oryx dammah, now extinct in the wild. Thus, our findings indicate that arrested mouse embryos are competent to induce intra- and cross-species reprogramming. The direct induction of embryonic transcripts from diverse genomes paves a unique approach for identifying mechanisms of transcriptional reprogramming and genome activation from a diverse range of species.
Collapse
|
5
|
Maternal DCAF13 Regulates Chromatin Tightness to Contribute to Embryonic Development. Sci Rep 2019; 9:6278. [PMID: 31000741 PMCID: PMC6472424 DOI: 10.1038/s41598-019-42179-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 03/13/2019] [Indexed: 12/23/2022] Open
Abstract
Maternal-zygotic transition (MZT) is critical for the developmental control handed from maternal products to newly synthesized zygotic genome in the earliest stage of embryogenesis. However, the spatiotemporal dynamic regulation of MZT by maternal factors is largely unknown. Here, we reported a novel maternal factor, DCAF13, which was highly expressed in growing oocyte nucleolus and had key maternal effects on oocyte and zygotic chromatin tightness during maternal to zygotic transition. DCAF13 specifically deleted in oocytes resulted in loose chromatin structure in fully grown germinal vesicle oocytes. Despite normal nuclear maturation in maternal DCAF13-deleted oocytes, the chromosomes at MII stage were not properly condensed. Consequently, the nuclear and nucleolar structure reorganized abnormally, and transcription was inactive in zygotic embryos. RNA-seq analysis of MII oocytes and 2-cell embryos demonstrated that the transcriptomes between knockout and control oocyte were similar, but the maternal DCAF13 deleted two-cell embryos showed a significant decrease in transcription. In addition, the maternal DCAF13-deleted embryos displayed arrest at the two-cell stage, which could not be rescued by injecting flag-Dcaf13 mRNA in the zygote. This revealed that DCAF13 was a unique maternal effect factor regulating the nucleolus.
Collapse
|
6
|
Gonzalez-Munoz E, Cibelli JB. Somatic Cell Reprogramming Informed by the Oocyte. Stem Cells Dev 2018; 27:871-887. [DOI: 10.1089/scd.2018.0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Elena Gonzalez-Munoz
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- Department of Cell Biology, Genetics and Physiology, University of Málaga, Málaga, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Málaga, Spain
| | - Jose B. Cibelli
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- Department of Animal Science, Michigan State University, East Lansing, MI
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI
| |
Collapse
|
7
|
Nashun B, Hill PWS, Hajkova P. Reprogramming of cell fate: epigenetic memory and the erasure of memories past. EMBO J 2015; 34:1296-308. [PMID: 25820261 PMCID: PMC4491992 DOI: 10.15252/embj.201490649] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/18/2015] [Indexed: 12/24/2022] Open
Abstract
Cell identity is a reflection of a cell type-specific gene expression profile, and consequently, cell type-specific transcription factor networks are considered to be at the heart of a given cellular phenotype. Although generally stable, cell identity can be reprogrammed in vitro by forced changes to the transcriptional network, the most dramatic example of which was shown by the induction of pluripotency in somatic cells by the ectopic expression of defined transcription factors alone. Although changes to cell fate can be achieved in this way, the efficiency of such conversion remains very low, in large part due to specific chromatin signatures constituting an epigenetic barrier to the transcription factor-mediated reprogramming processes. Here we discuss the two-way relationship between transcription factor binding and chromatin structure during cell fate reprogramming. We additionally explore the potential roles and mechanisms by which histone variants, chromatin remodelling enzymes, and histone and DNA modifications contribute to the stability of cell identity and/or provide a permissive environment for cell fate change during cellular reprogramming.
Collapse
Affiliation(s)
- Buhe Nashun
- Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, UK
| | - Peter W S Hill
- Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, UK
| | - Petra Hajkova
- Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|