1
|
Xie CT, Zhang HL, Li Y, Li Q, Wen YX, Liu JY, Han F. Single-cell RNA-seq and pathological phenotype reveal the functional atlas and precise roles of Sox30 in testicular cell development and differentiation. Cell Death Dis 2025; 16:110. [PMID: 39971903 PMCID: PMC11840104 DOI: 10.1038/s41419-025-07442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 01/16/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Sox30 has recently been demonstrated to be a key regulator of spermatogenesis. However, the precise roles of Sox30 in the testis remain largely unclear. Here, the specific functions of Sox30 in testicular cells were determined by single-cell sequencing and confirmed via pathological analyses. Sox30 loss appears to damage all testicular cells to different extents. Sox30 chiefly drives the differentiation of primary spermatocytes. Sox30 deficiency causes spermatocyte arrest at the early phase of meiosis I, with nearly no normally developing second spermatocytes and three new spermatocyte -subclusters emerging. In addition, Sox30 seems to play important roles in the mature phenotypes of Sertoli and Leydig cells, and the proliferation and differentiation of spermatogonia. The developmental trajectory of germ cells begins with spermatogonia and splits into two different spermatocyte branches, with Sox30-null spermatocytes and wild-type spermatocytes placed at divergent ends. An opposite developmental trajectory of spermatocyte subclusters is observed, followed by incomplete development of spermatid subclusters in Sox30-null mice. Sox30 deficiency clearly alters the intercellular cross-talk of major testicular cells and dysregulates the transcription factor networks primarily involved in cell proliferation and differentiation. Mechanistically, Sox30 appears to have similar terminal functions that are involved mainly in spermatogenic development and differentiation among major testicular cells, and Sox30 performs these similar crucial roles through preferential regulation of different signalling pathways. Our study describes the exact functions of Sox30 in testicular cell development and differentiation and highlights the primary roles of Sox30 in the early meiotic phase of germ cells.
Collapse
Affiliation(s)
- Cheng-Ting Xie
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing, 400016, China
| | - Hui-Lian Zhang
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing, 400016, China
| | - Yi Li
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing, 400016, China
| | - Qian Li
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing, 400016, China
| | - Yi-Xian Wen
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing, 400016, China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| | - Fei Han
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing, 400016, China.
| |
Collapse
|
2
|
Cheng P, Wei J, Liu B, Zhao Y, Ma B, Feng X, Xiong M, Zhao J, Shi C, Li Z. Metastasis-associated protein 1 participates in regulating luminal acidification of the epididymis via repressing estrogen receptor alpha transcription. Andrology 2024; 12:1872-1886. [PMID: 38436139 DOI: 10.1111/andr.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/16/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND As a component of the nucleosome remodeling and deacetylating (NuRD) complex, metastasis-associated protein 1 (MTA1) has been reported to be abundant in male reproductive system and might participate in spermatogenesis and sperm maturation, whereas the precise functional role of MTA1 in these processes is still undetermined. OBJECTIVE To investigate the effect and potential function of MTA1 in male fertility. MATERIALS AND METHODS Mta1 knockout mice (Mta1-/-) were employed to detect their reproductive phenotype. The pH value of Mta1-/- epididymal luminal fluid was measured, and the potential mechanism of MTA1 involved in regulating luminal acidification was detected in vivo and in vitro. A vasectomy model with abnormal pH of epididymal lumen was established to further detect the effect of MTA1 on epididymal luminal microenvironment. RESULTS Mta1-/- mice were fertile without any detectable defects in spermatogenesis or sperm motility while the deficiency of MTA1 could acidify the initial segment of epididymis to a certain extent. MTA1 could interact with estrogen receptor alpha (ERα) and inhibit the transcription of ERα target gene, hydrogen exchanger 3 (NHE3), and ultimately affect the epididymal luminal milieu. After vasectomy, the Mta1-/- mice presented a more acidic epididymal lumen which was closer to the normal state compared to the wild-type model. DISCUSSION AND CONCLUSION MTA1 is dispensable for male fertility in mice, but plays a potentially important function in regulating luminal acidification of the epididymis.
Collapse
Affiliation(s)
- Pang Cheng
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Jinhua Wei
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Bo Liu
- The Air Force Hospital of Central Theater of PLA, Datong, China
| | - Ya Zhao
- Laboratory Animal Center, Air Force Medical University, Xi'an, China
| | - Binfang Ma
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Xiao Feng
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Mingxiang Xiong
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Jie Zhao
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Changhong Shi
- Laboratory Animal Center, Air Force Medical University, Xi'an, China
| | - Zhen Li
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| |
Collapse
|
3
|
Li F, Chen S, Zhang T, Pan L, Liu C, Bian L. Gonadal Transcriptome Sequencing Analysis Reveals the Candidate Sex-Related Genes and Signaling Pathways in the East Asian Common Octopus, Octopus sinensis. Genes (Basel) 2024; 15:682. [PMID: 38927618 PMCID: PMC11202624 DOI: 10.3390/genes15060682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The East Asian common octopus (Octopus sinensis) is an economically important species among cephalopods. This species exhibits a strict dioecious and allogamous reproductive strategy, along with a phenotypic sexual dimorphism, where the third right arm differentiates into hectocotylus in males. However, our understanding of the molecular mechanisms that underlie sex determination and differentiation in this species remains limited. In the present study, we surveyed gene-expression profiles in the immature male and female gonads of O. sinensis based on the RNA-seq, and a total of 47.83 Gb of high-quality data were generated. Compared with the testis, we identified 8302 differentially expressed genes (DEGs) in the ovary, of which 4459 genes were up-regulated and 3843 genes were down-regulated. Based on the GO enrichment, many GO terms related to sex differentiation were identified, such as sex differentiation (GO: 0007548), sexual reproduction (GO: 0019953) and male sex differentiation (GO: 0046661). A KEGG classification analysis identified three conserved signaling pathways that related to sex differentiation, including the Wnt signaling pathway, TGF-β signaling pathway and Notch signaling pathway. Additionally, 21 sex-related DEGs were selected, of which 13 DEGs were male-biased, including Dmrt1, Foxn5, Foxj1, Sox30, etc., and 8 DEGs were female-biased, including Sox14, Nanos3, β-tubulin, Suh, etc. Ten DEGs were used to verify the expression patterns in the testis and ovary using the RT-qPCR method, and the results showed that the expression level shown by RT-qPCR was consistent with that from the RNA-seq, which confirmed the reliability of the transcriptome data. The results presented in this study will not only contribute to our understanding of sex-formation mechanisms in O. sinensis but also provide the foundational information for further investigating the molecular mechanisms that underline its gonadal development and facilitate the sustainable development of octopus artificial breeding.
Collapse
Affiliation(s)
- Fenghui Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (F.L.); (S.C.); (L.P.); (C.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Siqing Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (F.L.); (S.C.); (L.P.); (C.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Tao Zhang
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China;
| | - Luying Pan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (F.L.); (S.C.); (L.P.); (C.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Changlin Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (F.L.); (S.C.); (L.P.); (C.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Li Bian
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (F.L.); (S.C.); (L.P.); (C.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
4
|
Piechka A, Sparanese S, Witherspoon L, Hach F, Flannigan R. Molecular mechanisms of cellular dysfunction in testes from men with non-obstructive azoospermia. Nat Rev Urol 2024; 21:67-90. [PMID: 38110528 DOI: 10.1038/s41585-023-00837-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/20/2023]
Abstract
Male factor infertility affects 50% of infertile couples worldwide; the most severe form, non-obstructive azoospermia (NOA), affects 10-15% of infertile males. Treatment for individuals with NOA is limited to microsurgical sperm extraction paired with in vitro fertilization intracytoplasmic sperm injection. Unfortunately, spermatozoa are only retrieved in ~50% of patients, resulting in live birth rates of 21-46%. Regenerative therapies could provide a solution; however, understanding the cell-type-specific mechanisms of cellular dysfunction is a fundamental necessity to develop precision medicine strategies that could overcome these abnormalities and promote regeneration of spermatogenesis. A number of mechanisms of cellular dysfunction have been elucidated in NOA testicular cells. These mechanisms include abnormalities in both somatic cells and germ cells in NOA testes, such as somatic cell immaturity, aberrant growth factor signalling, increased inflammation, increased apoptosis and abnormal extracellular matrix regulation. Future cell-type-specific investigations in identifying modulators of cellular transcription and translation will be key to understanding upstream dysregulation, and these studies will require development of in vitro models to functionally interrogate spermatogenic niche dysfunction in both somatic and germ cells.
Collapse
Affiliation(s)
- Arina Piechka
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Sydney Sparanese
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luke Witherspoon
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Urology, Department of Surgery, University of Ottawa, Ontario, Canada
| | - Faraz Hach
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Ryan Flannigan
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada.
- Department of Urology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Luo J, Fang H, Wang D, Hu J, Zhang W, Jiang R. Molecular Mechanism of SOX18 in Lipopolysaccharide-Induced Injury of Human Umbilical Vein Endothelial Cells. Crit Rev Immunol 2024; 44:1-12. [PMID: 38421701 DOI: 10.1615/critrevimmunol.2023050792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Endothelial dysfunction is associated with the progression of sepsis. This study sought to probe the molecular route of sex-determining region on the Y chromosome-box transcription factor 18 (SOX18) in sepsis-associated endothelial injury. Human umbilical vein endothelial cells (HUVECs) were treated with lipopolysaccharide (LPS) to establish the sepsis cell model. Cell viability, lactate dehydrogenase (LDH) release, oxidative stress (reactive oxygen species/malondialdehyde/superoxide dismutase), and inflammation (interleukin-1β/tumor necrosis factor-α/interleukin-6) were evaluated by cell counting kit-8 assay and relevant assay kits. The expression levels of SOX18, microRNA (miR)-204-5p, and cadherin-2 (CDH2) in cells were determined by real-time quantitative polymerase chain reaction and Western blot assay. The interaction of SOX18, miR-204-5p, and CDH2 was analyzed by chromatin immunoprecipitation and dual-luciferase assay. LPS induced HUVECs injury and downregulation of SOX18. SOX18 overexpression increased cell viability, while decreased LDH activity, oxidative stress, and inflammation. SOX18 bound to the miR-204-5p promoter to promote miR-204-5p expression, and further repressed CDH2 expression. miR-204-5p knockdown and CDH2 overexpression abrogated the protective role of SOX18 in HUVECs injury. Overall, SOX18 alleviated LPS-induced injury of HUVECs by promoting miR-204-5p and repressing CDH2, suggesting it as a potential target for sepsis treatment.
Collapse
Affiliation(s)
- Jian Luo
- Department of Critical Care Medicine, Quzhou People's Hospital, Quzhou, China
| | - Honglong Fang
- Department of Critical Care Medicine, Quzhou People's Hospital, Quzhou, China
| | - Danqiong Wang
- Department of Critical Care Medicine, Quzhou People's Hospital, Quzhou, China
| | - Jianhua Hu
- Department of Critical Care Medicine, Quzhou People's Hospital, Quzhou, China
| | - Weiwen Zhang
- Department of Critical Care Medicine, Quzhou People's Hospital, Quzhou, China
| | - Ronglin Jiang
- the First Clinical Medical College of Zhejiang Chinese Medical University
| |
Collapse
|
6
|
Li Y, Liu L, Zhang L, Wei H, Wu S, Liu T, Shu Y, Yang Y, Yang Z, Wang S, Bao Z, Zhang L. Dynamic transcriptome analysis reveals the gene network of gonadal development from the early history life stages in dwarf surfclam Mulinia lateralis. Biol Sex Differ 2022; 13:69. [PMID: 36461090 PMCID: PMC9716669 DOI: 10.1186/s13293-022-00479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Gonadal development is driven by a complex genetic cascade in vertebrates. However, related information remains limited in molluscs owing to the long generation time and the difficulty in maintaining whole life cycle in the lab. The dwarf surfclam Mulinia lateralis is considered an ideal bivalve model due to the short generation time and ease to breed in the lab. RESULTS To gain a comprehensive understanding of gonadal development in M. lateralis, we conducted a combined morphological and molecular analysis on the gonads of 30 to 60 dpf. Morphological analysis showed that gonad formation and sex differentiation occur at 35 and 40-45 dpf, respectively; then the gonads go through gametogenic cycle. Gene co-expression network analysis on 40 transcriptomes of 35-60 dpf gonads identifies seven gonadal development-related modules, including two gonad-forming modules (M6, M7), three sex-specific modules (M14, M12, M11), and two sexually shared modules (M15, M13). The modules participate in different biological processes, such as cell communication, glycan biosynthesis, cell cycle, and ribosome biogenesis. Several hub transcription factors including SOX2, FOXZ, HSFY, FOXL2 and HES1 are identified. The expression of top hub genes from sex-specific modules suggests molecular sex differentiation (35 dpf) occurs earlier than morphological sex differentiation (40-45 dpf). CONCLUSION This study provides a deep insight into the molecular basis of gonad formation, sex differentiation and gametogenesis in M. lateralis, which will contribute to a comprehensive understanding of the reproductive regulation network in molluscs.
Collapse
Affiliation(s)
- Yajuan Li
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Liangjie Liu
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Lijing Zhang
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Huilan Wei
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Shaoxuan Wu
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Tian Liu
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Ya Shu
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Yaxin Yang
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Zujing Yang
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Shi Wang
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Biology and Biotechnology & Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China ,grid.4422.00000 0001 2152 3263Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Zhenmin Bao
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Biology and Biotechnology & Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China ,grid.4422.00000 0001 2152 3263Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Lingling Zhang
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Biology and Biotechnology & Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
7
|
Tang Y, Chen JY, Ding GH, Lin ZH. Analyzing the gonadal transcriptome of the frog Hoplobatrachus rugulosus to identify genes involved in sex development. BMC Genomics 2021; 22:552. [PMID: 34281525 PMCID: PMC8290591 DOI: 10.1186/s12864-021-07879-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The tiger frog (Hoplobatrachus rugulosus) is listed as a national Class II protected species in China. In the context of global warming, the sex ratio of amphibians will be affected, and the development of the population will be limited. Therefore, considering the potential for a decrease in the number of amphibians, studying sex evolution and molecular regulation of gonadal development in H. rugulosus, phenomenon that are currently unclear, is of great significance. RESULTS Here, H. rugulosus was used to explore the mechanisms regulating gonadal development in amphibians. Illumina HiSeq 3000 was used to sequence the gonadal transcriptome of male and female H. rugulosus at two growth stages to identify genes related to gonadal development and analyze expression differences in the gonads. This analysis indicated that cyp17α, hsd3β, hsd11β1, cyp19α, and hsd17β12 perform vital functions in sex development in amphibians. Specifically, the expression of cyp3α, cyp17α, hsd3β, hsd11β1, sox2, sox9, sox30, soat, cyp19α, hsd17β12, and hspα1s was correlated with gonadal development and differentiation in H. rugulosus, as determined using the quantitative reverse transcriptase-polymerase chain reaction. CONCLUSION Significant differences were found in the gonadal gene expression levels in H. rugulosus of both sexes, and we identified a steroid hormone synthesis pathway in this species and analyzed related gene expression, but the changes during sex differentiation were still unclear. To our knowledge, this report presents the first analysis of the H. rugulosus gonadal transcriptome and lays the foundation for future research.
Collapse
Affiliation(s)
- Yun Tang
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, Zhejiang, People's Republic of China.,College of Life Sciences, Nanjing Normal University, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Jing-Yi Chen
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, Zhejiang, People's Republic of China
| | - Guo-Hua Ding
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, Zhejiang, People's Republic of China.
| | - Zhi-Hua Lin
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, Zhejiang, People's Republic of China
| |
Collapse
|
8
|
Han F, Yin L, Jiang X, Zhang X, Zhang N, Yang J, Ouyang W, Hao X, Liu W, Huang Y, Chen H, Gao F, Li Z, Guo Q, Cao J, Liu J. Identification of SRY-box 30 as an age-related essential gatekeeper for male germ-cell meiosis and differentiation. Aging Cell 2021; 20:e13343. [PMID: 33721419 PMCID: PMC8135013 DOI: 10.1111/acel.13343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/07/2021] [Accepted: 02/21/2021] [Indexed: 12/31/2022] Open
Abstract
Although important factors governing the meiosis have been reported in the embryonic ovary, meiosis in postnatal testis remains poorly understood. Herein, we first report that SRY‐box 30 (Sox30) is an age‐related and essential regulator of meiosis in the postnatal testis. Sox30‐null mice exhibited uniquely impaired testis, presenting the abnormal arrest of germ‐cell differentiation and irregular Leydig cell proliferation. In aged Sox30‐null mice, the observed testicular impairments were more severe. Furthermore, the germ‐cell arrest occurred at the stage of meiotic zygotene spermatocytes, which is strongly associated with critical regulators of meiosis (such as Cyp26b1, Stra8 and Rec8) and sex differentiation (such as Rspo1, Foxl2, Sox9, Wnt4 and Ctnnb1). Mechanistically, Sox30 can activate Stra8 and Rec8, and inhibit Cyp26b1 and Ctnnb1 by direct binding to their promoters. A different Sox30 domain required for regulating the activity of these gene promoters, providing a “fail‐safe” mechanism for Sox30 to facilitate germ‐cell differentiation. Indeed, retinoic acid levels were reduced owing to increased degradation following the elevation of Cyp26b1 in Sox30‐null testes. Re‐expression of Sox30 in Sox30‐null mice successfully restored germ‐cell meiosis, differentiation and Leydig cell proliferation. Moreover, the restoration of actual fertility appeared to improve over time. Consistently, Rec8 and Stra8 were reactivated, and Cyp26b1 and Ctnnb1 were reinhibited in the restored testes. In summary, Sox30 is necessary, sufficient and age‐associated for germ‐cell meiosis and differentiation in testes by direct regulating critical regulators. This study advances our understanding of the regulation of germ‐cell meiosis and differentiation in the postnatal testis.
Collapse
Affiliation(s)
- Fei Han
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| | - Li Yin
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
- College of Pharmacy and Bioengineering Chongqing University of Technology Chongqing China
| | - Xiao Jiang
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| | - Xi Zhang
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| | - Ning Zhang
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| | - Jun‐tang Yang
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
- College of Life Science Henan Normal University Henan China
| | - Wei‐ming Ouyang
- Office of Biotechnology Products Center for Drug Evaluation and Research U.S. Food and Drug Administration Pittsburgh PA USA
| | - Xiang‐lin Hao
- Department of Pathology Xinqiao HospitalArmy Medical University Chongqing China
| | - Wen‐bin Liu
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| | - Yong‐sheng Huang
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| | - Hong‐qiang Chen
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| | - Fei Gao
- Department of Veterinary and Animal Sciences Faculty of Health and Medical Sciences University of Copenhagen Frederiksberg DK Denmark
| | - Zhong‐tai Li
- Department of Urology Daping HospitalArmy Medical University Chongqing China
| | - Qiao‐nan Guo
- Department of Pathology Xinqiao HospitalArmy Medical University Chongqing China
| | - Jia Cao
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| | - Jin‐yi Liu
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| |
Collapse
|
9
|
Olbromski M, Podhorska-Okołów M, Dzięgiel P. Role of SOX Protein Groups F and H in Lung Cancer Progression. Cancers (Basel) 2020; 12:cancers12113235. [PMID: 33152990 PMCID: PMC7692225 DOI: 10.3390/cancers12113235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The expression of SOX proteins has been demonstrated in many tissues at various stages of embryogenesis, where they play the role of transcription factors. The SOX18 protein (along with SOX7 and SOX17) belongs to the SOXF group and is mainly involved in the development of the cardiovascular system, where its expression was found in the endothelium. SOX18 expression was also demonstrated in neoplastic lines of gastric, pancreatic and colon adenocarcinomas. The prognostic role of SOX30 expression has only been studied in lung adenocarcinomas, where a low expression of this factor in the stromal tumor was associated with a worse prognosis for patients. Because of the complexity of non-small-cell lung cancer (NSCLC) development, the role of the SOX proteins in this malignancy is still not fully understood. Many recently published papers show that SOX family protein members play a crucial role in the progression of NSCLC. Abstract The SOX family proteins are proved to play a crucial role in the development of the lymphatic ducts and the cardiovascular system. Moreover, an increased expression level of the SOX18 protein has been found in many malignances, such as melanoma, stomach, pancreatic breast and lung cancers. Another SOX family protein, the SOX30 transcription factor, is responsible for the development of male germ cells. Additionally, recent studies have shown its proapoptotic character in non-small cell lung cancer cells. Our preliminary studies showed a disparity in the amount of mRNA of the SOX18 gene relative to the amount of protein. This is why our attention has been focused on microRNA (miRNA) molecules, which could regulate the SOX18 gene transcript level. Recent data point to the fact that, in practically all types of cancer, hundreds of genes exhibit an abnormal methylation, covering around 5–10% of the thousands of CpG islands present in the promoter sequences, which in normal cells should not be methylated from the moment the embryo finishes its development. It has been demonstrated that in non-small-cell lung cancer (NSCLC) cases there is a large heterogeneity of the methylation process. The role of the SOX18 and SOX30 expression in non-small-cell lung cancers (NSCLCs) is not yet fully understood. However, if we take into account previous reports, these proteins may be important factors in the development and progression of these malignancies.
Collapse
Affiliation(s)
- Mateusz Olbromski
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-717-841-354; Fax: +48-717-840-082
| | - Marzenna Podhorska-Okołów
- Department of Ultrastructural Research, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| |
Collapse
|
10
|
Anitha A, Senthilkumaran B. Role of sox30 in regulating testicular steroidogenesis of common carp. J Steroid Biochem Mol Biol 2020; 204:105769. [PMID: 33065277 DOI: 10.1016/j.jsbmb.2020.105769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 01/12/2023]
Abstract
Expression of transcription factors is crucial for the regulation of steroidogenesis and gonadal development in fish. SRY-related box (SOX) proteins regulate gene expression of various events related to vertebrate reproduction. This study reports the role of sox30 and its influence on sox9a/b in regulating testicular steroidogenesis of the common carp, Cyprinus carpio. Tissue distribution showed predominant expression of sox30 in gonads, while gonadal ontogeny indicated significant dimorphic expression of sox30 from 120 days post hatch. Higher sox30 transcripts during the spawning season, an elevation of sox30 after human chorionic gonadotropin induction, and 11-ketotestosterone (11-KT) treatment authenticate gonadotropin dependency. Treatment of 17α-methyl-di-hydroxy-testosterone to juvenile common carp for mono-sex induction, vis-à-vis elevated sox30 expression. Sox30 protein was detected abundantly in spermatocytes and spermatid/sperm of carp testis. Transient silencing of sox30 using small interfering RNAs decreased sox9a/b expression, lead to downregulation of certain molecule/factor, transcription factor, germ/stem cell marker, and steroidogenesis-related enzyme genes. Serum testosterone and 11-KT decreased significantly upon transient silencing of sox30, in vivo. Concomitantly, a reduction in testicular microsomal 11-β hydroxysteroid dehydrogenase activity was observed. These results demonstrate the influence of sox30 as well as sox9a/b in the regulation of testicular steroidogenesis in common carp.
Collapse
Affiliation(s)
- Arumugam Anitha
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| |
Collapse
|
11
|
Ding H, Liu M, Zhou C, You X, Su T, Yang Y, Xu D. Integrated analysis of miRNA and mRNA expression profiles in testes of Duroc and Meishan boars. BMC Genomics 2020; 21:686. [PMID: 33008286 PMCID: PMC7531090 DOI: 10.1186/s12864-020-07096-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNAs playing vital roles in regulating posttranscriptional gene expression. Elucidating the expression regulation of miRNAs underlying pig testis development will contribute to a better understanding of boar fertility and spermatogenesis. RESULTS In this study, miRNA expression profile was investigated in testes of Duroc and Meishan boars at 20, 75, and 270 days of age by high-throughput sequencing. Forty-five differentially expressed miRNAs were identified from testes of Duroc and Meishan boars before and after puberty. Integrated analysis of miRNA and mRNA profiles predicted many miRNA-mRNA pairs. Gene ontology and biological pathway analyses revealed that predicted target genes of ssc-mir-423-5p, ssc-mir-34c, ssc-mir-107, ssc-mir-196b-5p, ssc-mir-92a, ssc-mir-320, ssc-mir-10a-5p, and ssc-mir-181b were involved in sexual reproduction, male gamete generation, and spermatogenesis, and GnRH, Wnt, and MAPK signaling pathway. Four significantly differentially expressed miRNAs and their predicted target genes were validated by quantitative real-time polymerase chain reaction, and phospholipase C beta 1 (PLCβ1) gene was verified to be a target of ssc-mir-423-5p. CONCLUSIONS This study provides an insight into the functional roles of miRNAs in testis development and spermatogenesis and offers useful resources for understanding differences in sexual function development caused by the change in miRNAs expression between Duroc and Meishan boars.
Collapse
Affiliation(s)
- Haisheng Ding
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Min Liu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Changfan Zhou
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiangbin You
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tao Su
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Youbing Yang
- College of Animal Science and Technology, Henan University of Science & Technology, Luoyang, 471023, People's Republic of China
| | - Dequan Xu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
12
|
Huang B, Tian ZF, Li LF, Fan Y, Yin HY, Li Y, Mao Q, You ZL. LHX3 is an advanced-stage prognostic biomarker and metastatic oncogene in hepatocellular carcinoma. Cancer Biomark 2020; 26:31-39. [PMID: 31306102 DOI: 10.3233/cbm-182257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common cancer and exhibits high morbidity and mortality in the world. We recently identified LHX3 as a preferentially expressed gene with a possible involvement in HCC. OBJECTIVE To determine the expression, clinical relevance, prognostic significance and functions of LHX3 in HCC. MATERIALS AND METHODS LHX3 expression was assessed in 190 cancerous and 40 adjacent non-cancerous tissues by PCR, western blot and immunohistochemistry. Associations between LHX3 expression and clinicopathological characteristics of patients were investigated. Correlations between LHX3 expression and overall survival of patients were analyzed by Kaplan-Meier and Cox-regression methods. Functional roles of LHX3 were evaluated by transwell assays. RESULTS LHX3 expression is significantly increased in carcinoma tissues, and associated with clinical stage and metastasis of patients. LHX3 expression is much higher in the advanced-stage patients than the early-stage patients, and is sharply increased in metastasic patients. High LHX3 expression is associated with unfavorable overall survival, and is an independent prognostic factor of patients. Moreover, LHX3 is an unfavorable and independent prognostic factor unique to advanced-stage patients. Knockdown expression of LHX3 obviously inhibits tumor cell migration and invasion. CONCLUSION LHX3 is an advanced-stage prognostic biomarker, and acts as a new potential metastatic oncogene in HCC.
Collapse
Affiliation(s)
- Bo Huang
- The People's Hospital of Shapingba District in Chongqing, Chongqing, China.,The People's Hospital of Shapingba District in Chongqing, Chongqing, China
| | - Zhan-Fei Tian
- Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China.,Department of Infectious Diseases, Chinese PLA Central Theater General Hospital, Wuhan, Hubei, China.,The People's Hospital of Shapingba District in Chongqing, Chongqing, China
| | - Lu-Feng Li
- Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yi Fan
- Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hao-Yang Yin
- Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yan Li
- Chongqing University Cancer Hospital, Chongqing, China
| | - Qing Mao
- Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhong-Lan You
- The People's Hospital of Shapingba District in Chongqing, Chongqing, China.,Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
13
|
Camats N, Flück CE, Audí L. Oligogenic Origin of Differences of Sex Development in Humans. Int J Mol Sci 2020; 21:E1809. [PMID: 32155719 PMCID: PMC7084473 DOI: 10.3390/ijms21051809] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022] Open
Abstract
Sex development is a very complex biological event that requires the concerted collaboration of a large network of genes in a spatial and temporal correct fashion. In the past, much has been learned about human sex development from monogenic disorders/differences of sex development (DSD), but the broad spectrum of phenotypes in numerous DSD individuals remains a conundrum. Currently, the genetic cause of less than 50% of DSD individuals has been solved and oligogenic disease has been proposed. In recent years, multiple genetic hits have been found in individuals with DSD thanks to high throughput sequencing. Our group has been searching for additional genetic hits explaining the phenotypic variability over the past years in two cohorts of patients: 46,XY DSD patients carriers of NR5A1 variants and 46,XY DSD and 46,XX DSD with MAMLD1 variants. In both cohorts, our results suggest that the broad phenotypes may be explained by oligogenic origin, in which multiple hits may contribute to a DSD phenotype, unique to each individual. A search for an underlying network of the identified genes also revealed that a considerable number of these genes showed interactions, suggesting that genetic variations in these genes may affect sex development in concert.
Collapse
Affiliation(s)
- Núria Camats
- Growth and Development Research Group, Vall d’Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, 08035 Catalonia, Spain;
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics and Department of BioMedical Research, Bern University Hospital and University of Bern, CH-3010 Bern, Switzerland;
| | - Laura Audí
- Growth and Development Research Group, Vall d’Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, 08035 Catalonia, Spain;
| |
Collapse
|
14
|
Wu X, Luo C, Hu L, Chen X, Chen Y, Fan J, Cheng CY, Sun F. Unraveling epigenomic abnormality in azoospermic human males by WGBS, RNA-Seq, and transcriptome profiling analyses. J Assist Reprod Genet 2020; 37:789-802. [PMID: 32056059 DOI: 10.1007/s10815-020-01716-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/06/2020] [Indexed: 02/02/2023] Open
Abstract
PURPOSE To determine associations between genomic DNA methylation in testicular cells and azoospermia in human males. METHODS This was a case-control study investigating the differences and conservations in DNA methylation, genome-wide DNA methylation, and bulk RNA-Seq for transcriptome profiling using testicular biopsy tissues from NOA and OA patients. Differential methylation and different conserved methylation regions associated with azoospermia were identified by comparing genomic DNA methylation of testicular seminiferous cells derived from NOA and OA patients. RESULTS The genome methylation modification of testicular cells from NOA patients was disordered, and the reproductive-related gene expression was significantly different. CONCLUSION Our findings not only provide valuable knowledge of human spermatogenesis but also paved the way for the identification of genes/proteins involved in male germ cell development. The approach presented in this report provides a powerful tool to identify responsible biomolecules, and/or cellular changes (e.g., epigenetic abnormality) that induce male reproductive dysfunction such as OA and NOA.
Collapse
Affiliation(s)
- Xiaolong Wu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, Jiangsu, China
| | - Chunhai Luo
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, Jiangsu, China
| | - Longfei Hu
- Singleron Biotechnologies Ltd., 211 Pubin Road, Nanjing, Jiangsu, People's Republic of China
| | - Xue Chen
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yunmei Chen
- Singleron Biotechnologies Ltd., 211 Pubin Road, Nanjing, Jiangsu, People's Republic of China
| | - Jue Fan
- Singleron Biotechnologies Ltd., 211 Pubin Road, Nanjing, Jiangsu, People's Republic of China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, 10065, USA.
| | - Fei Sun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
15
|
Zhang H, Jin Z, Cheng L, Zhang B. Integrative Analysis of Methylation and Gene Expression in Lung Adenocarcinoma and Squamous Cell Lung Carcinoma. Front Bioeng Biotechnol 2020; 8:3. [PMID: 32117905 PMCID: PMC7019569 DOI: 10.3389/fbioe.2020.00003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is a highly prevalent type of cancer with a poor 5-year survival rate of about 4-17%. Eighty percent lung cancer belongs to non-small-cell lung cancer (NSCLC). For a long time, the treatment of NSCLC has been mostly guided by tumor stage, and there has been no significant difference between the therapy strategy of lung adenocarcinoma (LUAD) and squamous cell lung carcinoma (SCLC), the two major subtypes of NSCLC. In recent years, important molecular differences between LUAD and SCLC are increasingly identified, indicating that targeted therapy will be more and more histologically specific in the future. To investigate the LUAD and SCLC difference on multi-omics scale, we analyzed the methylation and gene expression data together. With the Boruta method to remove irrelevant features and the MCFS (Monte Carlo Feature Selection) method to identify the significantly important features, we identified 113 key methylation features and 23 key gene expression features. HNF1B and TP63 were found to be dysfunctional on both methylation and gene expression levels. The experimentally determined interaction network suggested that TP63 may play an important role in connecting methylation genes and expression genes. Many of the discovered signature genes have been supported by literature. Our results may provide directions of precision diagnosis and therapy of LUAD and SCLC.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhou Jin
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Department of Respiration, Hospital of Traditional Chinese Medicine of Zhenhai, Ningbo, China
| | - Ling Cheng
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Bin Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Fu Q, Sun Z, Yang F, Mao T, Gao Y, Wang H. SOX30, a target gene of miR-653-5p, represses the proliferation and invasion of prostate cancer cells through inhibition of Wnt/β-catenin signaling. Cell Mol Biol Lett 2019; 24:71. [PMID: 31889959 PMCID: PMC6929505 DOI: 10.1186/s11658-019-0195-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sex-determining region Y-box containing gene 30 (SOX30) is a newly identified tumor-associated gene in several types of cancer. However, whether SOX30 is involved in the development and progression of prostate cancer remains unknown. This study investigated the potential role of SOX30 in prostate cancer. METHODS Prostate cancer cell lines and a normal prostate epithelial cell line were used for the experiments. The expression of SOX30 was determined using quantitative real-time PCR and western blot analysis. The malignant cellular behaviors of prostate cancer were assessed using the Cell Counting Kit-8, colony formation and Matrigel invasion assays. The miRNA-mRNA interaction was validated using the dual-luciferase reporter assay. RESULTS SOX30 expression was lower in cells of prostate cancer lines than in cells of the normal prostate epithelial line. Its overexpression repressed the proliferation and invasion of prostate cancer cells. SOX30 was identified as a target gene of microRNA-653-5p (miR-653-5p), which is upregulated in prostate cancer tissues. MiR-653-5p overexpression decreased SOX30 expression, while its inhibition increased SOX30 expression in prostate cancer cells. MiR-653-5p inhibition also markedly restricted prostate cancer cell proliferation and invasion. SOX30 overexpression or miR-653-5p inhibition significantly reduced β-catenin expression and downregulated the activation of Wnt/β-catenin signaling. SOX30 knockdown significantly reversed the miR-653-5p inhibition-mediated inhibitory effect on the proliferation, invasion and Wnt/β-catenin signaling in prostate cancer cells. CONCLUSIONS These results reveal a tumor suppressive function for SOX30 in prostate cancer and confirmed the gene as a target of miR-653-5p. SOX30 upregulation due to miR-653-5p inhibition restricted the proliferation and invasion of prostate cancer cells, and this was associated with Wnt/β-catenin signaling suppression. These findings highlight the importance of the miR-653-5p-SOX30-Wnt/β-catenin signaling axis in prostate cancer progression.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 Shaanxi China
| | - Zhenye Sun
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 Shaanxi China
| | - Fan Yang
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 Shaanxi China
| | - Tianci Mao
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 Shaanxi China
| | - Yanyao Gao
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 Shaanxi China
| | - He Wang
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 Shaanxi China
| |
Collapse
|
17
|
Han F, Jiang X, Li ZM, Zhuang X, Zhang X, Ouyang WM, Liu WB, Mao CY, Chen Q, Huang CS, Gao F, Cui ZH, Ao L, Li YF, Cao J, Liu JY. Epigenetic Inactivation of SOX30 Is Associated with Male Infertility and Offers a Therapy Target for Non-obstructive Azoospermia. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:72-83. [PMID: 31835093 PMCID: PMC6926170 DOI: 10.1016/j.omtn.2019.10.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022]
Abstract
Non-obstructive azoospermia (NOA) is the most severe form of male infertility. However, the etiology of NOA is largely unknown, resulting in a lack of clinical treatments. Here, we performed a comparative genome-wide profiling of DNA methylation and identified SOX30 as the most notably hyper-methylated gene at promoter in testicular tissues from NOA patients. This hyper-methylation at promoter of SOX30 directly causes its silencing of expression in NOA. The reduced levels of SOX30 expression are correlated with severity of NOA disease. Deletion of Sox30 in mice uniquely impairs testis development and spermatogenesis with complete absence of spermatozoa in testes leading to male infertility, but does not influence ovary development and female fertility. The pathology and testicular size of Sox30 null mice highly simulate those of NOA patients. Re-expression of Sox30 in Sox30 null mice at adult age reverses the pathological damage of testis and restores the spermatogenesis. The re-presented spermatozoa after re-expression of Sox30 in Sox30 null mice have the ability to start a pregnancy. Moreover, the male offspring of Sox30 re-expression Sox30 null mice still can father children, and these male offspring and their children can live normally more than 1 year without significant difference of physical appearance compared with wild-type mice. In summary, methylated inactivation of SOX30 uniquely impairs spermatogenesis, probably causing NOA disease, and re-expression of SOX30 can successfully restore the spermatogenesis and actual fertility. This study advances our understanding of the pathogenesis of NOA, offering a promising therapy target for NOA disease.
Collapse
Affiliation(s)
- Fei Han
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Zhi-ming Li
- Institute of Reproductive Health, Tongji College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuan Zhuang
- Department of Urology, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian, China
| | - Xi Zhang
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Wei-ming Ouyang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Wen-bin Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Cheng-yi Mao
- Department of Pathology, Daping Hospital, Army Medical University, Chongqing, China
| | - Qing Chen
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Chuan-shu Huang
- Nelson Institute of Environmental Medicine, NYU School of Medicine, New York, NY, USA
| | - Fei Gao
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Zhi-hong Cui
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Lin Ao
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Yan-feng Li
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
- Corresponding author: Jia Cao, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China.
| | - Jin-yi Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
- Corresponding author: Jin-yi Liu, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China.
| |
Collapse
|
18
|
Angelozzi M, Lefebvre V. SOXopathies: Growing Family of Developmental Disorders Due to SOX Mutations. Trends Genet 2019; 35:658-671. [PMID: 31288943 DOI: 10.1016/j.tig.2019.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022]
Abstract
The SRY-related (SOX) transcription factor family pivotally contributes to determining cell fate and identity in many lineages. Since the original discovery that SRY deletions cause sex reversal, mutations in half of the 20 human SOX genes have been associated with rare congenital disorders, henceforward called SOXopathies. Mutations are generally de novo, heterozygous, and inactivating, revealing gene haploinsufficiency, but other types, including duplications, have been reported too. Missense variants primarily target the HMG domain, the SOX hallmark that mediates DNA binding and bending, nuclear trafficking, and protein-protein interactions. We here review key clinical and molecular features of SOXopathies and discuss the prospect that the disease family likely involves more SOX genes and larger clinical and genetic spectrums than currently appreciated.
Collapse
Affiliation(s)
- Marco Angelozzi
- Department of Surgery/Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Véronique Lefebvre
- Department of Surgery/Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Jiang L, Bi D, Ding H, Wu X, Zhu R, Zeng J, Yang X, Kan X. Systematic Identification and Evolution Analysis of Sox Genes in Coturnix japonica Based on Comparative Genomics. Genes (Basel) 2019; 10:genes10040314. [PMID: 31013663 PMCID: PMC6523956 DOI: 10.3390/genes10040314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/16/2019] [Accepted: 04/20/2019] [Indexed: 01/04/2023] Open
Abstract
Coturnix japonica (Japanese quail) has been extensively used as a model animal for biological studies. The Sox gene family, which was systematically characterized by a high-mobility group (HMG-box) in many animal species, encodes transcription factors that play central roles during multiple developmental processes. However, genome-wide investigations on the Sox gene family in birds are scarce. In the current study, we first performed a genome-wide study to explore the Sox gene family in galliform birds. Based on available genomic sequences retrieved from the NCBI database, we focused on the global identification of the Sox gene family in C. japonica and other species in Galliformes, and the evolutionary relationships of Sox genes. In our result, a total of 35 Sox genes in seven groups were identified in the C. japonica genome. Our results also revealed that dispersed gene duplications contributed the most to the expansion of the Sox gene family in Galliform birds. Evolutionary analyses indicated that Sox genes are an ancient gene family, and strong purifying selections played key roles in the evolution of CjSox genes of C. japonica. More interestingly, we observed that most Sox genes exhibited highly embryo-specific expression in both gonads. Our findings provided new insights into the molecular function and phylogeny of Sox gene family in birds.
Collapse
Affiliation(s)
- Lan Jiang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650000, China.
| | - De Bi
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Hengwu Ding
- The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, 241000, China.
| | - Xuan Wu
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Ran Zhu
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Juhua Zeng
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Xiaojun Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650000, China.
| | - Xianzhao Kan
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
- The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, 241000, China.
| |
Collapse
|
20
|
Han F, Liu WB, Li JJ, Zhang MQ, Yang JT, Zhang X, Hao XL, Yin L, Mao CY, Jiang X, Cao J, Liu JY. SOX30 is a prognostic biomarker and chemotherapeutic indicator for advanced-stage ovarian cancer. Endocr Relat Cancer 2019; 26:303-319. [PMID: 30608899 DOI: 10.1530/erc-18-0529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/03/2019] [Indexed: 01/03/2023]
Abstract
New potential biomarkers and therapeutic targets for ovarian cancer should be identified. The amplification in chromosomal region 5q31-5q35.3 exhibits the strongest correlation with overall survival (OS) of ovarian cancer. SOX30 coincidentally located at this chromosomal region has been determined as a new important tumor suppressor. However, the prognostic value, role and mechanism of SOX30 in ovarian cancer are unexplored. Here, we reveal that SOX30 is frequently overexpressed in ovarian cancer tissues and is associated with clinical stage and metastasis of ovarian cancer patients. High SOX30 expression predicts better OS and acts as an independent prognostic factor in advanced-stage patients, but is not associated with OS in early-stage patients. Based on the survival analyses, the advanced-stage patients with high SOX30 expression can receive platin- and/or taxol-based chemotherapy, whereas they should not receive chemotherapy containing gemcitabine or topotecan. Functionally, SOX30 strongly inhibits tumor cell migration and invasion in intro and suppresses tumor metastasis in vivo. SOX30 regulates some markers (E-CADHERIN, FIBRONECTIN, N-CADHERIN and VIMENTIN) and prevents the characteristics of epithelial-mesenchymal transition (EMT). SOX30 transcriptionally regulates the expression of E-CADHERIN, FIBRONECTIN and N-CADHERIN by binding to their promoters. Restoration of E-CADHERIN and/or N-CADHERIN when overexpressing SOX30 significantly reduces the anti-metastatic role of SOX30. Indeed, chemotherapy treatment containing platin or gemcitabine combined with SOX30 expression influences tumor cell metastasis and the survival of nude mice differently, which is closely associated with EMT. In conclusion, SOX30 antagonizes tumor metastasis by preventing EMT process that can be used to predict survival and incorporated into chemotherapeutics of advanced-stage ovarian cancer patients.
Collapse
Affiliation(s)
- Fei Han
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Jian-Jun Li
- Department of Oncology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ming-Qian Zhang
- Department of Emergency, Yan'an Hospital, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jun-Tang Yang
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Xi Zhang
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Xiang-Lin Hao
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Li Yin
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Cheng-Yi Mao
- Department of Pathology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
21
|
Han F, Zhang MQ, Liu WB, Sun L, Hao XL, Yin L, Jiang X, Cao J, Liu JY. SOX30 specially prevents Wnt-signaling to suppress metastasis and improve prognosis of lung adenocarcinoma patients. Respir Res 2018; 19:241. [PMID: 30514297 PMCID: PMC6280504 DOI: 10.1186/s12931-018-0952-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/23/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Different histological subtypes of non-small cell lung cancer (NSCLC) show different molecular characteristics and responses to therapeutic strategy. Identification of specific gene, clarification of its special roles and molecular mechanisms are crucial for developing new therapeutic approach for particular subtype patients. METHODS Surgical specimens of 540 NSCLC patients were recruited. Immunohistochemistry was used to detect SOX30 expression, and correlations with clinical parameters were analyzed. Functional experiments and gene ontology analysis were performed to investigate roles of SOX30. Network analysis, TOP/FOP-Flash assays, luciferase reporter assays and ChIP-PCR assays were performed to determine the mechanism. Survival analyses were calculated by Kaplan-Meier and Cox regression. Recovery experiment was investigated the importance of the target of SOX30. RESULTS SOX30 expression is closely associated with histological types of NSCLC, and metastasis of adenocarcinoma (ADC) patients but not of squamous cell carcinoma (SCC) patients. SOX30 strongly inhibits cancer cell migration and invasion in ADC cell lines, whrereas not affects cell migration and invasion in SCC cell lines. The genes associated with SOX30 preferentially enrich in metastasis process and Wnt-signaling in only ADC patients. Consistently, SOX30 is negatively associated with the expression of Wnt-signaling and metastasis-related gene CTNNB1 (β-catenin) in ADC, but not in SCC. At the molecular level, SOX30 represses Wnt-signaling by directly transcriptional inhibition of CTNNB1 in ADC, and also not in SCC. In the clinical, SOX30 is a favorable and independent prognostic factor in ADC patients, whereas is an unfavorable and independent prognostic factor in SCC patients. Moreover, SOX30 expression is a double face early-stage prognostic biomarker in ADC and SCC patients. In addition, forcible restoration of CTNNB1 indeed can inhibit the anti-metastatic role of SOX30 in ADC patients. CONCLUSIONS In early-stage ADC patients, elevated SOX30 expression inhibits tumor-metastasis by directly binding to CTNNB1 promoter resulting in a favorable prognosis of these patients. However, in early-stage SCC patients, SOX30 has no inhibitory role on tumor-metastasis due to not binding to CTNNB1 promoter leading to an unfavorable prognosis of the patients. This study highlights a special role and prognostic value of SOX30 in ADC, providing a novel therapeutic target for particular subtype NSCLC patients.
Collapse
Affiliation(s)
- Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Ming-Qian Zhang
- Department of Emergency, Yan'an Hospital, Kunming Medical University, Kunming, Yunnan Province, China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Lei Sun
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Xiang-Lin Hao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Li Yin
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
22
|
Zhang Q, Wang Q, Zhang Y, Cheng S, Hu J, Ma Y, Zhao X. Comprehensive Analysis of MicroRNA⁻Messenger RNA from White Yak Testis Reveals the Differentially Expressed Molecules Involved in Development and Reproduction. Int J Mol Sci 2018; 19:ijms19103083. [PMID: 30304826 PMCID: PMC6213350 DOI: 10.3390/ijms19103083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 01/31/2023] Open
Abstract
Testis development is a vital and tightly regulated process in mammals. Understanding the biological mechanisms underlying testis development will benefit the animal reproduction industry. Expression changes in microRNA and messenger RNA in response to dynamic regulation effects have been associated with this process. However, very little is known about the roles of these molecules in yak development. Using whole-genome small RNA and messenger RNA sequencing, we performed a comprehensive analysis of the microRNA–messenger RNA interaction network expression in the testicles of Tianzhu white yaks during three developmental stages. Using Short Time-series Expression Miner analysis we identified 589 differentially expressed microRNAs (DERs) and 3383 differentially expressed messenger RNAs (DEGs) in the three age groups. A total of 93 unique DEGs are primarily involved in reproduction and testis development. Subsequently, four integration networks were constructed according to the DEGs and DERs in three biological processes. Nineteen DEGs were potentially regulated by 60 DERs, of which miR-574 and target gene AURKA played a crucial role in yak testis development and reproduction. The results of this study provide a basis for further exploration of the microRNA–messenger RNA interactions in testis development and reproduction and aid in uncovering the molecular mechanisms of spermatogenesis in male mammals.
Collapse
Affiliation(s)
- Quanwei Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China.
- College of Life science and Technology, Gansu Agriculture University, Lanzhou 730070, China.
| | - Qi Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China.
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China.
- College of Life science and Technology, Gansu Agriculture University, Lanzhou 730070, China.
| | - Shuru Cheng
- College of Animal Science and Technology, Gansu Agriculture University, Lanzhou 730070, China.
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China.
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agriculture University, Lanzhou 730070, China.
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China.
- College of Life science and Technology, Gansu Agriculture University, Lanzhou 730070, China.
| |
Collapse
|
23
|
Broad phenotypes in heterozygous NR5A1 46,XY patients with a disorder of sex development: an oligogenic origin? Eur J Hum Genet 2018; 26:1329-1338. [PMID: 29891883 DOI: 10.1038/s41431-018-0202-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 05/23/2018] [Accepted: 05/26/2018] [Indexed: 11/08/2022] Open
Abstract
SF-1/NR5A1 is a transcriptional regulator of adrenal and gonadal development. NR5A1 disease-causing variants cause disorders of sex development (DSD) and adrenal failure, but most affected individuals show a broad DSD/reproductive phenotype only. Most NR5A1 variants show in vitro pathogenic effects, but not when tested in heterozygote state together with wild-type NR5A1 as usually seen in patients. Thus, the genotype-phenotype correlation for NR5A1 variants remains an unsolved question. We analyzed heterozygous 46,XY SF-1/NR5A1 patients by whole exome sequencing and used an algorithm for data analysis based on selected project-specific DSD- and SF-1-related genes. The variants detected were evaluated for their significance in literature, databases and checked in silico using webtools. We identified 19 potentially deleterious variants (one to seven per patient) in 18 genes in four 46,XY DSD subjects carrying heterozygous NR5A1 disease-causing variants. We constructed a scheme of all these hits within the landscape of currently known genes involved in male sex determination and differentiation. Our results suggest that the broad phenotype in these heterozygous NR5A1 46,XY DSD subjects may well be explained by an oligogenic mode of inheritance, in which multiple hits, individually non-deleterious, may contribute to a DSD phenotype unique to each heterozygous SF-1/NR5A1 individual.
Collapse
|
24
|
Liu Y, Wang H, Zhong J, Wu C, Yang G, Zhong Y, Zhang J, Tang A. Decreased expression of SRY-box containing gene 30 is related to malignant phenotypes of human bladder cancer and correlates with poor prognosis. BMC Cancer 2018; 18:642. [PMID: 29880037 PMCID: PMC5992861 DOI: 10.1186/s12885-018-4560-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/30/2018] [Indexed: 11/10/2022] Open
Abstract
Background In human pulmonary malignancies, the SRY-box containing gene 30 (SOX30) is a known cancer-suppressing gene. Nevertheless, its molecular role and clinical effects remains unknown in bladder cancer. Methods SOX30 mRNA expression was quantified in bladder cancer tissue, paired adjacent normal tissue, and cell lines with qRT-PCR. SOX30 protein expression in BC tissue and cell lines was evaluated via western blotting and immunohistochemistry. In addition, the clinical and prognostic significance of SOX30 in BC were assessed using Kaplan-Meier analysis. Furthermore, we measured cell migration and invasion, cell proliferation and cell apoptosis by means of a Transwell assay, cell counting kit-8 along with flow cytometry, respectively. Results Expression levels of SOX30 were markedly lower in BC cells and tumor tissues than in adjacent noncancerous tissues. Moreover, clinicopathological analyses showed that low SOX30 expression was positively related to an advanced tumor, node, and metastasis (TNM) stage. Furthermore, low SOX30 expression conferred reduced survival rates (P < 0.05). Functional analyses revealed that SOX30 overexpression attenuated cell proliferation, invasion, and migration, while promoting apoptosis in BC cells. Conclusions SOX30 displays tumor suppressive behavior, warranting future investigations into its therapeutic potential in the treatment of BC.
Collapse
Affiliation(s)
- Yang Liu
- The Central Laboratory, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, China.,Department of Urinary Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Han Wang
- Department of Urinary Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jianhua Zhong
- Department of Urinary Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Chenglong Wu
- Department of Urinary Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Gang Yang
- Department of Urinary Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yuantang Zhong
- Department of Urinary Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jinghua Zhang
- Department of Urinary Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Aifa Tang
- Department of Urinary Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
25
|
Hao X, Han F, Ma B, Zhang N, Chen H, Jiang X, Yin L, Liu W, Ao L, Cao J, Liu J. SOX30 is a key regulator of desmosomal gene suppressing tumor growth and metastasis in lung adenocarcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:111. [PMID: 29855376 PMCID: PMC5984358 DOI: 10.1186/s13046-018-0778-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/21/2018] [Indexed: 02/02/2023]
Abstract
Background The expression of desmosomal genes in lung adenocarcinoma and lung squamous carcinoma is different. However, the regulatory mechanism of desmosomal gene expression in lung adenocarcinoma and lung squamous carcinoma remains unknown. Methods The correlation between expression of desmosomal gene expression and SOX30 expression were analyzed by bioinformatics. The expression of SOX30, DSP, JUP and DSC3 were detected in lung cancer cell lines, lung tissues of mice and patients’ tissues by qPCR, WB, Immunofluorescence and Immunohistochemistry. A chromatin Immunoprecipitation assay was used to investigate the mechanisms of the SOX30 regulation on desmosomal gene expression. In vitro proliferation, migration and invasion assays, and an in vivo nude mice model were utilized to assess the important role of desmosomal genes on SOX30-induced tumor suppression. A WB assay and TOP/FOP flash reporter assay was used to investigate the downstream pathway regulated by the SOX30-desmosomal gene axis. A chemical carcinogenic model of SOX30-knockout mice was generated to confirm the role of the SOX30-desmosomal gene axis in tumorigenesis. Results The expression of desmosomal genes were upregulated by SOX30 in lung adenocarcinoma but not in lung squamous carcinoma. Further mechanism studies showed that SOX30 acts as a key transcriptional regulator of desmosomal genes by directly binding to the ACAAT motif of desmosomal genes promoter region and activating their transcription in lung adenocarcinoma. Knockdown of the expression of related desmosomal genes by miRNA significantly attenuated the inhibitory effect of SOX30 on cell proliferation, migration and invasion in vitro and on tumor growth and metastasis in vivo. In addition, knockout of SOX30 promotes lung tumor development and loss the inhibition of desmosomal genes on downstream Wnt and ERK signal in urethane-induced lung carcinogenesis in SOX30-knockout mice. Conclusions Overall, these findings demonstrate for the first time that SOX30 acts as a master switch of desmosomal genes, inhibits lung adenocarcinoma cell proliferation, migration and invasion by activating the transcription of desmosomal genes. This study provides novel insights on the regulatory mechanism of desmosomal genes in lung adenocarcinoma. Electronic supplementary material The online version of this article (10.1186/s13046-018-0778-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xianglin Hao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Bangjin Ma
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Ning Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Hongqiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Li Yin
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Wenbin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Lin Ao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Jinyi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
26
|
SOX30 Inhibits Tumor Metastasis through Attenuating Wnt-Signaling via Transcriptional and Posttranslational Regulation of β-Catenin in Lung Cancer. EBioMedicine 2018; 31:253-266. [PMID: 29739711 PMCID: PMC6014586 DOI: 10.1016/j.ebiom.2018.04.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/17/2018] [Accepted: 04/27/2018] [Indexed: 01/10/2023] Open
Abstract
Although high mortality of lung cancer is greatly due to distant metastasis, the mechanism of this metastasis remains unclear. Here, we investigate in lung cancer that SOX30 is sharply under-expressed in metastatic tumors compared with non-metastatic tumors, and suppresses plenty of metastasis related processes or pathways. SOX30 strongly inhibits tumor cell metastasis in vitro and in vivo. Sox30 deficiency promotes lung metastasis in Sox30−/− mice and this uncontrollable lung-metastasis is re-inhibited upon Sox30 re-expression. Mechanistically, SOX30 diminishes Wnt-signaling via directly transcriptional repressing β-catenin or interacting with β-catenin to compete with TCF for binding to β-catenin. The carboxyl-terminus of SOX30 is required for attenuating β-catenin transcriptional activity, whereas the amino-terminus of SOX30 is required for its interaction with β-catenin protein. Enhance of β-catenin attenuates the anti-metastatic role of SOX30. Moreover, Sox30 deficiency promotes tumor metastasis and reduces survival of mice. In addition, nuclear SOX30 expression is closely associated with metastasis and represents a favorable independent prognostic biomarker of lung cancer patients. Altogether, these results highlight an important role and mechanism of SOX30 in lung cancer metastasis, providing a potential therapeutic target for anti-metastasis. SOX30 is closely associated with lung cancer metastasis, and strongly inhibits cancer cell metastasis in vitro and in vivo. SOX30 suppresses cancer metastasis via transcriptional repressing β-catenin or competing with TCF for β-catenin binding. SOX30 deficiency promotes tumor long-distance metastasis and reduces overall survival of mice and lung cancer patients.
The high mortality of lung cancer is largely due to distant-metastases. However, the mechanism of this metastasis remains unclear. Here, we demonstrate that SOX30 strongly inhibits lung cancer metastasis in vitro and in vivo. As an important metastatic suppressor, SOX30 prevents long-distant metastases and causes fine prognosis inhibiting Wnt-signaling via transcriptional repressing β-catenin or competing with TCF for interaction with β-catenin. This study provides useful information for effective therapies against tumor-metastasis. Considering key role of β-catenin in tumor-metastasis and ineffective treatment using inhibitors against β-catenin, it is a potential choice to suppress Wnt/β-catenin activity via targeting the upstream SOX30.
Collapse
|
27
|
Roumaud P, Haché J, Martin LJ. Expression profiles of Sox transcription factors within the postnatal rodent testes. Mol Cell Biochem 2018; 447:175-187. [PMID: 29383560 DOI: 10.1007/s11010-018-3302-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/25/2018] [Indexed: 12/22/2022]
Abstract
SRY-related box (Sox) transcription factors are conserved among vertebrate species. These proteins regulate multiple processes including sex determination and testis differentiation of the male embryo. Members of the Sox family have been identified in pre- and postnatal testis and are known to play an important role in sex determination (Sry, Sox9), male gonadal development, and fertility (Sox4, Sox8, Sox30). However, their expression profiles per cell types remain elusive. The objectives of this research were to characterize the expression profiles of Sox family members within adult testes using publically available datasets and to determine whether these findings are consistent with literature as well as immunofluorescence and in situ hybridization results. We have found that Sox4, Sox8, Sox9, and Sox12 are highly expressed in Sertoli cells, whereas Sox5, Sox6, and Sox30 were typically expressed in spermatocytes and spermatids. Spermatogonia were characterized by the expressions of Sox3, Sox4, Sox12, Sox13, and Sox18. Hence, these results suggest that Sox transcription factors may play different roles according to cell types of the adult mammalian testis.
Collapse
Affiliation(s)
- Pauline Roumaud
- Biology Department, Université de Moncton, 18, avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada
| | - Josée Haché
- Biology Department, Université de Moncton, 18, avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, 18, avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada.
| |
Collapse
|
28
|
Abstract
Male infertility is a major and growing problem and, in most cases, the specific root cause is unknown. Here we show that the transcription factor SOX30 plays a critical role in mouse spermatogenesis. Sox30-null mice are healthy and females are fertile, but males are sterile. In the absence of Sox30 meiosis initiates normally in both sexes but, in males, germ cell development arrests during the post-meiotic round spermatid period. In the mutant testis, acrosome and axoneme development are aberrant, multinucleated germ cells (symplasts) form and round spermatids unable to process beyond step 3 of spermiogenesis. No elongated spermatids nor spermatozoa are produced. Thus, Sox30 represents a rare example of a gene for which loss of function results in a complete arrest of spermatogenesis at the onset of spermiogenesis. Our results suggest that SOX30 mutations may underlie some instances of unexplained non-obstructive azoospermia in humans.
Collapse
|
29
|
Dong Y, Cai Y, Liu B, Jiao X, Li ZT, Guo DY, Li XW, Wang YJ, Yang DK. HOXA13 is associated with unfavorable survival and acts as a novel oncogene in prostate carcinoma. Future Oncol 2017; 13:1505-1516. [PMID: 28766961 DOI: 10.2217/fon-2016-0522] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM To investigate the clinical relevance and functional role of HOXA13 in prostate cancer Methods: PCR, western blot and immunohistochemistry were performed to determine the expression. Kaplan-Meier and Cox regression survival analyses investigated the clinical relevance. Cell viability, flow cytometry and transwell assays were used to determine the functional roles. RESULTS HOXA13 expression is sharply increased in carcinoma tissues and is significantly associated with poor prognosis of prostate cancer patients. Interestingly, nucleus not cytoplasm HOXA13 expression is associated with unfavorable survival of the patients. Furthermore, nucleus HOXA13 expression represents an unfavorable and independent prognosis factor of histological grade 2 or Gleason grade <8 patients. Functionally, forced expression of HOXA13 obviously promotes tumor cell proliferation, migration and invasion, whereas inhibits tumor cell apoptosis. CONCLUSION HOXA13 is an unfavorable prognostic factor and a novel oncogene for prostate cancer.
Collapse
Affiliation(s)
- Yan Dong
- Department of Urology, 159th Hospital of PLA, Zhumadian, China.,Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ying Cai
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Bo Liu
- Department of Burns & plastic Surgery, 159th Hospital of PLA, Zhumadian, China
| | - Xiang Jiao
- Department of Urology, 159th Hospital of PLA, Zhumadian, China
| | - Zhong-Tai Li
- Department of Urology, 159th Hospital of PLA, Zhumadian, China
| | - Da-Yong Guo
- Department of Urology, 159th Hospital of PLA, Zhumadian, China
| | - Xin-Wei Li
- Department of Urology, 159th Hospital of PLA, Zhumadian, China
| | - Yong-Jun Wang
- Department of Urology, 159th Hospital of PLA, Zhumadian, China
| | - Deng-Ke Yang
- Department of Urology, 159th Hospital of PLA, Zhumadian, China
| |
Collapse
|
30
|
Yang J, Han F, Liu W, Zhang M, Huang Y, Hao X, Jiang X, Yin L, Chen H, Cao J, Zhang H, Liu J. LHX6, An Independent Prognostic Factor, Inhibits Lung Adenocarcinoma Progression through Transcriptional Silencing of β-catenin. J Cancer 2017; 8:2561-2574. [PMID: 28900494 PMCID: PMC5595086 DOI: 10.7150/jca.19972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/10/2017] [Indexed: 12/27/2022] Open
Abstract
Introduction: Our previous study identified LIM homeobox domain 6 (LHX6) as a frequently epigenetically silenced tumor-suppressor gene in lung cancer. However, its clinical value has never been evaluated, and the in-depth anti-tumor mechanism remains unclear. Methods: Public database was used for lung cancer, lung adenocarcinoma and lung squamous carcinoma patients and tissue microarray data was used for lung adenocarcinoma patients to study prognostic outcome of LHX6 expression by Kaplan-Meier and Cox-regression analysis. In vitro proliferation, metastasis and in vivo nude mice model were used to evaluate the anti-tumor effect of LHX6 on lung adenocarcinoma cell lines. The mechanisms were explored using western blot, TOP/FOP flash assays and luciferase reporter assays. LHX6 expression and clinical stages data were collected from The Cancer Genome Atlas database (TCGA). Results: Expression of LHX6 was found to be a favorable independent prognostic factor for overall survival (OS) of total lung adenocarcinoma patients (P=0.014) and patients with negative lymph nodes status (P=0.014) but not related the prognostic outcome of lung squamous cell carcinoma patients. The expression status of LHX6 significantly correlated to histological grade (P<0.01), tumor size (P=0.026), lymph node status (P=0.039) and clinical stages (P<0.01) of lung adenocarcinoma patients. Functionally, LHX6 inhibited the proliferation and metastasis of lung adenocarcinoma cells in vitro and in vivo. Furthermore, LHX6 suppressed the Wnt/β-catenin pathway through transcriptionally silencing the expression of β-catenin, and the promoter region (-1161 bp to +27 bp) was crucial for its inhibitory activity. Conclusions: Our data indicate that the expression of LHX6 may serve as a favorable prognostic biomarker for lung adenocarcinoma patients and provide a novel mechanism of LHX6 involving in the tumorigenesis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Juntang Yang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Wenbin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Mingqian Zhang
- Department of emergency, Yan'an Hospital, Kunming Medical University, Kunming 650500, PR China
| | - Yongsheng Huang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Xianglin Hao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Li Yin
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Hongqiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Huidong Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Jinyi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| |
Collapse
|
31
|
Lin X, Li Y, Wang J, Han F, Lu S, Wang Y, Luo W, Zhang M. LHX3 is an early stage and radiosensitivity prognostic biomarker in lung adenocarcinoma. Oncol Rep 2017; 38:1482-1490. [PMID: 28731174 PMCID: PMC5549242 DOI: 10.3892/or.2017.5833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. We previously identified LHX3 as a new preferentially expressed gene in NSCLC. In the present study, we sought to determine its expression, the clinical relevance and the functional roles in NSCLC. LHX3 expression is sharply increased in carcinoma tissues compared to non-carcinoma tissues. Relational analysis reveals a significant association between LHX3 expression and clinical stage (n=172, P=0.032) or radiotherapy (n=167, P=0.022) of patients. LHX3 expression is much higher in the patients at advanced stages (stage III–IV) than in the patients at early stages (stage I–II, P=0.0304), and LHX3 expression is remarkably increased in the patients with radiotherapy treatment (P=0.0002). Survival analyses indicate that LHX3 is associated with unfavorable survival (n=180, P=0.002) and represents an independent prognostic factor [hazard ratio (HR)=1.834, P=0.004] of the NSCLC patients. Furthermore, LHX3 is associated with unfavorable overall survival (n=866, P=0.004) and represents an independent prognostic factor (HR=2.36, P=0.000) in lung adenocarcinoma (ADC) patients, but is not associated with overall survival of squamous cell carcinoma (SCC) patients (n=524, P=0.27). Further analyses found that LHX3 is an early-stage (n=94, P=0.003) and radiosensitivity (n=45, P=0.002) prognostic factor in ADC patients. The patients without radiotherapy have a significantly prolonged survival compared to those with radiotherapy (P=0.0069). Further functional studies show that forced expression of LHX3 in lung cancer cells obviously promotes cell proliferation and invasion, whereas inhibits cell apoptosis. In summary, LHX3 is an early-stage and radiosensitivity prognostic biomarker, and a novel potential oncogene in ADC.
Collapse
Affiliation(s)
- Xin Lin
- Department of Emergency, Yan'an Hospital, Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Yan Li
- Department of Emergency, Yan'an Hospital, Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Jin Wang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P.R. China
| | - Shuang Lu
- Department of Emergency, Yan'an Hospital, Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Yu Wang
- Department of Gerontology, Yan'an Hospital, Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Wenjian Luo
- Department of Gerontology, Yan'an Hospital, Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Mingqian Zhang
- Department of Emergency, Yan'an Hospital, Kunming Medical University, Kunming, Yunnan, P.R. China
| |
Collapse
|
32
|
Julian LM, McDonald AC, Stanford WL. Direct reprogramming with SOX factors: masters of cell fate. Curr Opin Genet Dev 2017; 46:24-36. [PMID: 28662445 DOI: 10.1016/j.gde.2017.06.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/25/2017] [Accepted: 06/09/2017] [Indexed: 12/13/2022]
Abstract
Over the last decade significant advances have been made toward reprogramming the fate of somatic cells, typically by overexpression of cell lineage-determinant transcription factors. As key regulators of cell fate, the SOX family of transcription factors has emerged as potent drivers of direct somatic cell reprogramming into multiple lineages, in some cases as the sole overexpressed factor. The vast capacity of SOX factors, especially those of the SOXB1, E and F subclasses, to reprogram cell fate is enlightening our understanding of organismal development, cancer and disease, and offers tremendous potential for regenerative medicine and cell-based therapies. Understanding the molecular mechanisms through which SOX factors reprogram cell fate is essential to optimize the development of novel somatic cell transdifferentiation strategies.
Collapse
Affiliation(s)
- Lisa M Julian
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1L8L6, Canada
| | - Angela Ch McDonald
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, Ontario M5G0A4, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S3G9, Canada
| | - William L Stanford
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1L8L6, Canada; Department of Cellular and Molecular Medicine, Faulty of Medicine, University of Ottawa, 451 Smyth Rd, Ottawa, Ontario K1H8M5, Canada; Department of Biochemistry, Microbiology and Immunology, Faulty of Medicine, University of Ottawa, 451 Smyth Rd, Ottawa, Ontario K1H8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Rd, Ottawa, Ontario K1H8M5, Canada.
| |
Collapse
|
33
|
Strand-specific RNA sequencing in pig testes identifies developmentally regulated genes and circular RNAs. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0576-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
34
|
Li Z, Zhuang X, Zeng J, Tzeng CM. Integrated Analysis of DNA Methylation and mRNA Expression Profiles to Identify Key Genes in Severe Oligozoospermia. Front Physiol 2017; 8:261. [PMID: 28553232 PMCID: PMC5427114 DOI: 10.3389/fphys.2017.00261] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/10/2017] [Indexed: 12/27/2022] Open
Abstract
Severe oligozoospermia (SO) is a complex disorder, whose etiology is the combined effect of genetic factors and epigenetic conditions. In this study, we examined DNA methylation and mRNA expression status in a set of testicular tissues of SO patients (n = 3), and compared methylated data with those derived from obstructive azoospermia (OA) patients (n = 3) with normal spermatogenesis phenotype. We identified 1,960 differentially methylated CpG sites showing significant alterations in SO vs. OA using the Illumina Infinium HumanMethylation450 bead array. By integrating above DNA methylation data and mRNA expression results, we totally identified 72 methylated CpG sites located in 65 genes with anti-correlation between DNA methylation and mRNA expression. Integrated pathways analysis indicates that these genes are involved in response to hormone stimulus, activation of protein kinase activity, and apoptotic process, among others. We also observed some genes with inversely correlated difference is novel in male infertility field, including PTPRN2, EPHX1, SERPINB9, SLIT3, etc. Our results lay a groundwork for further biological study of SO. Moreover, we generated a workflow for integrated analysis of DNA methylation and mRNA expression, which is expandable to other study types.
Collapse
Affiliation(s)
- Zhiming Li
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen UniversityXiamen China.,Department of Pathology, Wake Forest University School of MedicineWinston-Salem, NC, USA.,Key Laboratory for Cancer T-Cell Theranostics and Clinical TranslationXiamen, China
| | - Xuan Zhuang
- Department of Urology, The First Affiliated Hospital of Xiamen UniversityXiamen, China
| | - Jinxiong Zeng
- ChinaCredit Andrology Medical Co., Ltd.Shenzhen, China
| | - Chi-Meng Tzeng
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen UniversityXiamen China.,Key Laboratory for Cancer T-Cell Theranostics and Clinical TranslationXiamen, China.,INNOVA Cell Theranostics/Clinics and TRANSLA Health GroupYangzhou, China
| |
Collapse
|
35
|
Bar I, Cummins S, Elizur A. Transcriptome analysis reveals differentially expressed genes associated with germ cell and gonad development in the Southern bluefin tuna (Thunnus maccoyii). BMC Genomics 2016; 17:217. [PMID: 26965070 PMCID: PMC4785667 DOI: 10.1186/s12864-016-2397-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/14/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Controlling and managing the breeding of bluefin tuna (Thunnus spp.) in captivity is an imperative step towards obtaining a sustainable supply of these fish in aquaculture production systems. Germ cell transplantation (GCT) is an innovative technology for the production of inter-species surrogates, by transplanting undifferentiated germ cells derived from a donor species into larvae of a host species. The transplanted surrogates will then grow and mature to produce donor-derived seed, thus providing a simpler alternative to maintaining large-bodied broodstock such as the bluefin tuna. Implementation of GCT for new species requires the development of molecular tools to follow the fate of the transplanted germ cells. These tools are based on key reproductive and germ cell-specific genes. RNA-Sequencing (RNA-Seq) provides a rapid, cost-effective method for high throughput gene identification in non-model species. This study utilized RNA-Seq to identify key genes expressed in the gonads of Southern bluefin tuna (Thunnus maccoyii, SBT) and their specific expression patterns in male and female gonad cells. RESULTS Key genes involved in the reproductive molecular pathway and specifically, germ cell development in gonads, were identified using analysis of RNA-Seq transcriptomes of male and female SBT gonad cells. Expression profiles of transcripts from ovary and testis cells were compared, as well as testis germ cell-enriched fraction prepared with Percoll gradient, as used in GCT studies. Ovary cells demonstrated over-expression of genes related to stem cell maintenance, while in testis cells, transcripts encoding for reproduction-associated receptors, sex steroids and hormone synthesis and signaling genes were over-expressed. Within the testis cells, the Percoll-enriched fraction showed over-expression of genes that are related to post-meiosis germ cell populations. CONCLUSIONS Gonad development and germ cell related genes were identified from SBT gonads and their expression patterns in ovary and testis cells were determined. These expression patterns correlate with the reproductive developmental stage of the sampled fish. The majority of the genes described in this study were sequenced for the first time in T. maccoyii. The wealth of SBT gonadal and germ cell-related gene sequences made publicly available by this study provides an extensive resource for further GCT and reproductive molecular biology studies of this commercially valuable fish.
Collapse
Affiliation(s)
- Ido Bar
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4558 Maroochydore DC, Queensland, Australia
| | - Scott Cummins
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4558 Maroochydore DC, Queensland, Australia
| | - Abigail Elizur
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4558 Maroochydore DC, Queensland, Australia
| |
Collapse
|
36
|
Han F, Liu W, Xiao H, Dong Y, Sun L, Mao C, Yin L, Jiang X, Ao L, Cui Z, Cao J, Liu J. High expression of SOX30 is associated with favorable survival in human lung adenocarcinoma. Sci Rep 2015; 5:13630. [PMID: 26330328 PMCID: PMC4557060 DOI: 10.1038/srep13630] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 08/03/2015] [Indexed: 12/21/2022] Open
Abstract
In our previous study, we had identified SOX30 as a novel tumor suppressor that acts through direct regulation of p53 transcription in human lung cancer. Here, we sought to determine the clinical relevance of SOX30 expression in a series of surgically-resected non-small cell lung cancer (NSCLC) patients. Analysis of SOX30 expression and clinico-pathologic features reveal a significant correlation of SOX30 expression with histological type (n = 220, P = 0.008) and clinical stage (n = 220, P = 0.024). Kaplan-Meier analysis indicates an association of high SOX30 expression with better prognosis in NSCLC patients (n = 220, P = 0.007). Via multivariate Cox-regression analysis, SOX30 expression is revealed to be an independent prognostic factor for overall survival (OS) of NSCLC patients (n = 220, P = 0.014, hazard ratio (HR) = 0.816). In particular, SOX30 is a favorable and independent prognostic factor in one main subtype of NSCLC, lung adenocarcinoma (ADC) patients (n = 150, P = 0.000, HR = 0.405), but not in another main subtype of NSCLC, squamous cell carcinoma patients. Furthermore, high expression of SOX30 represents a favorable and independent factor for the prognosis of ADC patients at clinical stage II (P = 0.013), with positive lymph node (P = 0.003), at histological grade 2 (P = 0.000) or grade 3 (P = 0.025). In summary, SOX30 expression represents an important prognostic factor for survival time in ADC patients.
Collapse
Affiliation(s)
- Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University.,Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Chongqing 400038, PR China
| | - Wenbin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University.,Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Chongqing 400038, PR China
| | - Hualiang Xiao
- Department of Pathology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan Dong
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University.,Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Chongqing 400038, PR China
| | - Lei Sun
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University.,Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Chongqing 400038, PR China
| | - Chengyi Mao
- Department of Pathology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Li Yin
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University.,Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Chongqing 400038, PR China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University.,Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Chongqing 400038, PR China
| | - Lin Ao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University.,Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Chongqing 400038, PR China
| | - Zhihong Cui
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University.,Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Chongqing 400038, PR China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University.,Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Chongqing 400038, PR China
| | - Jinyi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University.,Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Chongqing 400038, PR China
| |
Collapse
|
37
|
Dong Y, Li J, Han F, Chen H, Zhao X, Qin Q, Shi R, Liu J. High IGF2 expression is associated with poor clinical outcome in human ovarian cancer. Oncol Rep 2015; 34:936-42. [PMID: 26063585 DOI: 10.3892/or.2015.4048] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/06/2015] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer is one of the most common types of cancer in females and is the leading cause of death among gynaecological cancers in women worldwide. In the present study, we identified insulin-like growth factor 2 (IGF2) as a differentially expressed gene between cancerous and non-cancerous ovarian tissues. IGF2 was frequently increased in the human ovarian cancers when compared to the frequency in the non-cancerous ovarian tissues both at the mRNA (30/35) and protein level (61/72). The mean level of IGF2 in the tumor tissues was markedly higher than that in the non-cancerous tissues (nearly 3-fold change) (P=0.000). There was a significant correlation of IGF2 expression with histological grade (P=0.047). Kaplan-Meier analysis indicated that the ovarian cancer patients with high IGF2 expression showed a poorer prognosis both in regards to overall survival (OS) and progression-free survival (PFS) (n=1,648, P=0.000). Further analysis revealed that high expression of IGF2 was an unfavorable factor for the prognosis of the ovarian cancer patients at clinical stage I + II, stage III, histological grade 2, grade 3 or those treated with chemotherapy containing platin and Taxol. Our data provide evidence that IGF2 expression is frequently increased in ovarian cancer tissues, and high expression of IGF2 may be a significant prognostic factor for poor survival in ovarian cancer patients.
Collapse
Affiliation(s)
- Yan Dong
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P.R. China
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P.R. China
| | - Hongqiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P.R. China
| | - Xiaoxin Zhao
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Qin Qin
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Ronghui Shi
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P.R. China
| | - Jinyi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P.R. China
| |
Collapse
|
38
|
Tao H, Yang JJ, Shi KH. Non-coding RNAs as direct and indirect modulators of epigenetic mechanism regulation of cardiac fibrosis. Expert Opin Ther Targets 2015; 19:707-16. [PMID: 25652534 DOI: 10.1517/14728222.2014.1001740] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Cardiac fibroblast activation is a pivotal cellular event in cardiac fibrosis. Numerous studies have indicated that epigenetic modifications control cardiac fibroblast activation. Greater knowledge of the role of epigenetic modifications could improve understanding of the cardiac fibrosis pathogenesis. AREAS COVERED The aim of this review is to describe the present knowledge about the important role of non-coding RNA (ncRNA) transcripts in epigenetic gene regulation in cardiac fibrosis and looks ahead on new perspectives of epigenetic modification research. Furthermore, we will discuss examples of ncRNAs that interact with histone modification or DNA methylation to regulate gene expression. EXPERT OPINION MicroRNAs (miRNAs) and long ncRNAs (lncRNAs) modulate several important aspects of function. Recently, some studies continue to find novel pathways, including the important role of ncRNA transcripts in epigenetic gene regulation. Targeting the miRNAs and lncRNAs can be a promising direction in cardiac fibrosis treatment. We discuss new perspectives of ncRNAs that interact with histone modification or DNA methylation to regulate gene expression, others that are targets of these epigenetic mechanisms. The emerging recognition of the diverse functions of ncRNAs in regulating gene expression by epigenetic mechanisms suggests that they may represent new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Hui Tao
- The Second Hospital of Anhui Medical University, Department of Cardiothoracic Surgery , Fu Rong Road, Hefei 230601, Anhui Province , China +86 551 63869531 ; +86 551 63869531 ;
| | | | | |
Collapse
|
39
|
Petit FG, Kervarrec C, Jamin SP, Smagulova F, Hao C, Becker E, Jégou B, Chalmel F, Primig M. Combining RNA and protein profiling data with network interactions identifies genes associated with spermatogenesis in mouse and human. Biol Reprod 2015; 92:71. [PMID: 25609838 DOI: 10.1095/biolreprod.114.126250] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Genome-wide RNA profiling studies have identified hundreds of transcripts that are highly expressed in mammalian male germ cells, including many that are undetectable in somatic control tissues. Among them, genes important for spermatogenesis are significantly enriched. Information about mRNAs and their cognate proteins facilitates the identification of novel conserved target genes for functional studies in the mouse. By inspecting genome-wide RNA profiling data, we manually selected 81 genes for which RNA is detected almost exclusively in the human male germline and, in most cases, in rodent testicular germ cells. We observed corresponding mRNA/protein patterns in 43 cases using immunohistochemical data from the Human Protein Atlas and large-scale human protein profiling data obtained via mass spectroscopy. Protein network information enabled us to establish an interaction map of 38 proteins that points to potentially important testicular roles for some of them. We further characterized six candidate genes at the protein level in the mouse. We conclude that conserved genes induced in testis tend to show similar mRNA/protein expression patterns across species. Specifically, our results suggest roles during embryogenesis and adult spermatogenesis for Foxr1 and Sox30 and during spermiogenesis and fertility for Fam71b, 1700019N19Rik, Hmgb4, and Zfp597.
Collapse
Affiliation(s)
| | | | - Soazik P Jamin
- Inserm U1085-IRSET, Université de Rennes 1, Rennes, France
| | | | - Chunxiang Hao
- Inserm U1085-IRSET, Université de Rennes 1, Rennes, France
| | | | - Bernard Jégou
- Inserm U1085-IRSET, Université de Rennes 1, Rennes, France EHESP-School of Public Health, Rennes, France
| | | | - Michael Primig
- Inserm U1085-IRSET, Université de Rennes 1, Rennes, France EHESP-School of Public Health, Rennes, France
| |
Collapse
|