1
|
Mohanty A, Sadangi S, Paichha M, Saha A, Das S, Samanta M. Toll-interacting protein in the freshwater fish Labeo rohita exhibits conserved structural motifs of higher eukaryotes and is distinctly expressed in pathogen-associated molecular pattern stimulations and bacterial infections. Microbiol Immunol 2021; 65:281-289. [PMID: 32237168 DOI: 10.1111/1348-0421.12792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 11/30/2022]
Abstract
Toll-interacting protein (Tollip) is a critical regulator of TOLL- like receptor (TLR)-signaling pathway. It is predominantly associated with TLR2 and TLR4 during acute inflammatory conditions and inhibits the TLR-mediated nuclear factor-kappa activation by suppressing the autophosphorylation of interleukin-1 receptor-associated kinase and its kinase activity. This article describes the Tollip of Labeo rohita (LrTollip), a highly valuable freshwater fish from the Indian subcontinent. The full-length LrTollip complementary DNA (1412 nucleotides) encodes a 276-amino acid (aa) protein, depicting a highly conserved target of the Myb1 (Tom1)-binding domain (TBD; 1-53 aa), conserved core domain 2 (C2; 54-151 aa), and coupling of ubiquitin to endoplasmic reticulum degradation (CUE; 231-273 aa) domains of mouse and human counterparts. The key amino acids exerting the critical functions of Tollip, such as phospholipids recognition and ubiquitination, are present in the C2 and CUE domains of LrTollip, respectively. LrTollip is widely expressed in the kidneys, gills, spleen, liver, and blood, and among these tested tissues, the highest expression is observed in blood. In response to TLR ligands and NOD-like receptor (NLR) ligands stimulations and Aeromonas hydrophila, Edwardsiella tarda, and Bacillus subtilis infections, LrTollip gene expression is induced in various organs/tissues with remarkable difference in their kinetics. These data together suggest the important role of LrTollip in TLR- and NLR-signal transduction pathways and immune-related diseases in fish.
Collapse
Affiliation(s)
- Arpita Mohanty
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, 751002, India
| | - Sushmita Sadangi
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, 751002, India
| | - Mahismita Paichha
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, 751002, India
| | - Ashis Saha
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, 751002, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Mrinal Samanta
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, 751002, India
| |
Collapse
|
3
|
Patnaik BB, Chung JM, Hwang HJ, Sang MK, Park JE, Min HR, Cho HC, Dewangan N, Baliarsingh S, Kang SW, Park SY, Jo YH, Park HS, Kim WJ, Han YS, Lee JS, Lee YS. Transcriptome analysis of air-breathing land slug, Incilaria fruhstorferi reveals functional insights into growth, immunity, and reproduction. BMC Genomics 2019; 20:154. [PMID: 30808280 PMCID: PMC6390351 DOI: 10.1186/s12864-019-5526-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 02/11/2019] [Indexed: 01/27/2023] Open
Abstract
Background Incilaria (= Meghimatium) fruhstorferi is an air-breathing land slug found in restricted habitats of Japan, Taiwan and selected provinces of South Korea (Jeju, Chuncheon, Busan, and Deokjeokdo). The species is on a decline due to depletion of forest cover, predation by natural enemies, and collection. To facilitate the conservation of the species, it is important to decide on a number of traits related to growth, immunity and reproduction addressing fitness advantage of the species. Results The visceral mass transcriptome of I. fruhstorferi was enabled using the Illumina HiSeq 4000 sequencing platform. According to BUSCO (Benchmarking Universal Single-Copy Orthologs) method, the transcriptome was considered complete with 91.8% of ortholog genes present (Single: 70.7%; Duplicated: 21.1%). A total of 96.79% of the raw read sequences were processed as clean reads. TransDecoder identified 197,271 contigs that contained candidate-coding regions. Of a total of 50,230 unigenes, 34,470 (68.62% of the total unigenes) annotated to homologous proteins in the Protostome database (PANM-DB). The GO term and KEGG pathway analysis indicated genes involved in metabolism, phosphatidylinositol signalling system, aminobenzoate degradation, and T-cell receptor signalling pathway. Many genes associated with molluscan innate immunity were categorized under pathogen recognition receptor, TLR signalling pathway, MyD88 dependent pathway, endogenous ligands, immune effectors, antimicrobial peptides, apoptosis, and adaptation-related. The reproduction-associated unigenes showed homology to protein fem-1, spermatogenesis-associated protein, sperm associated antigen, and testis expressed sequences, among others. In addition, we identified key growth-related genes categorized under somatotrophic axis, muscle growth, chitinases and collagens. A total of 4822 Simple Sequence Repeats (SSRs) were also identified from the unigene sequences of I. fruhstorferi. Conclusions This is the first available genomic information for non-model land slug, I. fruhstorferi focusing on genes related to growth, immunity, and reproduction, with additional focus on microsatellites and repeating elements. The transcriptome provides access to greater number of traits of unknown relevance in the species that could be exploited for in-depth analyses of evolutionary plasticity and making informed choices during conservation planning. This would be appropriate for understanding the dynamics of the species on a priority basis considering the ecological, health, and social benefits. Electronic supplementary material The online version of this article (10.1186/s12864-019-5526-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bharat Bhusan Patnaik
- School of Biotech Sciences, Trident Academy of Creative Technology (TACT), F2-B, Chandaka Industrial Estate, Chandrasekharpur, Bhubaneswar, Odisha, 751024, India
| | - Jong Min Chung
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Hee Ju Hwang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Min Kyu Sang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Jie Eun Park
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Hye Rin Min
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Hang Chul Cho
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Neha Dewangan
- School of Biotech Sciences, Trident Academy of Creative Technology (TACT), F2-B, Chandaka Industrial Estate, Chandrasekharpur, Bhubaneswar, Odisha, 751024, India
| | - Snigdha Baliarsingh
- School of Biotech Sciences, Trident Academy of Creative Technology (TACT), F2-B, Chandaka Industrial Estate, Chandrasekharpur, Bhubaneswar, Odisha, 751024, India
| | - Se Won Kang
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181, Ipsin-gil, Jungeup-si, Jeollabuk-do, 56212, South Korea
| | - So Young Park
- Nakdonggang National Institute of Biological Resources, Biodiversity Conservation and Change Research Division, 137, Donam-2-gil, Sangju-si, Gyeongsangbuk-do, 37242, South Korea
| | - Yong Hun Jo
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hong Seog Park
- Research Institute, GnC BIO Co., LTD, 621-6 Banseok-dong, Yuseong-gu, Daejeon, 34069, Republic of Korea
| | - Wan Jong Kim
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Yeon Soo Han
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Jun Sang Lee
- Institute of Basic Science, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea.
| |
Collapse
|
4
|
Kumazoe M, Yamashita M, Nakamura Y, Takamatsu K, Bae J, Yamashita S, Yamada S, Onda H, Nojiri T, Kangawa K, Tachibana H. Green Tea Polyphenol EGCG Upregulates Tollip Expression by Suppressing Elf-1 Expression. THE JOURNAL OF IMMUNOLOGY 2017; 199:3261-3269. [PMID: 28954885 DOI: 10.4049/jimmunol.1601822] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 08/25/2017] [Indexed: 12/24/2022]
Abstract
TLR signaling is critical to innate immune system regulation; however, aberrant TLR signaling is involved in several diseases, including insulin resistance, Alzheimer's disease, and tumor metastasis. Moreover, a recent study found that TLR-4 signaling pathway inhibition might be a target for the suppression of chronic inflammatory disorders. In this article, we show that the green tea polyphenol epigallocatechin-3-O-gallate (EGCG) increases the expression of Toll interacting protein, a strong inhibitor of TLR4 signaling, by suppressing the expression of E74-like ETS transcription factor 1 (Elf-1). A mechanistic study revealed that EGCG suppressed Elf-1 expression via protein phosphatase 2A/cyclic GMP (cGMP)-dependent mechanisms. We also confirmed that orally administered EGCG and a cGMP inducer upregulated Toll interacting protein expression, increased intracellular levels of cGMP in macrophages, and suppressed Elf-1 expression. These data support EGCG and a cGMP inducer as potential candidate suppressors of TLR4 signaling.
Collapse
Affiliation(s)
- Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan; and.,Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, 565-8565, Japan
| | - Mai Yamashita
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan; and
| | - Yuki Nakamura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan; and
| | - Kanako Takamatsu
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan; and
| | - Jaehoon Bae
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan; and
| | - Shuya Yamashita
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan; and
| | - Shuhei Yamada
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan; and
| | - Hiroaki Onda
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, 565-8565, Japan
| | - Takashi Nojiri
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, 565-8565, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, 565-8565, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan; and
| |
Collapse
|
6
|
Santos-Júnior CD, Veríssimo A, Costa J. The recombination dynamics of Staphylococcus aureus inferred from spA gene. BMC Microbiol 2016; 16:143. [PMID: 27400707 PMCID: PMC4940709 DOI: 10.1186/s12866-016-0757-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/01/2016] [Indexed: 11/10/2022] Open
Abstract
Background Given the role of spA as a pivotal virulence factor decisive for Staphylococcus aureus ability to escape from innate and adaptive immune responses, one can consider it as an object subject to adaptive evolution and that variations in spA may uncover pathogenicity variations. Results The population genetic structure was deduced from the extracellular domains of SpA gene sequence (domains A-E and the X-region) and compared to the MLST-analysis of 41 genetically diverse methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) S. aureus strains. Incongruence between tree topologies was noticeable and in the inferred spA tree most MSSA isolates were clustered in a distinct group. Conversely, the distribution of strains according to their spA-type was not always congruent with the tree inferred from the complete spA gene foreseeing that spA is a mosaic gene composed of different segments exhibiting different evolutionary histories. Evidences of a network-like organization were identified through several conflicting phylogenetic signals and indeed several intragenic recombination events (within subdomains of the gene) were detected within and between CC’s of MRSA strains. The alignment of SpA sequences enabled the clustering of several isoforms as a result of non-randomly distributed amino acid variations, located in two clusters of polymorphic sites in domains D to B and Xr (a). Nevertheless, evidences of cluster specific structural arrangements were detected reflecting alterations on specific residues with potential impact on S. aureus pathogenicity. Conclusions The detection of positive selection operating on spA combined with frequent non-synonymous mutations, domain duplication and frequent intragenic recombination events represent important mechanisms acting in the evolutionary adaptive mechanism promoting spA genetic plasticity. These findings argue that crucial allelic forms correlated with pathogenicity can be identified by sequences analysis enabling the design of more robust schemes. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0757-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Célio D Santos-Júnior
- Department of Molecular Biology and Evolutionary Genetics, Federal University of São Carlos (UFSCar), São Paulo, Brazil
| | - António Veríssimo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra - Rua Larga, Faculdade de Medicina, Pólo I, 1° andar, 3004-504, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra - Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Joana Costa
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra - Rua Larga, Faculdade de Medicina, Pólo I, 1° andar, 3004-504, Coimbra, Portugal. .,Department of Life Sciences, University of Coimbra - Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|
7
|
Zhang R, Li R, Wang J, Wang S, Zhang M, Hu X, Zhang L, Wang S, Wang R, Bao Z. Identification, characterization and expression profiling of the Tollip gene in Yesso scallop ( Patinopecten yessoensis). Genes Genet Syst 2015; 90:99-108. [DOI: 10.1266/ggs.90.99] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ru Zhang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China
| | - Ruojiao Li
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China
| | - Jing Wang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China
| | - Shuyue Wang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China
| | - Mengran Zhang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China
| | - Xiaoli Hu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China
| | - Lingling Zhang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China
| | - Shi Wang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China
| | - Ruijia Wang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China
| | - Zhenmin Bao
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China
| |
Collapse
|