1
|
Wieland S, Balmes A, Bender J, Kitzinger J, Meyer F, Ramsperger AF, Roeder F, Tengelmann C, Wimmer BH, Laforsch C, Kress H. From properties to toxicity: Comparing microplastics to other airborne microparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128151. [PMID: 35042167 DOI: 10.1016/j.jhazmat.2021.128151] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Microplastic (MP) debris is considered as a potentially hazardous material. It is omnipresent in our environment, and evidence that MP is also abundant in the atmosphere is increasing. Consequently, the inhalation of these particles is a significant exposure route to humans. Concerns about potential effects of airborne MP on human health are rising. However, currently, there are not enough studies on the putative toxicity of airborne MP to adequately assess its impact on human health. Therefore, we examined potential drivers of airborne MP toxicity. Physicochemical properties like size, shape, ζ-potential, adsorbed molecules and pathogens, and the MP's bio-persistence have been proposed as possible drivers of MP toxicity. Since their role in MP toxicity is largely unknown, we reviewed the literature on toxicologically well-studied non-plastic airborne microparticles (asbestos, silica, soot, wood, cotton, hay). We aimed to link the observed health effects and toxicology of these microparticles to the abovementioned properties. By comparing this information with studies on the effects of airborne MP, we analyzed possible mechanisms of airborne MP toxicity. Thus, we provide a basis for a mechanistic understanding of airborne MP toxicity. This may enable the assessment of risks associated with airborne MP pollution, facilitating effective policymaking and product design.
Collapse
Affiliation(s)
- Simon Wieland
- Biological Physics, University of Bayreuth, Bayreuth, Germany; Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Aylin Balmes
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| | - Julian Bender
- Institute for Biochemistry and Biotechnology, Interdisciplinary Research Center HALOmem, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jonas Kitzinger
- Department of Physics, Humboldt University of Berlin, Berlin, Germany
| | - Felix Meyer
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Anja Frm Ramsperger
- Biological Physics, University of Bayreuth, Bayreuth, Germany; Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Franz Roeder
- Institute of Optics and Quantum Electronics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Caroline Tengelmann
- Medical Faculty, University of Würzburg, Würzburg, Germany; Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| | | | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany.
| | - Holger Kress
- Biological Physics, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
2
|
Kaur K, Mohammadpour R, Jaramillo IC, Ghandehari H, Reilly C, Paine R, Kelly KE. Application of a Quartz Crystal Microbalance to Measure the Mass Concentration of Combustion Particle Suspensions. JOURNAL OF AEROSOL SCIENCE 2019; 137:105445. [PMID: 32863423 PMCID: PMC7448758 DOI: 10.1016/j.jaerosci.2019.105445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Researchers studying the biological effects of combustion particles typically rely on suspending particles in de-ionized (DI) water, buffer, and/or media prior to in vitro or in vivo experiments. However, the hydrophobic nature of combustion particles makes it difficult to obtain well-suspended, evenly dispersed mixtures, which also makes it difficult to obtain equivalent dosing and endpoint comparisons. This study explored the use of a quartz crystal microbalance (QCM) to measure the mass concentration of combustion particle suspensions. It compared the QCM mass concentration to that estimated by placing a known mass of combustion particles in DI water. It also evaluated the effect of drop volume and combustion particle type on QCM measurements. The results showed that QCM is a promising direct method for measuring suspended combustion particle mass concentrations, and it is particularly effective for quantifying concentrations of difficult-to-suspend particles and for combustion particles placed in polystyrene containers, which can lead to substantial particle losses.
Collapse
Affiliation(s)
| | | | | | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah
- Department of Bioengineering, University of Utah
| | - Christopher Reilly
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah
- Department of Pharmacology and Toxicology, University of Utah
| | - Robert Paine
- Department of Pulmonary Medicine, University of Utah
| | - Kerry E. Kelly
- Department of Chemical Engineering, University of Utah
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah
| |
Collapse
|
3
|
Torres M, Carranza C, Sarkar S, Gonzalez Y, Osornio Vargas A, Black K, Meng Q, Quintana-Belmares R, Hernandez M, Angeles Garcia JJF, Páramo-Figueroa VH, Iñiguez-Garcia MA, Flores JL, Zhang JJ, Gardner CR, Ohman-Strickland P, Schwander S. Urban airborne particle exposure impairs human lung and blood Mycobacterium tuberculosis immunity. Thorax 2019; 74:675-683. [PMID: 31036772 PMCID: PMC7162557 DOI: 10.1136/thoraxjnl-2018-212529] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
RATIONALE Associations between urban (outdoor) airborne particulate matter (PM) exposure and TB and potential biological mechanisms are poorly explored. OBJECTIVES To examine whether in vivo exposure to urban outdoor PM in Mexico City and in vitro exposure to urban outdoor PM2.5 (< 2.5 µm median aerodynamic diameter) alters human host immune cell responses to Mycobacterium tuberculosis. METHODS Cellular toxicity (flow cytometry, proliferation assay (MTS assay)), M. tuberculosis and PM2.5 phagocytosis (microscopy), cytokine-producing cells (Enzyme-linked immune absorbent spot (ELISPOT)), and signalling pathway markers (western blot) were examined in bronchoalveolar cells (BAC) and peripheral blood mononuclear cells (PBMC) from healthy, non-smoking, residents of Mexico City (n=35; 13 female, 22 male). In vivo-acquired PM burden in alveolar macrophages (AM) was measured by digital image analysis. MEASUREMENTS AND MAIN RESULTS In vitro exposure of AM to PM2.5 did not affect M. tuberculosis phagocytosis. High in vivo-acquired AM PM burden reduced constitutive, M. tuberculosis and PM-induced interleukin-1β production in freshly isolated BAC but not in autologous PBMC while it reduced constitutive production of tumour necrosis factor-alpha in both BAC and PBMC. Further, PM burden was positively correlated with constitutive, PM, M. tuberculosis and purified protein derivative (PPD)-induced interferon gamma (IFN-γ) in BAC, and negatively correlated with PPD-induced IFN-γ in PBMC. CONCLUSIONS Inhalation exposure to urban air pollution PM impairs important components of the protective human lung and systemic immune response against M. tuberculosis. PM load in AM is correlated with altered M. tuberculosis-induced cytokine production in the lung and systemic compartments. Chronic PM exposure with high constitutive expression of proinflammatory cytokines results in relative cellular unresponsiveness.
Collapse
Affiliation(s)
- Martha Torres
- Department of Microbiology, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Claudia Carranza
- Department of Microbiology, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Srijata Sarkar
- Environmental and Occupational Health, Rutgers School of Public Health New Brunswick Campus, Piscataway, New Jersey, USA
| | - Yolanda Gonzalez
- Department of Microbiology, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | - Kathleen Black
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Qingyu Meng
- Environmental and Occupational Health, Rutgers School of Public Health New Brunswick Campus, Piscataway, New Jersey, USA
| | | | - Martha Hernandez
- Contaminacion y salud ambiental, Instituto Nacional de Ecologia y Cambio Climatico, Coyoacan, Mexico
| | | | | | | | - Jose L Flores
- Departamento de ciencias de la salud, Universidad Autonoma Metropolitana Iztapalapa, Iztapalapa, Mexico
| | - Junfeng Jim Zhang
- Duke Global Health Institute and Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Carol R Gardner
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Pamela Ohman-Strickland
- Biostatistics, Rutgers School of Public Health New Brunswick Campus, Piscataway, New Jersey, USA
| | - Stephan Schwander
- Urban-Global Public Health and Environmental and Occupational Health, Rutgers School of Public Health New Brunswick Campus, Piscataway, New Jersey, USA
| |
Collapse
|
4
|
Chu H, Hao W, Cheng Z, Huang Y, Wang S, Shang J, Hou X, Meng Q, Zhang Q, Jia L, Zhou W, Wang P, Jia G, Zhu T, Wei X. Black carbon particles and ozone-oxidized black carbon particles induced lung damage in mice through an interleukin-33 dependent pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:217-228. [PMID: 29981970 DOI: 10.1016/j.scitotenv.2018.06.329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Black carbon (BC) is a key component of atmospheric particles which has adverse effects on human health. Oxidation could lead to chemical property and toxicity potency changes of BC. The key cytokines participating in lung damage in mice induced by BC and ozone-oxidized BC (oBC) particles have been investigated in this study. It was concluded that oBC has stronger potency of inducing lung damage in mice comparing to BC. IL-6 and IL-33 were hypothesized to play important roles in this damage. Accordingly, IL-6 and IL-33 neutralizing antibodies were used to explore which cytokine might play a key role in lung inflammation induced by BC and oBC. As a result, IL-6 neutralizing antibody did not alleviate the lung damage induced by BC and oBC. However, IL-33 neutralizing antibody prevented BC and oBC induced lung damage. Furthermore, IL-33 neutralizing antibody treatment reduced IL-6 mRNA expression. It is hypothesized that MAPK and PI3K-AKT pathways might be involved in the oBC particles caused lung damage. It was concluded that IL-33 plays a key role in BC and oBC induced lung damage in mice.
Collapse
Affiliation(s)
- Hongqian Chu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Zhiyuan Cheng
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Yao Huang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Siqi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Jing Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Xiaohong Hou
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qi Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Lixia Jia
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Wenjuan Zhou
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Pengmin Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Tong Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| |
Collapse
|
5
|
Lasat MM, Chung KF, Lead J, McGrath S, Owen RJ, Rocks S, Unrine J, Zhang J. Advancing the Understanding of Environmental Transformations, Bioavailability and Effects of Nanomaterials, an International US Environmental Protection Agency-UK Environmental Nanoscience Initiative Joint Program. ACTA ACUST UNITED AC 2018; 9:385-404. [PMID: 29910967 PMCID: PMC5998674 DOI: 10.4236/jep.2018.94025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nanotechnology has significant economic, health, and environmental benefits, including renewable energy and innovative environmental solutions. Manufactured nanoparticles have been incorporated into new materials and products because of their novel or enhanced properties. These very same properties also have prompted concerns about the potential environmental and human health hazard and risk posed by the manufactured nanomaterials. Appropriate risk management responses require the development of models capable of predicting the environmental and human health effects of the nanomaterials. Development of predictive models has been hampered by a lack of information concerning the environmental fate, behavior and effects of manufactured nanoparticles. The United Kingdom (UK) Environmental Nanoscience Initiative and the United States (US) Environmental Protection Agency have developed an international research program to enhance the knowledgebase and develop risk-predicting models for manufactured nanoparticles. Here we report selected highlights of the program as it sought to maximize the complementary strengths of the transatlantic scientific communities by funding three integrated US-UK consortia to investigate the transformation of these nanoparticles in terrestrial, aquatic, and atmospheric environment. Research results demonstrate there is a functional relationship between the physicochemical properties of environmentally transformed nanomaterials and their effects and that this relationship is amenable to modeling. In addition, the joint transatlantic program has allowed the leveraging of additional funding, promoting transboundary scientific collaboration.
Collapse
Affiliation(s)
- Mitch M Lasat
- Office of Research and Development, United States Environmental Protection Agency, Washington DC, USA
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College, London, UK
| | - Jamie Lead
- Centre for Environmental Nanoscience and Risk, University of South Carolina, Columbia, USA.,University of Birmingham, Edgbaston, UK
| | | | | | - Sophie Rocks
- Institute for Resilient Futures, Cranfield University, Cranfield, UK
| | - Jason Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, USA
| | - Junfeng Zhang
- Nicholas School of the Environment, Duke University, Durham, USA
| |
Collapse
|
6
|
Microglial Immune Response to Low Concentrations of Combustion-Generated Nanoparticles: An In Vitro Model of Brain Health. NANOMATERIALS 2018; 8:nano8030155. [PMID: 29522448 PMCID: PMC5869646 DOI: 10.3390/nano8030155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/03/2018] [Accepted: 03/08/2018] [Indexed: 11/16/2022]
Abstract
The brain is the central regulator for integration and control of responses to environmental cues. Previous studies suggest that air pollution may directly impact brain health by triggering the onset of chronic neuroinflammation. We hypothesize that nanoparticle components of combustion-generated air pollution may underlie these effects. To test this association, a microglial in vitro biological sensor model was used for testing neuroinflammatory response caused by low-dose nanoparticle exposure. The model was first validated using 20 nm silver nanoparticles (AgNP). Next, neuroinflammatory response was tested after exposure to size-selected 20 nm combustion-generated nanoparticles (CGNP) collected from a modern diesel engine. We show that low concentrations of CGNPs promote low-grade inflammatory response indicated by increased pro-inflammatory cytokine release (tumor necrosis factor-α), similar to that observed after AgNP exposure. We also demonstrate increased production of reactive oxygen species and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 phosphorylation in microglia after CGNP stimulation. Finally, we show conditioned media from CGNP-stimulated microglia significantly reduced hypothalamic neuronal survival in vitro. To our knowledge, this data show for the first time that exposure to AgNP and CGNP elicits microglial neuroinflammatory response through the activation of NF-κB.
Collapse
|
7
|
Zhang JJ, Lee KB, He L, Seiffert J, Subramaniam P, Yang L, Chen S, Maguire P, Mainelis G, Schwander S, Tetley T, Porter A, Ryan M, Shaffer M, Hu S, Gong J, Chung KF. Effects of a nanoceria fuel additive on the physicochemical properties of diesel exhaust particles. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:1333-1342. [PMID: 27711787 DOI: 10.1039/c6em00337k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanoceria (i.e., CeO2 nanoparticles) fuel additives have been used in Europe and elsewhere to improve fuel efficiency. Previously we have shown that the use of a commercial fuel additive Envirox™ in a diesel-powered electricity generator reduced emissions of diesel exhaust particle (DEP) mass and other pollutants. However, such additives are currently not permitted for use in on-road vehicles in North America, largely due to limited data on the potential health impact. In this study, we characterized a variety of physicochemical properties of DEPs emitted from the same engine. Our methods include novel techniques such as Raman spectrometry for analyzing particle surface structure and an assay for DEP oxidative potential. Results show that with increasing Envirox™ concentrations in the fuel (0×, 0.1×, 1×, and 10× of manufacturer recommended 0.5 mL Envirox™ per liter fuel), DEP sizes decreased from 194.6 ± 20.1 to 116.3 ± 14.8 nm; the zeta potential changed from -28.4 mV to -22.65 mV; DEP carbon content decreased from 91.8% to 79.4%; cerium and nitrogen contents increased from 0.3% to 6.5% and 0.2% to 0.6%, respectively; the ratio of organic carbon (OC) to elemental carbon (EC) increased from 22.9% to 38.7%; and the ratio of the disordered carbon structure to the ordered carbon structure (graphitized carbon) in DEPs decreased. Compared to DEPs emitted from 0×, 0.1×, and 1× fuels, DEPs from the 10× fuel had a lower oxidative potential likely due to the increased ceria content because pure ceria nanoparticles exhibited the lowest oxidative potential compared to all the DEPs. Since the physicochemical parameters tested here are among the determinants of particle toxicity, our findings imply that adding ceria nanoparticles into diesel may alter the toxicity of DEPs. The findings from the present study, hence, can help future studies that will examine the impact of nanoceria additives on DEP toxicities.
Collapse
Affiliation(s)
- Junfeng Jim Zhang
- Nicholas School of the Environment, Duke Global Health Institute, Duke University, Durham, NC, USA.
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Linchen He
- Nicholas School of the Environment, Duke Global Health Institute, Duke University, Durham, NC, USA.
| | - Joanna Seiffert
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Prasad Subramaniam
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Shu Chen
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Pierce Maguire
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Gediminas Mainelis
- Department of Environmental Sciences, Rutgers University, Piscataway, NJ, USA
| | | | - Teresa Tetley
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Alexandra Porter
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mary Ryan
- Department of Materials, London Centre for Nanotechnology, Imperial College London, London, UK
| | - Milo Shaffer
- Department of Materials, London Centre for Nanotechnology, Imperial College London, London, UK
| | - Sheng Hu
- Department of Materials, London Centre for Nanotechnology, Imperial College London, London, UK
| | - Jicheng Gong
- Nicholas School of the Environment, Duke Global Health Institute, Duke University, Durham, NC, USA.
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
8
|
Air pollution particulate matter alters antimycobacterial respiratory epithelium innate immunity. Infect Immun 2015; 83:2507-17. [PMID: 25847963 DOI: 10.1128/iai.03018-14] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/26/2015] [Indexed: 01/10/2023] Open
Abstract
Inhalation exposure to indoor air pollutants and cigarette smoke increases the risk of developing tuberculosis (TB). Whether exposure to ambient air pollution particulate matter (PM) alters protective human host immune responses against Mycobacterium tuberculosis has been little studied. Here, we examined the effect of PM from Iztapalapa, a municipality of Mexico City, with aerodynamic diameters below 2.5 μm (PM2.5) and 10 μm (PM10) on innate antimycobacterial immune responses in human alveolar type II epithelial cells of the A549 cell line. Exposure to PM2.5 or PM10 deregulated the ability of the A549 cells to express the antimicrobial peptides human β-defensin 2 (HBD-2) and HBD-3 upon infection with M. tuberculosis and increased intracellular M. tuberculosis growth (as measured by CFU count). The observed modulation of antibacterial responsiveness by PM exposure was associated with the induction of senescence in PM-exposed A549 cells and was unrelated to PM-mediated loss of cell viability. Thus, the induction of senescence and downregulation of HBD-2 and HBD-3 expression in respiratory PM-exposed epithelial cells leading to enhanced M. tuberculosis growth represent mechanisms by which exposure to air pollution PM may increase the risk of M. tuberculosis infection and the development of TB.
Collapse
|
9
|
Bellavite P, Signorini A, Marzotto M, Moratti E, Bonafini C, Olioso D. Cell sensitivity, non-linearity and inverse effects. HOMEOPATHY 2015; 104:139-60. [DOI: 10.1016/j.homp.2015.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 01/27/2015] [Accepted: 02/03/2015] [Indexed: 10/23/2022]
|
10
|
Demangeat JL. Gas nanobubbles and aqueous nanostructures: the crucial role of dynamization. HOMEOPATHY 2015; 104:101-15. [PMID: 25869975 DOI: 10.1016/j.homp.2015.02.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 12/24/2014] [Accepted: 02/03/2015] [Indexed: 11/28/2022]
Abstract
Nanobubbles (NBs) have been a subject of intensive research over the past decade. Their peculiar characteristics, including extremely low buoyancy, longevity, enhanced solubility of oxygen in water, zeta potentials and burst during collapse, have led to many applications in the industrial, biological and medical fields. NBs may form spontaneously from dissolved gas but the process is greatly enhanced by gas supersaturation and mechanical actions such as dynamization. Therefore, the formation of NBs during the preparation of homeopathic dilutions under atmospheric pressure cannot be ignored. I suggested in 2009 the involvement of NBs in nanometric superstructures revealed in high dilutions using NMR relaxation. These superstructures seemed to increase in size with dilution, well into the ultramolecular range (>12c). I report here new experiments that confirm the involvement of NBs and prove the crucial role of dynamization to create superstructures specific to the solute. A second dynamization was shown to enhance or regenerate these superstructures. I postulate that superstructures result from a nucleation process of NBs around the solute, with shells of highly organized water (with ions and silicates if any) which protect the solute against out-diffusion and behave as nucleation centres for further dilution steps. The sampling tip may play an active role by catching the superstructures and thus carry the encaged solute across the dilution range, possibly up to the ultramolecular range. The superstructures were not observed at low dilution, probably because of a destructuring of the solvent by the solute and/or of an inadequate gas/solute ratio.
Collapse
Affiliation(s)
- Jean-Louis Demangeat
- Nuclear Medicine Department, General Hospital, PO Box 40252, F-67504 Haguenau Cedex, France.
| |
Collapse
|