1
|
Ogilvie LM, Coyle-Asbil B, Brunt KR, Petrik J, Simpson JA. Therapy-naïve malignancy causes cardiovascular disease: a state-of-the-art cardio-oncology perspective. Am J Physiol Heart Circ Physiol 2024; 326:H1515-H1537. [PMID: 38639740 DOI: 10.1152/ajpheart.00795.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Cardiovascular disease (CVD) and cancer are the leading causes of mortality worldwide. Although generally thought of as distinct diseases, the intersectional overlap between CVD and cancer is increasingly evident in both causal and mechanistic relationships. The field of cardio-oncology is largely focused on the cardiotoxic effects of cancer therapies (e.g., chemotherapy, radiation). Furthermore, the cumulative effects of cardiotoxic therapy exposure and the prevalence of CVD risk factors in patients with cancer lead to long-term morbidity and poor quality of life in this patient population, even when patients are cancer-free. Evidence from patients with cancer and animal models demonstrates that the presence of malignancy itself, independent of cardiotoxic therapy exposure or CVD risk factors, negatively impacts cardiac structure and function. As such, the primary focus of this review is the cardiac pathophysiological and molecular features of therapy-naïve cancer. We also summarize the strengths and limitations of preclinical cancer models for cardio-oncology research and discuss therapeutic strategies that have been tested experimentally for the treatment of cancer-induced cardiac atrophy and dysfunction. Finally, we explore an adjacent area of interest, called "reverse cardio-oncology," where the sequelae of heart failure augment cancer progression. Here, we emphasize the cross-disease communication between malignancy and the injured heart and discuss the importance of chronic low-grade inflammation and endocrine factors in the progression of both diseases.
Collapse
Affiliation(s)
- Leslie M Ogilvie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Bridget Coyle-Asbil
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Keith R Brunt
- Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
- IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| |
Collapse
|
2
|
Interleukin-6 trans-signaling is a candidate mechanism to drive progression of human DCCs during clinical latency. Nat Commun 2020; 11:4977. [PMID: 33020483 PMCID: PMC7536220 DOI: 10.1038/s41467-020-18701-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
Although thousands of breast cancer cells disseminate and home to bone marrow until primary surgery, usually less than a handful will succeed in establishing manifest metastases months to years later. To identify signals that support survival or outgrowth in patients, we profile rare bone marrow-derived disseminated cancer cells (DCCs) long before manifestation of metastasis and identify IL6/PI3K-signaling as candidate pathway for DCC activation. Surprisingly, and similar to mammary epithelial cells, DCCs lack membranous IL6 receptor expression and mechanistic dissection reveals IL6 trans-signaling to regulate a stem-like state of mammary epithelial cells via gp130. Responsiveness to IL6 trans-signals is found to be niche-dependent as bone marrow stromal and endosteal cells down-regulate gp130 in premalignant mammary epithelial cells as opposed to vascular niche cells. PIK3CA activation renders cells independent from IL6 trans-signaling. Consistent with a bottleneck function of microenvironmental DCC control, we find PIK3CA mutations highly associated with late-stage metastatic cells while being extremely rare in early DCCs. Our data suggest that the initial steps of metastasis formation are often not cancer cell-autonomous, but also depend on microenvironmental signals. Metastatic dissemination in breast cancer patients occurs early in malignant transformation, raising questions about how disseminated cancer cells (DCC) progress at distant sites. Here, the authors show that DCCs in bone marrow are activated via IL6-trans-signaling and thereby acquire stemness traits relevant for metastasis formation.
Collapse
|
3
|
Engineering a Humanised Niche to Support Human Haematopoiesis in Mice: Novel Opportunities in Modelling Cancer. Cancers (Basel) 2020; 12:cancers12082205. [PMID: 32781703 PMCID: PMC7466161 DOI: 10.3390/cancers12082205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the bone marrow microenvironment being widely recognised as a key player in cancer research, the current animal models that represent a human haematopoietic system lack the contribution of the humanised marrow microenvironment. Here we describe a murine model that relies on the combination of an orthotopic humanised tissue-engineered bone construct (ohTEBC) with patient-specific bone marrow (BM) cells to create a humanised bone marrow (hBM) niche capable of supporting the engraftment of human haematopoietic cells. Results showed that this model supports the engraftment of human CD34+ cells from a healthy BM with human haematopoietic cells migrating into the mouse BM, human BM compartment, spleen and peripheral blood. We compared these results with the engraftment capacity of human CD34+ cells obtained from patients with multiple myeloma (MM). We demonstrated that CD34+ cells derived from a diseased BM had a reduced engraftment potential compared to healthy patients and that a higher cell dose is required to achieve engraftment of human haematopoietic cells in peripheral blood. Finally, we observed that hematopoietic cells obtained from the mobilised peripheral blood of patients yields a higher number of CD34+, overcoming this problem. In conclusion, this humanised mouse model has potential as a unique and patient-specific pre-clinical platform for the study of tumour–microenvironment interactions, including human bone and haematopoietic cells, and could, in the future, serve as a drug testing platform.
Collapse
|
4
|
Lin S, Huang G, Cheng L, Li Z, Xiao Y, Deng Q, Jiang Y, Li B, Lin S, Wang S, Wu Q, Yao H, Cao S, Li Y, Liu P, Wei W, Pei D, Yao Y, Wen Z, Zhang X, Wu Y, Zhang Z, Cui S, Sun X, Qian X, Li P. Establishment of peripheral blood mononuclear cell-derived humanized lung cancer mouse models for studying efficacy of PD-L1/PD-1 targeted immunotherapy. MAbs 2018; 10:1301-1311. [PMID: 30204048 PMCID: PMC6284590 DOI: 10.1080/19420862.2018.1518948] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022] Open
Abstract
Animal models used to evaluate efficacies of immune checkpoint inhibitors are insufficient or inaccurate. We thus examined two xenograft models used for this purpose, with the aim of optimizing them. One method involves the use of peripheral blood mononuclear cells and cell line-derived xenografts (PBMCs-CDX model). For this model, we implanted human lung cancer cells into NOD-scid-IL2Rg-/- (NSI) mice, followed by injection of human PBMCs. The second method involves the use of hematopoietic stem and progenitor cells and CDX (HSPCs-CDX model). For this model, we first reconstituted the human immune system by transferring human CD34+ hematopoietic stem and progenitor cells (HSPCs-derived humanized model) and then transplanted human lung cancer cells. We found that the PBMCs-CDX model was more accurate in evaluating PD-L1/PD-1 targeted immunotherapies. In addition, it took only four weeks with the PBMCs-CDX model for efficacy evaluation, compared to 10-14 weeks with the HSPCs-CDX model. We then further established PBMCs-derived patient-derived xenografts (PDX) models, including an auto-PBMCs-PDX model using cancer and T cells from the same tumor, and applied them to assess the antitumor efficacies of anti-PD-L1 antibodies. We demonstrated that this PBMCs-derived PDX model was an invaluable tool to study the efficacies of PD-L1/PD-1 targeted cancer immunotherapies. Overall, we found our PBMCs-derived models to be excellent preclinical models for studying immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Shouheng Lin
- Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Guohua Huang
- Department of Respiratory medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Cheng
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhen Li
- MabSpace Biosciences Co. Ltd, Suzhou, China
| | - Yiren Xiao
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiuhua Deng
- Department of Respiratory medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuchuan Jiang
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Baiheng Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Simiao Lin
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Suna Wang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiting Wu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Huihui Yao
- Department of Outpatient, The 91th Military Hospital, Jiaozuo, China
| | - Su Cao
- Division of General Pediatrics, The 91th Military Hospital, Jiaozuo, China
| | - Yang Li
- Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Pentao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Centre, University of Hong Kong, Hong Kong, China
| | - Wei Wei
- Guangdong Cord Blood Bank, Guangdong, China
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yao Yao
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhesheng Wen
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xuchao Zhang
- Guangdong Lung Cancer Institute, Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yilong Wu
- Guangdong Lung Cancer Institute, Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhenfeng Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuzhong Cui
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaofang Sun
- Key Lab for Major Obstetric Diseases of Guangdong Province, Experimental Department of Institute of Gynaecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Peng Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Abstract
Immunotherapy is one of the most exciting recent breakthroughs in the field of cancer treatment. Many different approaches are being developed and a number have already gained regulatory approval or are under investigation in clinical trials. However, learning from the past, preclinical animal models often insufficiently reflect the physiological situation in humans, which subsequently causes treatment failures in clinical trials. Due to species-specific differences in most parts of the immune system, the transfer of knowledge from preclinical studies to clinical trials is eminently challenging. Human tumor cell line-based or patient-derived xenografts in immunocompromised mice have been successfully applied in the preclinical testing of cytotoxic or molecularly targeted agents, but naturally these systems lack the human immune system counterpart. The co-transplantation of human peripheral blood mononuclear cells or hematopoietic stem cells is employed to overcome this limitation. This review summarizes some important aspects of the different available tumor xenograft mouse models, their history, and their implementation in drug development and personalized therapy. Moreover, recent progress, opportunities and limitations of different humanized mouse models will be discussed.
Collapse
|
6
|
de Ruiter JR, Wessels LFA, Jonkers J. Mouse models in the era of large human tumour sequencing studies. Open Biol 2018; 8:180080. [PMID: 30111589 PMCID: PMC6119864 DOI: 10.1098/rsob.180080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/13/2018] [Indexed: 12/16/2022] Open
Abstract
Cancer is a complex disease in which cells progressively accumulate mutations disrupting their cellular processes. A fraction of these mutations drive tumourigenesis by affecting oncogenes or tumour suppressor genes, but many mutations are passengers with no clear contribution to tumour development. The advancement of DNA and RNA sequencing technologies has enabled in-depth analysis of thousands of human tumours from various tissues to perform systematic characterization of their (epi)genomes and transcriptomes in order to identify (epi)genetic changes associated with cancer. Combined with considerable progress in algorithmic development, this expansion in scale has resulted in the identification of many cancer-associated mutations, genes and pathways that are considered to be potential drivers of tumour development. However, it remains challenging to systematically identify drivers affected by complex genomic rearrangements and drivers residing in non-coding regions of the genome or in complex amplicons or deletions of copy-number driven tumours. Furthermore, functional characterization is challenging in the human context due to the lack of genetically tractable experimental model systems in which the effects of mutations can be studied in the context of their tumour microenvironment. In this respect, mouse models of human cancer provide unique opportunities for pinpointing novel driver genes and their detailed characterization. In this review, we provide an overview of approaches for complementing human studies with data from mouse models. We also discuss state-of-the-art technological developments for cancer gene discovery and validation in mice.
Collapse
Affiliation(s)
- J R de Ruiter
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - L F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of EEMCS, Delft University of Technology, Delft, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - J Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Lampreht Tratar U, Horvat S, Cemazar M. Transgenic Mouse Models in Cancer Research. Front Oncol 2018; 8:268. [PMID: 30079312 PMCID: PMC6062593 DOI: 10.3389/fonc.2018.00268] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/29/2018] [Indexed: 12/26/2022] Open
Abstract
The use of existing mouse models in cancer research is of utmost importance as they aim to explore the casual link between candidate cancer genes and carcinogenesis as well as to provide models to develop and test new therapies. However, faster progress in translating mouse cancer model research into the clinic has been hampered due to the limitations of these models to better reflect the complexities of human tumors. Traditionally, immunocompetent and immunodeficient mice with syngeneic and xenografted tumors transplanted subcutaneously or orthotopically have been used. These models are still being widely employed for many different types of studies, in part due to their widespread availability and low cost. Other types of mouse models used in cancer research comprise transgenic mice in which oncogenes can be constitutively or conditionally expressed and tumor-suppressor genes silenced using conventional methods, such as retroviral infection, microinjection of DNA constructs, and the so-called "gene-targeted transgene" approach. These traditional transgenic models have been very important in studies of carcinogenesis and tumor pathogenesis, as well as in studies evaluating the development of resistance to therapy. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing approach has revolutionized the field of mouse cancer models and has had a profound and rapid impact on the development of more effective systems to study human cancers. The CRISPR/Cas9-based transgenic models have the capacity to engineer a wide spectrum of mutations found in human cancers and provide solutions to problems that were previously unsolvable. Recently, humanized mouse xenograft models that accept patient-derived xenografts and CD34+ cells were developed to better mimic tumor heterogeneity, the tumor microenvironment, and cross-talk between the tumor and stromal/immune cells. These features make them extremely valuable models for the evaluation of investigational cancer therapies, specifically new immunotherapies. Taken together, improvements in both the CRISPR/Cas9 system producing more valid mouse models and in the humanized mouse xenograft models resembling complex interactions between the tumor and its environment might represent one of the successful pathways to precise individualized cancer therapy, leading to improved cancer patient survival and quality of life.
Collapse
Affiliation(s)
- Ursa Lampreht Tratar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Simon Horvat
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia.,Faculty of Health Sciences, University of Primorska, Isola, Slovenia
| |
Collapse
|
8
|
Wagner F, Holzapfel BM, McGovern JA, Shafiee A, Baldwin JG, Martine LC, Lahr CA, Wunner FM, Friis T, Bas O, Boxberg M, Prodinger PM, Shokoohmand A, Moi D, Mazzieri R, Loessner D, Hutmacher DW. Humanization of bone and bone marrow in an orthotopic site reveals new potential therapeutic targets in osteosarcoma. Biomaterials 2018; 171:230-246. [PMID: 29705656 DOI: 10.1016/j.biomaterials.2018.04.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Existing preclinical murine models often fail to predict effects of anti-cancer drugs. In order to minimize interspecies-differences between murine hosts and human bone tumors of in vivo xenograft platforms, we tissue-engineered a novel orthotopic humanized bone model. METHODS Orthotopic humanized tissue engineered bone constructs (ohTEBC) were fabricated by 3D printing of medical-grade polycaprolactone scaffolds, which were seeded with human osteoblasts and embedded within polyethylene glycol-based hydrogels containing human umbilical vein endothelial cells (HUVECs). Constructs were then implanted at the femur of NOD-scid and NSG mice. NSG mice were then bone marrow transplanted with human CD34 + cells. Human osteosarcoma (OS) growth was induced within the ohTEBCs by direct injection of Luc-SAOS-2 cells. Tissues were harvested for bone matrix and marrow morphology analysis as well as tumor biology investigations. Tumor marker expression was analyzed in the humanized OS and correlated with the expression in 68 OS patients utilizing tissue micro arrays (TMA). RESULTS After harvesting the femurs micro computed tomography and immunohistochemical staining showed an organ, which had all features of human bone. Around the original mouse femur new bone trabeculae have formed surrounded by a bone cortex. Staining for human specific (hs) collagen type-I (hs Col-I) showed human extracellular bone matrix production. The presence of nuclei staining positive for human nuclear mitotic apparatus protein 1 (hs NuMa) proved the osteocytes residing within the bone matrix were of human origin. Flow cytometry verified the presence of human hematopoietic cells. After injection of Luc-SAOS-2 cells a primary tumor and lung metastasis developed. After euthanization histological analysis showed pathognomic features of osteoblastic OS. Furthermore, the tumor utilized the previously implanted HUVECS for angiogenesis. Tumor marker expression was similar to human patients. Moreover, the recently discovered musculoskeletal gene C12orf29 was expressed in the most common subtypes of OS patient samples. CONCLUSION OhTEBCs represent a suitable orthotopic microenvironment for humanized OS growth and offers a new translational direction, as the femur is the most common location of OS. The newly developed and validated preclinical model allows controlled and predictive marker studies of primary bone tumors and other bone malignancies.
Collapse
Affiliation(s)
- Ferdinand Wagner
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia; Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Lindwurmstraße 4, 80337 Munich, Germany; Department of Orthopedics for the University of Regensburg, Asklepios Klinikum Bad Abbach, Kaiser-Karl V.-Allee 3, 93077 Bad Abbach, Germany
| | - Boris M Holzapfel
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia; Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstr. 11, 97074 Wuerzburg, Germany
| | - Jacqui A McGovern
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Abbas Shafiee
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Jeremy G Baldwin
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Laure C Martine
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Christoph A Lahr
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Felix M Wunner
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Thor Friis
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Onur Bas
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Melanie Boxberg
- Institute of Pathology, Klinikum Rechts der Isar, Technical University Munich, Trogerstr. 18, 81675 Munich, Germany
| | - Peter M Prodinger
- Department of Orthopedic Surgery, Klinikum Rechts der Isar, Technical University Munich, Ismaningerstr. 22, 81675 Munich, Germany
| | - Ali Shokoohmand
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Davide Moi
- The University of Queensland, Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Roberta Mazzieri
- The University of Queensland, Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Daniela Loessner
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia; Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Dietmar W Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia; George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive Northwest, Atlanta, GA 30332, USA; Institute for Advanced Study, Technical University Munich, Lichtenbergstraße 2a, 85748 Garching, Munich, Germany.
| |
Collapse
|
9
|
Siegler EL, Wang P. Preclinical Models in Chimeric Antigen Receptor-Engineered T-Cell Therapy. Hum Gene Ther 2018; 29:534-546. [PMID: 29390873 DOI: 10.1089/hum.2017.243] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy has enormous potential in inducing long-term remission in cancer patients, and chimeric antigen receptor (CAR)-engineered T cells have been largely successful in treating hematological malignancies in the clinic. CAR-T therapy has not been as effective in treating solid tumors, in part due to the immunosuppressive tumor microenvironment. Additionally, CAR-T therapy can cause dangerous side effects, including off-tumor toxicity, cytokine release syndrome, and neurotoxicity. Animal models of CAR-T therapy often fail to predict such adverse events and frequently overestimate the efficacy of the treatment. Nearly all preclinical CAR-T studies have been performed in mice, including syngeneic, xenograft, transgenic, and humanized mouse models. Recently, a few studies have used primate models to mimic clinical side effects better. To date, no single model perfectly recapitulates the human immune system and tumor microenvironment, and some models have revealed CAR-T limitations that were contradicted or missed entirely in other models. Careful model selection based on the primary goals of the study is a crucial step in evaluating CAR-T treatment. Advancements are being made in preclinical models, with the ultimate objective of providing safer, more effective CAR-T therapy to patients.
Collapse
Affiliation(s)
- Elizabeth Louise Siegler
- 1 Department of Biomedical Engineering, University of Southern California , Los Angeles, California
| | - Pin Wang
- 1 Department of Biomedical Engineering, University of Southern California , Los Angeles, California.,2 Department of Pharmacology and Pharmaceutical Sciences, University of Southern California , Los Angeles, California.,3 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California
| |
Collapse
|
10
|
Blomme A, Van Simaeys G, Doumont G, Costanza B, Bellier J, Otaka Y, Sherer F, Lovinfosse P, Boutry S, Palacios AP, De Pauw E, Hirano T, Yokobori T, Hustinx R, Bellahcène A, Delvenne P, Detry O, Goldman S, Nishiyama M, Castronovo V, Turtoi A. Murine stroma adopts a human-like metabolic phenotype in the PDX model of colorectal cancer and liver metastases. Oncogene 2017; 37:1237-1250. [PMID: 29242606 DOI: 10.1038/s41388-017-0018-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/22/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022]
Abstract
Cancer research is increasingly dependent of patient-derived xenograft model (PDX). However, a major point of concern regarding the PDX model remains the replacement of the human stroma with murine counterpart. In the present work we aimed at clarifying the significance of the human-to-murine stromal replacement for the fidelity of colorectal cancer (CRC) and liver metastasis (CRC-LM) PDX model. We have conducted a comparative metabolic analysis between 6 patient tumors and corresponding PDX across 4 generations. Metabolic signatures of cancer cells and stroma were measured separately by MALDI-imaging, while metabolite changes in entire tumors were quantified using mass spectrometry approach. Measurement of glucose metabolism was also conducted in vivo using [18F]-fluorodeoxyglucose (FDG) and positron emission tomography (PET). In CRC/CRC-LM PDX model, human stroma was entirely replaced at the second generation. Despite this change, MALDI-imaging demonstrated that the metabolic profiles of both stromal and cancer cells remained stable for at least four generations in comparison to the original patient material. On the tumor level, profiles of 86 water-soluble metabolites as well as 93 lipid mediators underlined the functional stability of the PDX model. In vivo PET measurement of glucose uptake (reflecting tumor glucose metabolism) supported the ex vivo observations. Our data show for the first time that CRC/CRC-LM PDX model maintains the functional stability at the metabolic level despite the early replacement of the human stroma by murine cells. The findings demonstrate that human cancer cells actively educate murine stromal cells during PDX development to adopt the human-like phenotype.
Collapse
Affiliation(s)
- Arnaud Blomme
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Gaetan Van Simaeys
- Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.,Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Charleroi (Gosselies), Brussels, Belgium
| | - Gilles Doumont
- Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Charleroi (Gosselies), Brussels, Belgium
| | - Brunella Costanza
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Justine Bellier
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Yukihiro Otaka
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Félicie Sherer
- Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.,Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Charleroi (Gosselies), Brussels, Belgium
| | - Pierre Lovinfosse
- Nuclear Medicine and Oncological Imaging Division, Medical Physics Department, Liège University Hospital, Liège, Belgium
| | - Sébastien Boutry
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, Mons, Belgium.,Center for Microscopy and Molecular Imaging, Université de Mons (UMONS), Charleroi (Gosselies), Belgium
| | - Ana Perez Palacios
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - Touko Hirano
- Laboratory for Analytical Instruments, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Takehiko Yokobori
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Roland Hustinx
- Nuclear Medicine and Oncological Imaging Division, Medical Physics Department, Liège University Hospital, Liège, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Philippe Delvenne
- Department of Pathology, University Hospital, University of Liège, Liège, Belgium
| | - Olivier Detry
- Department of Abdominal Surgery, University Hospital, University of Liège, Liège, Belgium
| | - Serge Goldman
- Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.,Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Charleroi (Gosselies), Brussels, Belgium
| | - Masahiko Nishiyama
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Andrei Turtoi
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium. .,Tumor Microenvironment and Resistance to Treatment Lab, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France. .,Institut du Cancer, Montpellier, Montpellier, France. .,INSERM, U1194, Montpellier, France. .,Université, Montpellier, Montpellier, France.
| |
Collapse
|
11
|
Kawaguchi T, Foster BA, Young J, Takabe K. Current Update of Patient-Derived Xenograft Model for Translational Breast Cancer Research. J Mammary Gland Biol Neoplasia 2017; 22:131-139. [PMID: 28451789 PMCID: PMC5511343 DOI: 10.1007/s10911-017-9378-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/17/2017] [Indexed: 01/16/2023] Open
Abstract
Despite recent advances in the treatment of patients with breast cancer (BrCa), BrCa remains the third leading cause of cancer death for women in the US due to intrinsic or acquired resistance to therapy. Continued understanding of gene expression profiling and genomic sequencing has clarified underlying intratumoral molecular heterogeneity. Recently, the patient-derived xenograft (PDX) models have emerged as a novel tool to address the issues of BrCa genomics and tumor heterogeneity, and to critically transform translational BrCa research in the preclinical setting. PDX models are generated by xenografting cancer tissue fragments obtained from patients to immune deficient mice, and can be passaged into next generations of mice. Generally, in contrast to conventional xenograft using cancer cell lines, PDXs are biologically more stable and recapitulate the individual tumor morphology, gene expression, and drug susceptibility of each patient. PDX may better model the original patient's tumor by retaining tumor heterogeneity, gene expression, and similar response to treatment. PDX models are thus thought to be more translationally relevant, especially as a drug development tool, because PDXs can capture the genetic character and heterogeneity that exists within a single patient's tumor and across a population of patients' tumors. PDX models also hold enormous potential for identifying predictive markers for therapeutic response. It has been repeatedly shown that PDX models demonstrate similar levels of activity as compared to the clinical response to therapeutic interventions. Therefore, this enables identification of therapeutic interventions that can most likely benefit a patient. This allows us to address the issues of BrCa genomics and tumor heterogeneity using PDXs in "pre-clinical" trials. Herein, we reviewed recent scientific development and future perspectives using PDX models in BrCa.
Collapse
Affiliation(s)
- Tsutomu Kawaguchi
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| | - Barbara A Foster
- Department of Molecular Pharmacology and Cancer Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Jessica Young
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| | - Kazuaki Takabe
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY, 14263, USA.
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, 100 High Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
12
|
Cohen JV, Tawbi H, Margolin KA, Amravadi R, Bosenberg M, Brastianos PK, Chiang VL, de Groot J, Glitza IC, Herlyn M, Holmen SL, Jilaveanu LB, Lassman A, Moschos S, Postow MA, Thomas R, Tsiouris JA, Wen P, White RM, Turnham T, Davies MA, Kluger HM. Melanoma central nervous system metastases: current approaches, challenges, and opportunities. Pigment Cell Melanoma Res 2016; 29:627-642. [PMID: 27615400 DOI: 10.1111/pcmr.12538] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/06/2016] [Indexed: 12/17/2022]
Abstract
Melanoma central nervous system metastases are increasing, and the challenges presented by this patient population remain complex. In December 2015, the Melanoma Research Foundation and the Wistar Institute hosted the First Summit on Melanoma Central Nervous System (CNS) Metastases in Philadelphia, Pennsylvania. Here, we provide a review of the current status of the field of melanoma brain metastasis research; identify key challenges and opportunities for improving the outcomes in patients with melanoma brain metastases; and set a framework to optimize future research in this critical area.
Collapse
Affiliation(s)
- Justine V Cohen
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Hussain Tawbi
- Department of Melanoma, Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kim A Margolin
- Department of Medical Oncology & Therapeutics Research, City of Hope Cancer Center, Duarte, CA, USA
| | - Ravi Amravadi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - John de Groot
- Division of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Isabella C Glitza
- Department of Melanoma, Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meenhard Herlyn
- Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Sheri L Holmen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | | | - Andrew Lassman
- Department of Neurology & Herbert Irving Comprehensive, Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Stergios Moschos
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael A Postow
- Department of Oncology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, NY, USA
| | - Reena Thomas
- Division of Neuro-Oncology, Department of Neurology, Stanford University, Stanford, CA, USA
| | - John A Tsiouris
- Department of Radiology, New York-Presbyterian Hospital - Weill Cornell Medicine, New York, NY, USA
| | - Patrick Wen
- Department of Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Richard M White
- Department of Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, NY, USA
| | | | - Michael A Davies
- Department of Melanoma, Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
13
|
Morton JJ, Bird G, Refaeli Y, Jimeno A. Humanized Mouse Xenograft Models: Narrowing the Tumor-Microenvironment Gap. Cancer Res 2016; 76:6153-6158. [PMID: 27587540 DOI: 10.1158/0008-5472.can-16-1260] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022]
Abstract
Cancer research has long been hampered by the limitations of the current model systems. Both cultured cells and mouse xenografts grow in an environment highly dissimilar to that of their originating tumor, frequently resulting in promising treatments that are ultimately clinically ineffective. The development of highly immunodeficient mouse strains into which human immune systems can be engrafted can help bridge this gap. Humanized mice (HM) allow researchers to examine xenograft growth in the context of a human immune system and resultant tumor microenvironment, and recent studies have highlighted the increased similarities in attendant tumor structure, metastasis, and signaling to those features in cancer patients. This setting also facilitates the examination of investigational cancer therapies, including new immunotherapies. This review discusses recent advancements in the generation and application of HM models, their promise in cancer research, and their potential in generating clinically relevant treatments. This review also focuses on current efforts to improve HM models by engineering mouse strains expressing human cytokines or HLA proteins and implanting human bone, liver, and thymus tissue to facilitate immune cell maturation and trafficking. Finally, we discuss how these improvements may help direct future HM model cancer studies. Cancer Res; 76(21); 6153-8. ©2016 AACR.
Collapse
Affiliation(s)
- J Jason Morton
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Gregory Bird
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado
| | - Yosef Refaeli
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado.,Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado. .,Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
14
|
Majji S, Wijayalath W, Shashikumar S, Pow-Sang L, Villasante E, Brumeanu TD, Casares S. Differential effect of HLA class-I versus class-II transgenes on human T and B cell reconstitution and function in NRG mice. Sci Rep 2016; 6:28093. [PMID: 27323875 PMCID: PMC4914985 DOI: 10.1038/srep28093] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/23/2016] [Indexed: 01/11/2023] Open
Abstract
Humanized mice expressing Human Leukocyte Antigen (HLA) class I or II transgenes have been generated, but the role of class I vs class II on human T and B cell reconstitution and function has not been investigated in detail. Herein we show that NRG (NOD.RagKO.IL2RγcKO) mice expressing HLA-DR4 molecules (DRAG mice) and those co-expressing HLA-DR4 and HLA-A2 molecules (DRAGA mice) did not differ in their ability to develop human T and B cells, to reconstitute cytokine-secreting CD4 T and CD8 T cells, or to undergo immunoglobulin class switching. In contrast, NRG mice expressing only HLA-A2 molecules (A2 mice) reconstituted lower numbers of CD4 T cells but similar numbers of CD8 T cells. The T cells from A2 mice were deficient at secreting cytokines, and their B cells could not undergo immunoglobulin class switching. The inability of A2 mice to undergo immunoglobulin class switching is due to deficient CD4 helper T cell function. Upon immunization, the frequency and cytotoxicity of antigen-specific CD8 T cells in DRAGA mice was significantly higher than in A2 mice. The results indicated a multifactorial effect of the HLA-DR4 transgene on development and function of human CD4 T cells, antigen-specific human CD8 T cells, and immunoglobulin class switching.
Collapse
Affiliation(s)
- Sai Majji
- US Military Malaria Vaccine Program, Naval Medical Research Center/Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Wathsala Wijayalath
- US Military Malaria Vaccine Program, Naval Medical Research Center/Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Soumya Shashikumar
- US Military Malaria Vaccine Program, Naval Medical Research Center/Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Luis Pow-Sang
- Department of Medicine, Uniformed Services University of Health Sciences, Bethesda, MD, USA
| | - Eileen Villasante
- US Military Malaria Vaccine Program, Naval Medical Research Center/Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Teodor D Brumeanu
- Department of Medicine, Uniformed Services University of Health Sciences, Bethesda, MD, USA
| | - Sofia Casares
- US Military Malaria Vaccine Program, Naval Medical Research Center/Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Department of Medicine, Uniformed Services University of Health Sciences, Bethesda, MD, USA
| |
Collapse
|
15
|
Wagner F, Holzapfel BM, Thibaudeau L, Straub M, Ling MT, Grifka J, Loessner D, Lévesque JP, Hutmacher DW. A Validated Preclinical Animal Model for Primary Bone Tumor Research. J Bone Joint Surg Am 2016; 98:916-25. [PMID: 27252436 DOI: 10.2106/jbjs.15.00920] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Despite the introduction of 21st-century surgical and neoadjuvant treatment modalities, survival of patients with osteosarcoma (OS) has not improved in two decades. Advances will depend in part on the development of clinically relevant and reliable animal models. This report describes the engineering and validation of a humanized tissue-engineered bone organ (hTEBO) for preclinical research on primary bone tumors in order to minimize false-positive and false-negative results due to interspecies differences in current xenograft models. METHODS Pelvic bone and marrow fragments were harvested from patients during reaming of the acetabulum during hip arthroplasty. HTEBOs were engineered by embedding fragments in a fibrin matrix containing bone morphogenetic protein-7 (BMP-7) and implanted into NOD-scid mice. After 10 weeks of subcutaneous growth, one group of hTEBOs was harvested to analyze the degree of humanization. A second group was injected with human luciferase-labeled OS (Luc-SAOS-2) cells. Tumor growth was followed in vivo with bioluminescence imaging. After 5 weeks, the OS tumors were harvested and analyzed. They were also compared with tumors created via intratibial injection. RESULTS After 10 weeks of in vivo growth, a new bone organ containing human bone matrix as well as viable and functional human hematopoietic cells developed. Five weeks after injection of Luc-SAOS-2 cells into this humanized bone microenvironment, spontaneous metastatic spread to the lung was evident. Relevant prognostic markers such as vascular endothelial growth factor (VEGF) and periostin were found to be positive in OS tumors grown within the humanized microenvironment but not in tumors created in murine tibial bones. Hypoxia-inducible transcription factor-2α (HIF-2α) was detected only in the humanized OS. CONCLUSIONS We report an in vivo model that contains human bone matrix and marrow components in one organ. BMP-7 made it possible to maintain viable mesenchymal and hematopoietic stem cells and created a bone microenvironment mimicking human physiology. CLINICAL RELEVANCE This novel platform enables preclinical research on primary bone tumors in order to test new treatment options.
Collapse
Affiliation(s)
- Ferdinand Wagner
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia Department of Orthopedics, Asklepios Klinikum Bad Abbach, University of Regensburg, Bad Abbach, Germany Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Boris M Holzapfel
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia Orthopedic Center for Musculoskeletal Research, University of Würzburg, Würzburg, Germany
| | - Laure Thibaudeau
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Melanie Straub
- Institute of Pathology, University Clinic Rechts der Isar, Technical University Munich, Munich, Germany
| | - Ming-Tat Ling
- Australian Prostate Cancer Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, at Translational Research Institute, Woolloongabba, Australia
| | - Joachim Grifka
- Department of Orthopedics, Asklepios Klinikum Bad Abbach, University of Regensburg, Bad Abbach, Germany
| | - Daniela Loessner
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Jean-Pierre Lévesque
- Stem Cell Biology Group-Blood and Bone Diseases Program, Mater Research Institute, Translational Research Institute, Woolloongabba, Australia The University of Queensland, Herston, Australia
| | - Dietmar W Hutmacher
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia Institute for Advanced Study, Technical University Munich, Munich, Germany
| |
Collapse
|
16
|
Holzapfel BM, Wagner F, Thibaudeau L, Levesque JP, Hutmacher DW. Concise review: humanized models of tumor immunology in the 21st century: convergence of cancer research and tissue engineering. Stem Cells 2016; 33:1696-704. [PMID: 25694194 DOI: 10.1002/stem.1978] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/17/2014] [Indexed: 12/13/2022]
Abstract
Despite positive testing in animal studies, more than 80% of novel drug candidates fail to proof their efficacy when tested in humans. This is primarily due to the use of preclinical models that are not able to recapitulate the physiological or pathological processes in humans. Hence, one of the key challenges in the field of translational medicine is to "make the model organism mouse more human." To get answers to questions that would be prognostic of outcomes in human medicine, the mouse's genome can be altered in order to create a more permissive host that allows the engraftment of human cell systems. It has been shown in the past that these strategies can improve our understanding of tumor immunology. However, the translational benefits of these platforms have still to be proven. In the 21st century, several research groups and consortia around the world take up the challenge to improve our understanding of how to humanize the animal's genetic code, its cells and, based on tissue engineering principles, its extracellular microenvironment, its tissues, or entire organs with the ultimate goal to foster the translation of new therapeutic strategies from bench to bedside. This article provides an overview of the state of the art of humanized models of tumor immunology and highlights future developments in the field such as the application of tissue engineering and regenerative medicine strategies to further enhance humanized murine model systems.
Collapse
Affiliation(s)
- Boris Michael Holzapfel
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane, Queensland, Australia.,Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Koenig-Ludwig-Haus, Wuerzburg, Germany
| | - Ferdinand Wagner
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane, Queensland, Australia.,Department of Orthopedics, University of Regensburg, Asklepios Klinikum Bad Abbach, Bad Abbach, Germany
| | - Laure Thibaudeau
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane, Queensland, Australia
| | - Jean-Pierre Levesque
- Stem Cell Biology Group, Blood and Bone Diseases Program, Mater Research Institute, The University of Queensland, Woolloongabba, Brisbane, Queensland, Australia
| | - Dietmar Werner Hutmacher
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane, Queensland, Australia.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.,Institute for Advanced Study, Technical University Munich, Garching, Munich, Germany
| |
Collapse
|
17
|
Abstract
Investigations focused on the interplay between the human microbiome and cancer development, herein termed the 'oncobiome', have been growing at a rapid rate. However, these studies to date have primarily demonstrated associative relationships rather than causative ones. We pose the question of whether this emerging field of research is a 'mirage' without a clear picture, or truly represents a paradigm shift for cancer research. We propose the necessary steps needed to answer crucial questions and push the field forward to bring the mirage into a tangible reality.
Collapse
Affiliation(s)
- Ryan M Thomas
- Department of Surgery, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA ; Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Christian Jobin
- Department of Medicine and Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
18
|
Bertotti A, Sassi F. Molecular Pathways: Sensitivity and Resistance to Anti-EGFR Antibodies. Clin Cancer Res 2015; 21:3377-83. [DOI: 10.1158/1078-0432.ccr-14-0848] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/28/2015] [Indexed: 11/16/2022]
|
19
|
Lodhia KA, Hadley AM, Haluska P, Scott CL. Prioritizing therapeutic targets using patient-derived xenograft models. Biochim Biophys Acta Rev Cancer 2015; 1855:223-34. [PMID: 25783201 DOI: 10.1016/j.bbcan.2015.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/12/2015] [Accepted: 03/09/2015] [Indexed: 01/03/2023]
Abstract
Effective systemic treatment of cancer relies on the delivery of agents with optimal therapeutic potential. The molecular age of medicine has provided genomic tools that can identify a large number of potential therapeutic targets in individual patients, heralding the promise of personalized treatment. However, determining which potential targets actually drive tumor growth and should be prioritized for therapy is challenging. Indeed, reliable molecular matches of target and therapeutic agent have been stringently validated in the clinic for only a small number of targets. Patient-derived xenografts (PDXs) are tumor models developed in immunocompromised mice using tumor procured directly from the patient. As patient surrogates, PDX models represent a powerful tool for addressing individualized therapy. Challenges include humanizing the immune system of PDX models and ensuring high quality molecular annotation, in order to maximize insights for the clinic. Importantly, PDX can be sampled repeatedly and in parallel, to reveal clonal evolution, which may predict mechanisms of drug resistance and inform therapeutic strategy design.
Collapse
Affiliation(s)
- K A Lodhia
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - A M Hadley
- Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - P Haluska
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - C L Scott
- Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|