1
|
Chen J, Liu YJ, Wang Q, Zhang L, Yang S, Feng WJ, Shi M, Gao J, Dai PL, Wu YY. Multiple stresses induced by chronic exposure to flupyradifurone affect honey bee physiological states. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173418. [PMID: 38788938 DOI: 10.1016/j.scitotenv.2024.173418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Flupyradifurone (FPF) has been reported to have a potential risk to terrestrial and aquatic ecosystems. In the present study, the effects of chronic FPF exposure on bees were systematically investigated at the individual behavioral, tissue, cell, enzyme activity, and the gene expression levels. Chronic exposure (14 d) to FPF led to reduced survival (12 mg/L), body weight gain (4 and 12 mg/L), and food utilization efficiency (4 and 12 mg/L). Additionally, FPF exposure (12 mg/L) impaired sucrose sensitivity and memory of bees. Morphological analysis revealed significant cellular and subcellular changes in brain neurons and midgut epithelial cells, including mitochondrial damage, nuclear disintegration, and apoptosis. FPF exposure (4 and 12 mg/L) led to oxidative stress, as evidenced by increased lipid peroxidation and alterations in antioxidant enzyme activity. Notably, gene expression analysis indicated significant dysregulation of apoptosis, immune, detoxification, sucrose responsiveness and memory-related genes, suggesting the involvement of different pathways in FPF-induced toxicity. The multiple stresses and potential mechanisms described here provide a basis for determining the intrinsic toxicity of FPF.
Collapse
Affiliation(s)
- Jin Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yong-Jun Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Qiang Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Li Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Sa Yang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wang-Jiang Feng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Min Shi
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 201418, China
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Ping-Li Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Yan-Yan Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
2
|
Barkdull M, Moreau CS. Worker Reproduction and Caste Polymorphism Impact Genome Evolution and Social Genes Across the Ants. Genome Biol Evol 2023; 15:evad095. [PMID: 37243539 PMCID: PMC10287540 DOI: 10.1093/gbe/evad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023] Open
Abstract
Eusocial insects are characterized by several traits, including reproductive division of labor and caste polymorphisms, which likely modulate genome evolution. Concomitantly, evolution may act on specific genes and pathways underlying these novel, sociality-associated phenotypes. Reproductive division of labor should increase the magnitude of genetic drift and reduce the efficacy of selection by reducing effective population size. Caste polymorphism has been associated with relaxed selection and may facilitate directional selection on caste-specific genes. Here, we use comparative analyses of 22 ant genomes to test how reproductive division of labor and worker polymorphism influence positive selection and selection intensity across the genome. Our results demonstrate that worker reproductive capacity is associated with a reduction in the degree of relaxed selection but is not associated with any significant change to positive selection. We find decreases in positive selection in species with polymorphic workers, but no increase in the degree of relaxed selection. Finally, we explore evolutionary patterns in specific candidate genes associated with our focal traits in eusocial insects. Two oocyte patterning genes previously implicated in worker sterility evolve under intensified selection in species with reproductive workers. Behavioral caste genes generally experience relaxed selection associated with worker polymorphism, whereas vestigial and spalt, both associated with soldier development in Pheidole ants, experience intensified selection in worker polymorphic species. These findings expand our understanding of the genetic mechanisms underlying elaborations of sociality. The impacts of reproductive division of labor and caste polymorphisms on specific genes illuminate those genes' roles in generating complex eusocial phenotypes.
Collapse
Affiliation(s)
- Megan Barkdull
- Department of Ecology & Evolutionary Biology, Cornell University
| | - Corrie S Moreau
- Department of Ecology & Evolutionary Biology, Cornell University
- Department of Entomology, Cornell University
| |
Collapse
|
3
|
Deep conservation and co-option of programmed cell death facilitates evolution of alternative phenotypes at multiple biological levels. Semin Cell Dev Biol 2022; 145:28-41. [PMID: 35654666 DOI: 10.1016/j.semcdb.2022.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 03/04/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022]
Abstract
Alternative phenotypes, such as polyphenisms and sexual dimorphisms, are widespread in nature and appear at all levels of biological organization, from genes and cells to morphology and behavior. Yet, our understanding of the mechanisms through which alternative phenotypes develop and how they evolve remains understudied. In this review, we explore the association between alternative phenotypes and programmed cell death, a mechanism responsible for the elimination of superfluous cells during development. We discuss the ancient origins and deep conservation of programmed cell death (its function, forms and underlying core regulatory gene networks), and propose that it was co-opted repeatedly to generate alternative phenotypes at the level of cells, tissues, organs, external morphology, and even individuals. We review several examples from across the tree of life to explore the conditions under which programmed cell death is likely to facilitate the evolution of alternative phenotypes.
Collapse
|
4
|
Aamidor SE, Cardoso-Júnior CAM, Harianto J, Nowell CJ, Cole L, Oldroyd BP, Ronai I. Reproductive plasticity and oogenesis in the queen honey bee (Apis mellifera). JOURNAL OF INSECT PHYSIOLOGY 2022; 136:104347. [PMID: 34902433 DOI: 10.1016/j.jinsphys.2021.104347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
In the honey bee (Apis mellifera), queen and worker castes originate from identical genetic templates but develop into different phenotypes. Queens lay up to 2000 eggs daily whereas workers are sterile in the queen's presence. Periodically queens stop laying: during swarming, when resources are scarce in winter, and when they are confined to a cage by beekeepers. We used confocal microscopy and gene expression assays to investigate the control of oogenesis in the ovaries of honey bee queens that were caged inside and outside the colony. We find evidence that queens use a different combination of 'checkpoints' to regulate oogenesis compared to honey bee workers and other insect species. However, both queen and worker castes likely use the same programmed cell death pathways to terminate oocyte development at their caste-specific checkpoints. Our results also suggest that a key factor driving the termination of oogenesis in queens is nutritional stress. Thus, queens may regulate oogenesis via the same regulatory pathways that were utilised by ancestral solitary species but likely have adjusted physiological checkpoints to suit their highly-derived life history.
Collapse
Affiliation(s)
- Sarah E Aamidor
- Behaviour and Genetics of Social Insects Laboratory, Ecology and Evolution, School of Life and Environmental Science, Macleay Building A12, University of Sydney, NSW 2006, Australia.
| | - Carlos A M Cardoso-Júnior
- Departamento de Biologia Celulare Bioagentes Patogênicos, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Brazil
| | - Januar Harianto
- School of Life and Environmental Science, Macleay Building A12, University of Sydney, NSW 2006, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Louise Cole
- Microbial Imaging Facility, I3 Institute, Faculty of Science, The University of Technology Sydney, Australia
| | - Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Laboratory, Ecology and Evolution, School of Life and Environmental Science, Macleay Building A12, University of Sydney, NSW 2006, Australia
| | - Isobel Ronai
- Behaviour and Genetics of Social Insects Laboratory, Ecology and Evolution, School of Life and Environmental Science, Macleay Building A12, University of Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Sasaki K, Harada M. Dopamine production in the brain is associated with caste-specific morphology and behavior in an artificial intermediate honey bee caste. PLoS One 2020; 15:e0244140. [PMID: 33332426 PMCID: PMC7746283 DOI: 10.1371/journal.pone.0244140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/03/2020] [Indexed: 11/24/2022] Open
Abstract
Caste polymorphism in eusocial insects is based on morphological plasticity and linked to physiological and behavioral characteristics. To test the possibility that dopamine production in the brain is associated with the caste-specific morphology and behavior in female honey bees, an intermediate caste was produced via artificial rearing using different amounts of diet, before quantifying the dopamine levels and conducting behavioral tests. In field colonies, individual traits such as mandibular shape, number of ovarioles, diameter of spermatheca, and dopamine levels in the brain differed significantly between workers and queens. Females given 1.5 times the amount of artificial diet that control worker receives during the larval stage in the laboratory had characteristics intermediate between castes. The dopamine levels in the brain were positively correlated with the mandibular shape indexes, number of ovarioles, and spermatheca diameter among artificially reared females. The dopamine levels were significantly higher in females with mandibular notches than those without. In fighting experiments with the intermediate caste females, the winners had significantly higher dopamine levels in the brain than the losers. Brain levels of tyrosine were positively correlated with those of catecholamines but not phenolamines, thereby suggesting a strong metabolic relationship between tyrosine and dopamine. Thus, the caste-specific characteristics of the honey bee are potentially continuous in the same manner as those in primitively eusocial species. Dopamine production in the brain is associated with the continuous caste-specific morphology, as well as being linked to the amount of tyrosine taken from food, and it supports the aggressive behavior of queen-type females.
Collapse
Affiliation(s)
- Ken Sasaki
- Department of Bioresource Science, Tamagawa University, Machida, Tokyo, Japan
- Honeybee Science Research Center, Tamagawa University, Machida, Tokyo, Japan
- * E-mail:
| | - Mariko Harada
- Department of Bioresource Science, Tamagawa University, Machida, Tokyo, Japan
| |
Collapse
|
6
|
De Souza DA, Hartfelder KH, Tarpy DR. Effects of larval Age at Grafting and Juvenile Hormone on Morphometry and Reproductive Quality Parameters of in Vitro Reared Honey Bees (Hymenoptera: Apidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2030-2039. [PMID: 31145456 DOI: 10.1093/jee/toz148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 06/09/2023]
Abstract
The honey bee queen plays a central role in the Apis mellifera L. (Hymenoptera: Apidae) colony, and her high reproductive capacity is fundamental for building up the workforce of a colony. Caste development in honey bee females involves elaborate physiological pathways unleashed at the beginning of the first larval instars, with juvenile hormone (JH) playing a crucial role. Here we took advantage of established in vitro rearing techniques to conduct a 2 × 2 experimental design and test initial rearing age (young vs old) and JH treatment (JH III vs solvent control) to enlighten the role of nutrient quality and JH in shaping honey bee female fertility, morphological features related to queenliness, and key physiological parameters (hemolymph vitellogenin/Vg, sugar levels, and Vg transcript levels). Our results show that while the age at initial larval rearing had major impacts on external morphology development, where younger larvae exhibited a higher probability to develop into queen-like adults morphotypes, the JH application during the larval stage improved physiological pathways related to ovary development and metabolism during the ontogenic development. We detected that the supplementation of queen larvae with JH promoted important benefits regarding queen fertility as the increase of ovariole number and vg levels at hemolymph, both crucial factors at eggs production. The data presented here provide guidance in efforts to improve honey bee queen quality, especially in light of frequent episodes of queen failures in the beekeeping industry.
Collapse
Affiliation(s)
- Daiana A De Souza
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP
- Department of Entomology & Plant Pathology, North Carolina State University, Campus, Raleigh, NC
| | - Klaus H Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP
| | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Campus, Raleigh, NC
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC
| |
Collapse
|
7
|
Luna-Lucena D, Rabico F, Simoes ZL. Reproductive capacity and castes in eusocial stingless bees (Hymenoptera: Apidae). CURRENT OPINION IN INSECT SCIENCE 2019; 31:20-28. [PMID: 31109669 DOI: 10.1016/j.cois.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/25/2018] [Indexed: 06/09/2023]
Abstract
Eusocial lifestyle is one of the most important transitions in the evolutionary history of some groups of organisms. In bees, there are only two eusocial groups: the honey bees (Apini) and the stingless bees (Meliponini). Despite similarities on the eusocial lifestyles of these taxa, they present profound differences related to caste determination, development, behavior, and reproductive capacity of their members. In most of them the queen has a monopoly on reproduction. However, even though workers are tipically sterile, they can contribute to producing haploid eggs that generate males, or trophic eggs, used as an additional nutrition by the queen.
Collapse
Affiliation(s)
- Danielle Luna-Lucena
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Franciene Rabico
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Zilá Lp Simoes
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil; Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
8
|
Ronai I, Allsopp MH, Tan K, Dong S, Liu X, Vergoz V, Oldroyd BP. The dynamic association between ovariole loss and sterility in adult honeybee workers. Proc Biol Sci 2018; 284:rspb.2016.2693. [PMID: 28356452 DOI: 10.1098/rspb.2016.2693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/27/2017] [Indexed: 01/29/2023] Open
Abstract
In the social insects, ovary state (the presence or absence of mature oocytes) and ovary size (the number of ovarioles) are often used as proxies for the reproductive capacity of an individual worker. Ovary size is assumed to be fixed post-eclosion whereas ovary state is demonstrably plastic post-eclosion. Here, we show that in fact ovary size declines as honeybee workers age. This finding is robust across two honeybee species: Apis mellifera and A. cerana The ovariole loss is likely to be due to the regression of particular ovarioles via programmed cell death. We also provide further support for the observation that honeybee workers with activated ovaries (mature oocytes present) most commonly have five ovarioles rather than a greater or smaller number. This result suggests that workers with more than five ovarioles are unable to physiologically support more than five activated ovarioles and that workers with fewer than five ovarioles are below a threshold necessary for ovary activation. As a worker's ovariole number declines with age, studies on worker ovariole number need to take this plasticity into account.
Collapse
Affiliation(s)
- Isobel Ronai
- Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences A12, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael H Allsopp
- Honeybee Research Section, ARC-Plant Protection Research Institute, Private Bag X5017, Stellenbosch 7599, Western Cape, South Africa
| | - Ken Tan
- Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, Yunnan Province 650223, People's Republic of China.,Eastern Bee Research Institute of Yunnan Agricultural University, Heilongtan, Kunming, Yunnan Province 650201, People's Republic of China
| | - Shihao Dong
- Eastern Bee Research Institute of Yunnan Agricultural University, Heilongtan, Kunming, Yunnan Province 650201, People's Republic of China
| | - Xiwen Liu
- Eastern Bee Research Institute of Yunnan Agricultural University, Heilongtan, Kunming, Yunnan Province 650201, People's Republic of China
| | - Vanina Vergoz
- Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences A12, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences A12, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
9
|
Cridge AG, Lovegrove MR, Skelly JG, Taylor SE, Petersen GEL, Cameron RC, Dearden PK. The honeybee as a model insect for developmental genetics. Genesis 2017; 55. [PMID: 28432809 DOI: 10.1002/dvg.23019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/08/2017] [Accepted: 01/15/2017] [Indexed: 11/11/2022]
Abstract
Honeybees are an important component of modern agricultural systems, and a fascinating and scientifically engrossing insect. Honeybees are not commonly used as model systems for understanding development in insects despite their importance in agriculture. Honeybee embryogenesis, while being superficially similar to Drosophila, is molecularly very different, especially in axis formation and sex determination. In later development, much of honeybee biology is modified by caste development, an as yet poorly understood, but excellent, system to study developmental plasticity. In adult stages, developmental plasticity of the ovaries, related to reproductive constraint exhibits another aspect of plasticity. Here they review the tools, current knowledge and opportunities in honeybee developmental biology, and provide an updated embryonic staging scheme to support future studies.
Collapse
Affiliation(s)
- A G Cridge
- Laboratory for Evolution and Development, Genetics Otago, Biochemistry Department, University of Otago, Dunedin, 9054, P.O. Box 56, Aotearoa-New Zealand
| | - M R Lovegrove
- Laboratory for Evolution and Development, Genetics Otago, Biochemistry Department, University of Otago, Dunedin, 9054, P.O. Box 56, Aotearoa-New Zealand
| | - J G Skelly
- Laboratory for Evolution and Development, Genetics Otago, Biochemistry Department, University of Otago, Dunedin, 9054, P.O. Box 56, Aotearoa-New Zealand
| | - S E Taylor
- Laboratory for Evolution and Development, Genetics Otago, Biochemistry Department, University of Otago, Dunedin, 9054, P.O. Box 56, Aotearoa-New Zealand
| | - G E L Petersen
- Laboratory for Evolution and Development, Genetics Otago, Biochemistry Department, University of Otago, Dunedin, 9054, P.O. Box 56, Aotearoa-New Zealand.,AbacusBio Ltd, Public Trust Building, 442 Moray Place, Dunedin 9016, Aotearoa-New Zealand
| | - R C Cameron
- Department of Developmental and Molecular Biology and Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - P K Dearden
- Laboratory for Evolution and Development, Genetics Otago, Biochemistry Department, University of Otago, Dunedin, 9054, P.O. Box 56, Aotearoa-New Zealand
| |
Collapse
|
10
|
Lago DC, Humann FC, Barchuk AR, Abraham KJ, Hartfelder K. Differential gene expression underlying ovarian phenotype determination in honey bee, Apis mellifera L., caste development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 79:1-12. [PMID: 27720811 DOI: 10.1016/j.ibmb.2016.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/26/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Adult honey bee queens and workers drastically differ in ovary size. This adult ovary phenotype difference becomes established during the final larval instar, when massive programmed cell death leads to the degeneration of 95-99% of the ovariole anlagen in workers. The higher juvenile hormone (JH) levels in queen larvae protect the ovaries against such degeneration. To gain insights into the molecular architecture underlying this divergence critical for adult caste fate and worker sterility, we performed a microarray analysis on fourth and early fifth instar queen and worker ovaries. For the fourth instar we found nine differentially expressed genes (DEGs) with log2FC > 1.0, but this number increased to 56 in early fifth-instar ovaries. We selected 15 DEGs for quantitative PCR (RT-qPCR) analysis. Nine differed significantly by the variables caste and/or development. Interestingly, genes with enzyme functions were higher expressed in workers, while those related to transcription and signaling had higher transcript levels in queens. For the RT-qPCR confirmed genes we analyzed their response to JH. This revealed a significant up-regulation for two genes, a short chain dehydrogenase reductase (sdr) and a heat shock protein 90 (hsp90). Five other genes, including hsp60 and hexamerin 70b (hex70b), were significantly down-regulated by JH. The sdr gene had previously come up as differentially expressed in other transcriptome analyses on honey bee larvae and heat shock proteins are frequently involved in insect hormone responses, this making them interesting candidates for further functional assays.
Collapse
Affiliation(s)
- Denyse Cavalcante Lago
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| | - Fernanda Carvalho Humann
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Campus Matão, Rua Estéfano D'avassi, 625, 15991-502 Matão, SP, Brazil.
| | - Angel Roberto Barchuk
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva 700, 37130-000 Alfenas, MG, Brazil.
| | - Kuruvilla Joseph Abraham
- Departamento de Puericultura e Pediatria Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil; Universidade Estácio-Uniseb, Rua Abrahão Issa Halach 980, 14096-160 Ribeirão Preto, SP, Brazil.
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
11
|
Marcellini S, González F, Sarrazin AF, Pabón-Mora N, Benítez M, Piñeyro-Nelson A, Rezende GL, Maldonado E, Schneider PN, Grizante MB, Da Fonseca RN, Vergara-Silva F, Suaza-Gaviria V, Zumajo-Cardona C, Zattara EE, Casasa S, Suárez-Baron H, Brown FD. Evolutionary Developmental Biology (Evo-Devo) Research in Latin America. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:5-40. [PMID: 27491339 DOI: 10.1002/jez.b.22687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 12/29/2022]
Abstract
Famous for its blind cavefish and Darwin's finches, Latin America is home to some of the richest biodiversity hotspots of our planet. The Latin American fauna and flora inspired and captivated naturalists from the nineteenth and twentieth centuries, including such notable pioneers such as Fritz Müller, Florentino Ameghino, and Léon Croizat who made a significant contribution to the study of embryology and evolutionary thinking. But, what are the historical and present contributions of the Latin American scientific community to Evo-Devo? Here, we provide the first comprehensive overview of the Evo-Devo laboratories based in Latin America and describe current lines of research based on endemic species, focusing on body plans and patterning, systematics, physiology, computational modeling approaches, ecology, and domestication. Literature searches reveal that Evo-Devo in Latin America is still in its early days; while showing encouraging indicators of productivity, it has not stabilized yet, because it relies on few and sparsely distributed laboratories. Coping with the rapid changes in national scientific policies and contributing to solve social and health issues specific to each region are among the main challenges faced by Latin American researchers. The 2015 inaugural meeting of the Pan-American Society for Evolutionary Developmental Biology played a pivotal role in bringing together Latin American researchers eager to initiate and consolidate regional and worldwide collaborative networks. Such networks will undoubtedly advance research on the extremely high genetic and phenotypic biodiversity of Latin America, bound to be an almost infinite source of amazement and fascinating findings for the Evo-Devo community.
Collapse
Affiliation(s)
- Sylvain Marcellini
- Laboratorio de Desarrollo y Evolución, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Favio González
- Facultad de Ciencias, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Andres F Sarrazin
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Alma Piñeyro-Nelson
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Xochimilco, Ciudad de México, México
| | - Gustavo L Rezende
- Universidade Estadual do Norte Fluminense, CBB, LQFPP, Campos dos Goytacazes, RJ, Brazil
| | - Ernesto Maldonado
- EvoDevo Lab, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | | | | | - Rodrigo Nunes Da Fonseca
- Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro, Macae, RJ, Brazil
| | | | | | | | | | - Sofia Casasa
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Federico D Brown
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
12
|
Ronai I, Vergoz V, Oldroyd B. The Mechanistic, Genetic, and Evolutionary Basis of Worker Sterility in the Social Hymenoptera. ADVANCES IN THE STUDY OF BEHAVIOR 2016. [DOI: 10.1016/bs.asb.2016.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Abstract
The mitochondrion descends from a bacterium that, about two billion years ago, became endosymbiotic. This organelle represents a Pandora’s box whose opening triggers cytochrome-c release and apoptosis of cells from multicellular animals, which evolved much later, about six hundred million years ago. BCL-2 proteins, which are critical apoptosis regulators, were recruited at a certain time point in evolution to either lock or unlock this mitochondrial Pandora’s box. Hence, particularly intriguing is the issue of when and how the “BCL-2 proteins–mitochondria–apoptosis” triptych emerged. This chapter explains what it takes from an evolutionary perspective to evolve a BCL-2-regulated apoptotic pathway, by focusing on the events occurring upstream of mitochondria.
Collapse
|
14
|
Ronai I, Barton DA, Oldroyd BP, Vergoz V. Regulation of oogenesis in honey bee workers via programed cell death. JOURNAL OF INSECT PHYSIOLOGY 2015; 81:36-41. [PMID: 26119324 DOI: 10.1016/j.jinsphys.2015.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 06/04/2023]
Abstract
Reproductive division of labour characterises eusociality. Currently little is known about the mechanisms that underlie the 'sterility' of the worker caste, but queen pheromone plays a major role in regulating the reproductive state. Here we investigate oogenesis in the young adult honey bee worker ovary in the presence of queen pheromone and in its absence. When queen pheromone is absent, workers can activate their ovaries and have well-developed follicles. When queen pheromone is present, even though workers have non-activated ovaries, they continually produce oocytes which are aborted at an early stage. Therefore, irrespective of the presence of the queen, the young adult worker ovary contains oocytes. By this means young workers retain reproductive plasticity. The degeneration of the germ cells in the ovarioles of workers in the presence of queen pheromone has the morphological hallmarks of programmed cell death. Therefore the mechanistic basis of 'worker sterility' relies in part on the regulation of oogenesis via programmed cell death. Our results suggest that honey bees have co-opted a highly conserved checkpoint at mid-oogenesis to regulate the fertility of the worker caste.
Collapse
Affiliation(s)
- Isobel Ronai
- School of Biological Sciences, Macleay Building A12, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Deborah A Barton
- School of Biological Sciences, Macleay Building A12, The University of Sydney, Sydney, NSW 2006, Australia
| | - Benjamin P Oldroyd
- School of Biological Sciences, Macleay Building A12, The University of Sydney, Sydney, NSW 2006, Australia
| | - Vanina Vergoz
- School of Biological Sciences, Macleay Building A12, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
15
|
Ronai I, Oldroyd BP, Barton DA, Cabanes G, Lim J, Vergoz V. AnarchyIs a Molecular Signature of Worker Sterility in the Honey Bee. Mol Biol Evol 2015; 33:134-42. [DOI: 10.1093/molbev/msv202] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Ihle KE, Rueppell O, Huang ZY, Wang Y, Fondrk MK, Page RE, Amdam GV. Genetic architecture of a hormonal response to gene knockdown in honey bees. J Hered 2015; 106:155-65. [PMID: 25596612 PMCID: PMC4323067 DOI: 10.1093/jhered/esu086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Variation in endocrine signaling is proposed to underlie the evolution and regulation of social life histories, but the genetic architecture of endocrine signaling is still poorly understood. An excellent example of a hormonally influenced set of social traits is found in the honey bee (Apis mellifera): a dynamic and mutually suppressive relationship between juvenile hormone (JH) and the yolk precursor protein vitellogenin (Vg) regulates behavioral maturation and foraging of workers. Several other traits cosegregate with these behavioral phenotypes, comprising the pollen hoarding syndrome (PHS) one of the best-described animal behavioral syndromes. Genotype differences in responsiveness of JH to Vg are a potential mechanistic basis for the PHS. Here, we reduced Vg expression via RNA interference in progeny from a backcross between 2 selected lines of honey bees that differ in JH responsiveness to Vg reduction and measured JH response and ovary size, which represents another key aspect of the PHS. Genetic mapping based on restriction site-associated DNA tag sequencing identified suggestive quantitative trait loci (QTL) for ovary size and JH responsiveness. We confirmed genetic effects on both traits near many QTL that had been identified previously for their effect on various PHS traits. Thus, our results support a role for endocrine control of complex traits at a genetic level. Furthermore, this first example of a genetic map of a hormonal response to gene knockdown in a social insect helps to refine the genetic understanding of complex behaviors and the physiology that may underlie behavioral control in general.
Collapse
Affiliation(s)
- Kate E Ihle
- From the School of Life Sciences, Arizona State University, Tempe, AZ 85287 (Ihle, Wang, Fondrk, Page, and Amdam); Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Ancon, Panamá (Ihle); the Department of Biology, North Carolina State University at Greensboro, Greensboro, NC 27402 (Rueppell); the Department of Entomology, Michigan State University, East Lansing, MI 48824 (Huang); the Department of Entomology, University of California, Davis, CA 95616 (Fondrk); and the Department of Biochemistry and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway (Amdam).
| | - Olav Rueppell
- From the School of Life Sciences, Arizona State University, Tempe, AZ 85287 (Ihle, Wang, Fondrk, Page, and Amdam); Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Ancon, Panamá (Ihle); the Department of Biology, North Carolina State University at Greensboro, Greensboro, NC 27402 (Rueppell); the Department of Entomology, Michigan State University, East Lansing, MI 48824 (Huang); the Department of Entomology, University of California, Davis, CA 95616 (Fondrk); and the Department of Biochemistry and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway (Amdam)
| | - Zachary Y Huang
- From the School of Life Sciences, Arizona State University, Tempe, AZ 85287 (Ihle, Wang, Fondrk, Page, and Amdam); Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Ancon, Panamá (Ihle); the Department of Biology, North Carolina State University at Greensboro, Greensboro, NC 27402 (Rueppell); the Department of Entomology, Michigan State University, East Lansing, MI 48824 (Huang); the Department of Entomology, University of California, Davis, CA 95616 (Fondrk); and the Department of Biochemistry and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway (Amdam)
| | - Ying Wang
- From the School of Life Sciences, Arizona State University, Tempe, AZ 85287 (Ihle, Wang, Fondrk, Page, and Amdam); Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Ancon, Panamá (Ihle); the Department of Biology, North Carolina State University at Greensboro, Greensboro, NC 27402 (Rueppell); the Department of Entomology, Michigan State University, East Lansing, MI 48824 (Huang); the Department of Entomology, University of California, Davis, CA 95616 (Fondrk); and the Department of Biochemistry and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway (Amdam)
| | - M Kim Fondrk
- From the School of Life Sciences, Arizona State University, Tempe, AZ 85287 (Ihle, Wang, Fondrk, Page, and Amdam); Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Ancon, Panamá (Ihle); the Department of Biology, North Carolina State University at Greensboro, Greensboro, NC 27402 (Rueppell); the Department of Entomology, Michigan State University, East Lansing, MI 48824 (Huang); the Department of Entomology, University of California, Davis, CA 95616 (Fondrk); and the Department of Biochemistry and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway (Amdam)
| | - Robert E Page
- From the School of Life Sciences, Arizona State University, Tempe, AZ 85287 (Ihle, Wang, Fondrk, Page, and Amdam); Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Ancon, Panamá (Ihle); the Department of Biology, North Carolina State University at Greensboro, Greensboro, NC 27402 (Rueppell); the Department of Entomology, Michigan State University, East Lansing, MI 48824 (Huang); the Department of Entomology, University of California, Davis, CA 95616 (Fondrk); and the Department of Biochemistry and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway (Amdam)
| | - Gro V Amdam
- From the School of Life Sciences, Arizona State University, Tempe, AZ 85287 (Ihle, Wang, Fondrk, Page, and Amdam); Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Ancon, Panamá (Ihle); the Department of Biology, North Carolina State University at Greensboro, Greensboro, NC 27402 (Rueppell); the Department of Entomology, Michigan State University, East Lansing, MI 48824 (Huang); the Department of Entomology, University of California, Davis, CA 95616 (Fondrk); and the Department of Biochemistry and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway (Amdam)
| |
Collapse
|