1
|
Butler RD, Brinda AK, Blumenfeld M, Bryants MN, Grund PM, Pandey SR, Cornish CK, Sullivan D, Krieg J, Umoh M, Vitek JL, Almeida L, Orcutt T, Cooper SE, Johnson MD. Differentiating Postural and Kinetic Tremor Responses to Deep Brain Stimulation in Essential Tremor. Mov Disord Clin Pract 2025; 12:166-176. [PMID: 39508598 PMCID: PMC11802662 DOI: 10.1002/mdc3.14256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND While deep brain stimulation (DBS) targeting the ventral intermediate nucleus (VIM) of thalamus or posterior subthalamic area (PSA) can suppress forms of action tremor in people with Essential Tremor, previous studies have suggested postural tremor may respond more robustly than kinetic tremor to DBS. OBJECTIVES In this study, we aimed to more precisely quantify the (1) onset/offset dynamics and (2) steady-state effects of VIM/PSA-DBS on postural and kinetic tremor. METHODS Tremor data from wireless inertial measurement units were collected from 11 participants with ET (20 unilaterally assessed DBS leads). Three postural hold tasks and one kinetic task were performed with stimulation turned off, in 2-min intervals after enabling unilateral DBS at the clinician-optimized DBS setting (15 min), and in 2-min intervals following cessation of DBS (5 min). RESULTS At baseline, kinetic tremor had significantly higher amplitudes, standard deviation, and frequency than postural tremor (P < 0.001). DBS had a more robust acute effect on postural tremors (54% decrease, P < 0.001), with near immediate tremor suppression in amplitude and standard deviation, but had non-significant improvement of kinetic tremor on the population-level across the wash-in period (34% decrease). Tremor response was not equivalent between wash-in and wash-out timepoints and involved substantial individual variability including task-specific rebound or long wash-out effects. CONCLUSIONS Programming strategies for VIM/PSA-DBS should consider the individual temporal and effect size variability in postural versus kinetic tremor improvement. Improved targeting and programming strategies around VIM and PSA may be necessary to equivalently suppress both postural and kinetic tremors.
Collapse
Affiliation(s)
- Rebecca D. Butler
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Annemarie K. Brinda
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Madeline Blumenfeld
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Marina N. Bryants
- Department of NeurologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Peter M. Grund
- Department of NeurologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Shivansh R. Pandey
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Chelsea K.S. Cornish
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Disa Sullivan
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Jordan Krieg
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Matthew Umoh
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Jerrold L. Vitek
- Department of NeurologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Leonardo Almeida
- Department of NeurologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Tseganesh Orcutt
- Department of NeurologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Scott E. Cooper
- Department of NeurologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Matthew D. Johnson
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
2
|
Abdulbaki A, Doll T, Helgers S, Heissler HE, Voges J, Krauss JK, Schwabe K, Alam M. Subthalamic Nucleus Deep Brain Stimulation Restores Motor and Sensorimotor Cortical Neuronal Oscillatory Activity in the Free-Moving 6-Hydroxydopamine Lesion Rat Parkinson Model. Neuromodulation 2024; 27:489-499. [PMID: 37002052 DOI: 10.1016/j.neurom.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 03/31/2023]
Abstract
OBJECTIVES Enhanced beta oscillations in cortical-basal ganglia (BG) thalamic circuitries have been linked to clinical symptoms of Parkinson's disease. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) reduces beta band activity in BG regions, whereas little is known about activity in cortical regions. In this study, we investigated the effect of STN DBS on the spectral power of oscillatory activity in the motor cortex (MCtx) and sensorimotor cortex (SMCtx) by recording via an electrocorticogram (ECoG) array in free-moving 6-hydroxydopamine (6-OHDA) lesioned rats and sham-lesioned controls. MATERIALS AND METHODS Male Sprague-Dawley rats (250-350 g) were injected either with 6-OHDA or with saline in the right medial forebrain bundle, under general anesthesia. A stimulation electrode was then implanted in the ipsilateral STN, and an ECoG array was placed subdurally above the MCtx and SMCtx areas. Six days after the second surgery, the free-moving rats were individually recorded in three conditions: 1) basal activity, 2) during STN DBS, and 3) directly after STN DBS. RESULTS In 6-OHDA-lesioned rats (N = 8), the relative power of theta band activity was reduced, whereas activity of broad-range beta band (12-30 Hz) along with two different subbeta bands, that is, low (12-30 Hz) and high (20-30 Hz) beta band and gamma band, was higher in MCtx and SMCtx than in sham-lesioned controls (N = 7). This was, to some extent, reverted toward control level by STN DBS during and after stimulation. No major differences were found between contacts of the electrode grid or between MCtx and SMCtx. CONCLUSION Loss of nigrostriatal dopamine leads to abnormal oscillatory activity in both MCtx and SMCtx, which is compensated by STN stimulation, suggesting that parkinsonism-related oscillations in the cortex and BG are linked through their anatomic connections.
Collapse
Affiliation(s)
- Arif Abdulbaki
- Hannover Medical School, Department of Neurosurgery, Hannover, Germany.
| | - Theodor Doll
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Simeon Helgers
- Hannover Medical School, Department of Neurosurgery, Hannover, Germany
| | - Hans E Heissler
- Hannover Medical School, Department of Neurosurgery, Hannover, Germany
| | - Jürgen Voges
- Department of Stereotactic Neurosurgery, University Hospital Magdeburg, Magdeburg, Germany
| | - Joachim K Krauss
- Hannover Medical School, Department of Neurosurgery, Hannover, Germany
| | - Kerstin Schwabe
- Hannover Medical School, Department of Neurosurgery, Hannover, Germany
| | - Mesbah Alam
- Hannover Medical School, Department of Neurosurgery, Hannover, Germany
| |
Collapse
|
3
|
Palopoli-Trojani K, Schmidt SL, Baringer KD, Slotkin TA, Peters JJ, Turner DA, Grill WM. Temporally non-regular patterns of deep brain stimulation (DBS) enhance assessment of evoked potentials while maintaining motor symptom management in Parkinson's disease (PD). Brain Stimul 2023; 16:1630-1642. [PMID: 37863388 PMCID: PMC10872419 DOI: 10.1016/j.brs.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Traditional deep brain stimulation (DBS) at fixed regular frequencies (>100 Hz) is effective in treating motor symptoms of Parkinson's disease (PD). Temporally non-regular patterns of DBS are a new parameter space that may help increase efficacy and efficiency. OBJECTIVE To compare the effects of temporally non-regular patterns of DBS to traditional regularly-spaced pulses. METHODS We simultaneously recorded local field potentials (LFP) and monitored motor symptoms (tremor and bradykinesia) in persons with PD during DBS in subthalamic nucleus (STN). We quantified both oscillatory activity and DBS local evoked potentials (DLEPs) from the LFP. RESULTS Temporally non-regular patterns were as effective as traditional pulse patterns in modulating motor symptoms, oscillatory activity, and DLEPs. Moreover, one of our novel patterns enabled recording of longer duration DLEPs during clinically effective stimulation. CONCLUSIONS Stimulation gaps of 50 ms can be used to increase efficiency and to enable regular assessment of long-duration DLEPs while maintaining effective symptom management. This may be a promising paradigm for closed-loop DBS with biomarker assessment during the gaps.
Collapse
Affiliation(s)
| | - Stephen L Schmidt
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Karley D Baringer
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, USA
| | - Jennifer J Peters
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Dennis A Turner
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Neurobiology and Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Neurobiology and Department of Neurosurgery, Duke University, Durham, NC, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
4
|
Kehnemouyi YM, Petrucci MN, Wilkins KB, Melbourne JA, Bronte-Stewart HM. The Sequence Effect Worsens Over Time in Parkinson's Disease and Responds to Open and Closed-Loop Subthalamic Nucleus Deep Brain Stimulation. JOURNAL OF PARKINSON'S DISEASE 2023:JPD223368. [PMID: 37125563 DOI: 10.3233/jpd-223368] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND The sequence effect is the progressive deterioration in speech, limb movement, and gait that leads to an inability to communicate, manipulate objects, or walk without freezing of gait. Many studies have demonstrated a lack of improvement of the sequence effect from dopaminergic medication, however few studies have studied the metric over time or investigated the effect of open-loop deep brain stimulation in people with Parkinson's disease (PD). OBJECTIVE To investigate whether the sequence effect worsens over time and/or is improved on clinical (open-loop) deep brain stimulation (DBS). METHODS Twenty-one people with PD with bilateral subthalamic nucleus (STN) DBS performed thirty seconds of instrumented repetitive wrist flexion extension and the MDS-UPDRS III off therapy, prior to activation of DBS and every six months for up to three years. A sub-cohort of ten people performed the task during randomized presentations of different intensities of STN DBS. RESULTS The sequence effect was highly correlated with the overall MDS-UPDRS III score and the bradykinesia sub-score and worsened over three years. Increasing intensities of STN open-loop DBS improved the sequence effect and one subject demonstrated improvement on both open-loop and closed-loop DBS. CONCLUSION Sequence effect in limb bradykinesia worsened over time off therapy due to disease progression but improved on open-loop DBS. These results demonstrate that DBS is a useful treatment of the debilitating effects of the sequence effect in limb bradykinesia and upon further investigation closed-loop DBS may offer added improvement.
Collapse
Affiliation(s)
- Yasmine M Kehnemouyi
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
- Stanford University School of Engineering, Department of Bioengineering, Stanford, CA, USA
| | - Matthew N Petrucci
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
- Stanford University School of Engineering, Department of Bioengineering, Stanford, CA, USA
| | - Kevin B Wilkins
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
| | - Jillian A Melbourne
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
| | - Helen M Bronte-Stewart
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
- Stanford University School of Medicine, Department of Neurosurgery, Stanford, CA, USA
| |
Collapse
|
5
|
Charlebois CM, Anderson DN, Johnson KA, Philip BJ, Davis TS, Newman BJ, Peters AY, Arain AM, Dorval AD, Rolston JD, Butson CR. Patient-specific structural connectivity informs outcomes of responsive neurostimulation for temporal lobe epilepsy. Epilepsia 2022; 63:2037-2055. [PMID: 35560062 PMCID: PMC11265293 DOI: 10.1111/epi.17298] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Responsive neurostimulation is an effective therapy for patients with refractory mesial temporal lobe epilepsy. However, clinical outcomes are variable, few patients become seizure-free, and the optimal stimulation location is currently undefined. The aim of this study was to quantify responsive neurostimulation in the mesial temporal lobe, identify stimulation-dependent networks associated with seizure reduction, and determine if stimulation location or stimulation-dependent networks inform outcomes. METHODS We modeled patient-specific volumes of tissue activated and created probabilistic stimulation maps of local regions of stimulation across a retrospective cohort of 22 patients with mesial temporal lobe epilepsy. We then mapped the network stimulation effects by seeding tractography from the volume of tissue activated with both patient-specific and normative diffusion-weighted imaging. We identified networks associated with seizure reduction across patients using the patient-specific tractography maps and then predicted seizure reduction across the cohort. RESULTS Patient-specific stimulation-dependent connectivity was correlated with responsive neurostimulation effectiveness after cross-validation (p = .03); however, normative connectivity derived from healthy subjects was not (p = .44). Increased connectivity from the volume of tissue activated to the medial prefrontal cortex, cingulate cortex, and precuneus was associated with greater seizure reduction. SIGNIFICANCE Overall, our results suggest that the therapeutic effect of responsive neurostimulation may be mediated by specific networks connected to the volume of tissue activated. In addition, patient-specific tractography was required to identify structural networks correlated with outcomes. It is therefore likely that altered connectivity in patients with epilepsy may be associated with the therapeutic effect and that utilizing patient-specific imaging could be important for future studies. The structural networks identified here may be utilized to target stimulation in the mesial temporal lobe and to improve seizure reduction for patients treated with responsive neurostimulation.
Collapse
Affiliation(s)
- Chantel M. Charlebois
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Scientific Computing & Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | - Daria Nesterovich Anderson
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Kara A. Johnson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Brian J. Philip
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Tyler. S. Davis
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Blake J. Newman
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Angela Y. Peters
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Amir M. Arain
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Alan D. Dorval
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - John D. Rolston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Scientific Computing & Imaging Institute, University of Utah, Salt Lake City, UT, USA
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Christopher R. Butson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Miao J, Tantawi M, Koa V, Zhang AB, Zhang V, Sharan A, Wu C, Matias CM. Use of Functional MRI in Deep Brain Stimulation in Parkinson's Diseases: A Systematic Review. Front Neurol 2022; 13:849918. [PMID: 35401406 PMCID: PMC8984293 DOI: 10.3389/fneur.2022.849918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/21/2022] [Indexed: 11/21/2022] Open
Abstract
Deep brain stimulation (DBS) has been used to modulate aberrant circuits associated with Parkinson's disease (PD) for decades and has shown robust therapeutic benefits. However, the mechanism of action of DBS remains incompletely understood. With technological advances, there is an emerging use of functional magnetic resonance imaging (fMRI) after DBS implantation to explore the effects of stimulation on brain networks in PD. This systematic review was designed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to summarize peer-reviewed articles published within the past 10 years in which fMRI was employed on patients with PD-DBS. Search in PubMed database provided 353 references, and screenings resulted in a total of 19 studies for qualitative synthesis regarding study designs (fMRI scan timepoints and paradigm), methodology, and PD subtypes. This review concluded that fMRI may be used in patients with PD-DBS after proper safety test; resting-state and block-based fMRI designs have been employed to explore the effects of DBS on brain networks and the mechanism of action of the DBS, respectively. With further validation of safety use of fMRI and advances in imaging techniques, fMRI may play an increasingly important role in better understanding of the mechanism of stimulation as well as in improving clinical care to provide subject-specific neuromodulation treatments.
Collapse
Affiliation(s)
- Jingya Miao
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mohamed Tantawi
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Victoria Koa
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ashley B. Zhang
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Veronica Zhang
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ashwini Sharan
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chengyuan Wu
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Caio M. Matias
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
7
|
Frey J, Cagle J, Johnson KA, Wong JK, Hilliard JD, Butson CR, Okun MS, de Hemptinne C. Past, Present, and Future of Deep Brain Stimulation: Hardware, Software, Imaging, Physiology and Novel Approaches. Front Neurol 2022; 13:825178. [PMID: 35356461 PMCID: PMC8959612 DOI: 10.3389/fneur.2022.825178] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation (DBS) has advanced treatment options for a variety of neurologic and neuropsychiatric conditions. As the technology for DBS continues to progress, treatment efficacy will continue to improve and disease indications will expand. Hardware advances such as longer-lasting batteries will reduce the frequency of battery replacement and segmented leads will facilitate improvements in the effectiveness of stimulation and have the potential to minimize stimulation side effects. Targeting advances such as specialized imaging sequences and "connectomics" will facilitate improved accuracy for lead positioning and trajectory planning. Software advances such as closed-loop stimulation and remote programming will enable DBS to be a more personalized and accessible technology. The future of DBS continues to be promising and holds the potential to further improve quality of life. In this review we will address the past, present and future of DBS.
Collapse
Affiliation(s)
- Jessica Frey
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Jackson Cagle
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Kara A. Johnson
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Joshua K. Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Justin D. Hilliard
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Christopher R. Butson
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Michael S. Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Coralie de Hemptinne
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Lu C, Amundsen Huffmaster SL, Louie KH, Sovell-Brown K, Vitek JL, MacKinnon CD, Cooper SE. Pallidal Oscillation Dynamics Following Cessation of Deep Brain Stimulation in Parkinson's Disease. Mov Disord 2021; 35:1697-1698. [PMID: 33400281 DOI: 10.1002/mds.28227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Chiahao Lu
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Kenneth H Louie
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kelly Sovell-Brown
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Colum D MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Scott E Cooper
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
9
|
Elias GJB, Boutet A, Joel SE, Germann J, Gwun D, Neudorfer C, Gramer RM, Algarni M, Paramanandam V, Prasad S, Beyn ME, Horn A, Madhavan R, Ranjan M, Lozano CS, Kühn AA, Ashe J, Kucharczyk W, Munhoz RP, Giacobbe P, Kennedy SH, Woodside DB, Kalia SK, Fasano A, Hodaie M, Lozano AM. Probabilistic Mapping of Deep Brain Stimulation: Insights from 15 Years of Therapy. Ann Neurol 2020; 89:426-443. [PMID: 33252146 DOI: 10.1002/ana.25975] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Deep brain stimulation (DBS) depends on precise delivery of electrical current to target tissues. However, the specific brain structures responsible for best outcome are still debated. We applied probabilistic stimulation mapping to a retrospective, multidisorder DBS dataset assembled over 15 years at our institution (ntotal = 482 patients; nParkinson disease = 303; ndystonia = 64; ntremor = 39; ntreatment-resistant depression/anorexia nervosa = 76) to identify the neuroanatomical substrates of optimal clinical response. Using high-resolution structural magnetic resonance imaging and activation volume modeling, probabilistic stimulation maps (PSMs) that delineated areas of above-mean and below-mean response for each patient cohort were generated and defined in terms of their relationships with surrounding anatomical structures. Our results show that overlap between PSMs and individual patients' activation volumes can serve as a guide to predict clinical outcomes, but that this is not the sole determinant of response. In the future, individualized models that incorporate advancements in mapping techniques with patient-specific clinical variables will likely contribute to the optimization of DBS target selection and improved outcomes for patients. ANN NEUROL 2021;89:426-443.
Collapse
Affiliation(s)
- Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | | | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Dave Gwun
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Clemens Neudorfer
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Robert M Gramer
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Musleh Algarni
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, Ontario, Canada
| | - Vijayashankar Paramanandam
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, Ontario, Canada
| | - Sreeram Prasad
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, Ontario, Canada
| | - Michelle E Beyn
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | | | - Manish Ranjan
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Christopher S Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Andrea A Kühn
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Jeff Ashe
- GE Global Research, Toronto, Ontario, Canada
| | - Walter Kucharczyk
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Renato P Munhoz
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, Ontario, Canada
| | - Peter Giacobbe
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Sidney H Kennedy
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Centre for Mental Health, University Health Network, Toronto, Ontario, Canada
| | - D Blake Woodside
- Centre for Mental Health, University Health Network, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, Ontario, Canada
| | - Mojgan Hodaie
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Schmidt SL, Brocker DT, Swan BD, Turner DA, Grill WM. Evoked potentials reveal neural circuits engaged by human deep brain stimulation. Brain Stimul 2020; 13:1706-1718. [PMID: 33035726 PMCID: PMC7722102 DOI: 10.1016/j.brs.2020.09.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is an effective therapy for reducing the motor symptoms of Parkinson's disease, but the mechanisms of action of DBS and neural correlates of symptoms remain unknown. OBJECTIVE To use the neural response to DBS to reveal connectivity of neural circuits and interactions between groups of neurons as potential mechanisms for DBS. METHODS We recorded activity evoked by DBS of the subthalamic nucleus (STN) in humans with Parkinson's disease. In follow up experiments we also simultaneously recorded activity in the contralateral STN or the ipsilateral globus pallidus from both internal (GPi) and external (GPe) segments. RESULTS DBS local evoked potentials (DLEPs) were stereotyped across subjects, and a biophysical model of reciprocal connections between the STN and the GPe recreated DLEPs. Simultaneous STN and GP recordings during STN DBS demonstrate that DBS evoked potentials were present throughout the basal ganglia and confirmed that DLEPs arose from the reciprocal connections between the STN and GPe. The shape and amplitude of the DLEPs were dependent on the frequency and duration of DBS and were correlated with resting beta band oscillations. In the frequency domain, DLEPs appeared as a 350 Hz high frequency oscillation (HFO) independent of the frequency of DBS. CONCLUSIONS DBS evoked potentials suggest that the intrinsic dynamics of the STN and GP are highly interlinked and may provide a promising new biomarker for adaptive DBS.
Collapse
Affiliation(s)
- Stephen L Schmidt
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - David T Brocker
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Brandon D Swan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Dennis A Turner
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
11
|
Shirvalkar P, Sellers KK, Schmitgen A, Prosky J, Joseph I, Starr PA, Chang EF. A Deep Brain Stimulation Trial Period for Treating Chronic Pain. J Clin Med 2020; 9:jcm9103155. [PMID: 33003443 PMCID: PMC7600449 DOI: 10.3390/jcm9103155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
Early studies of deep brain stimulation (DBS) for various neurological disorders involved a temporary trial period where implanted electrodes were externalized, in which the electrical contacts exiting the patient's brain are connected to external stimulation equipment, so that stimulation efficacy could be determined before permanent implant. As the optimal brain target sites for various diseases (i.e., Parkinson's disease, essential tremor) became better established, such trial periods have fallen out of favor. However, deep brain stimulation trial periods are experiencing a modern resurgence for at least two reasons: (1) studies of newer indications such as depression or chronic pain aim to identify new targets and (2) a growing interest in adaptive DBS tools necessitates neurophysiological recordings, which are often done in the peri-surgical period. In this review, we consider the possible approaches, benefits, and risks of such inpatient trial periods with a specific focus on developing new DBS therapies for chronic pain.
Collapse
Affiliation(s)
- Prasad Shirvalkar
- Department of Anesthesiology (Pain Management), University of California San Francisco, San Francisco, CA 94143, USA;
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (K.K.S.); (A.S.); (I.J.); (P.A.S.); (E.F.C.)
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
- Correspondence:
| | - Kristin K. Sellers
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (K.K.S.); (A.S.); (I.J.); (P.A.S.); (E.F.C.)
| | - Ashlyn Schmitgen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (K.K.S.); (A.S.); (I.J.); (P.A.S.); (E.F.C.)
| | - Jordan Prosky
- Department of Anesthesiology (Pain Management), University of California San Francisco, San Francisco, CA 94143, USA;
| | - Isabella Joseph
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (K.K.S.); (A.S.); (I.J.); (P.A.S.); (E.F.C.)
| | - Philip A. Starr
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (K.K.S.); (A.S.); (I.J.); (P.A.S.); (E.F.C.)
| | - Edward F. Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (K.K.S.); (A.S.); (I.J.); (P.A.S.); (E.F.C.)
| |
Collapse
|
12
|
Grover T, Georgiev D, Kalliola R, Mahlknecht P, Zacharia A, Candelario J, Hyam J, Zrinzo L, Hariz M, Foltynie T, Limousin P, Jahanshahi M, Tripoliti E. Effect of Low versus High Frequency Subthalamic Deep Brain Stimulation on Speech Intelligibility and Verbal Fluency in Parkinson's Disease: A Double-Blind Study. JOURNAL OF PARKINSONS DISEASE 2020; 9:141-151. [PMID: 30594934 DOI: 10.3233/jpd-181368] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Subthalamic deep brain stimulation (STN-DBS) is an established treatment for late stage Parkinson's disease (PD). Speech intelligibility (SI) and verbal fluency (VF) have been shown to deteriorate following chronic STN-DBS. It has been suggested that speech might respond favourably to low frequency stimulation (LFS). OBJECTIVE We examined how SI, perceptual speech characteristics, phonemic and semantic VF and processes underlying it (clustering and switching) respond to LFS of 60 and 80 Hz in comparison to high frequency stimulation (HFS) (110, 130 and 200 Hz). METHODS In this double-blind study, 15 STN-DBS PD patients (mean age 65, SD = 5.8, 14 right handed, three females), were assessed at five stimulation frequencies: 60 Hz, 80 Hz, 110 Hz, 130 Hz and 200 Hz. In addition to the clinical neurological assessment of speech, VF and SI were assessed. RESULTS SI and in particular articulation, respiration, phonation and prosody improved with LFS (all p < 0.05). Phonemic VF switching improved with LFS (p = 0.005) but this did not translate to an improved phonemic VF score. A trend for improved semantic VF was found. A negative correlation was found between perceptual characteristics of speech and duration of chronic stimulation (all p < 0.05). CONCLUSIONS These findings highlight the need for meticulous programming of frequency to maximise SI in chronic STN-DBS. The findings further implicate stimulation frequency in changes to specific processes underlying VF, namely phonemic switching and demonstrate the potential to address such deficits through advanced adjustment of stimulation parameters.
Collapse
Affiliation(s)
- Timothy Grover
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Dejan Georgiev
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK.,Department of Neurology, University Medical Centre Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Slovenia.,Faculty of Computer and Information Sciences, University of Ljubljana, Slovenia
| | - Rania Kalliola
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Philipp Mahlknecht
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK.,Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - André Zacharia
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Joseph Candelario
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Jonathan Hyam
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Ludvic Zrinzo
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Marwan Hariz
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Thomas Foltynie
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Patricia Limousin
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Marjan Jahanshahi
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Elina Tripoliti
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| |
Collapse
|
13
|
Johnson KA, Fletcher PT, Servello D, Bona A, Porta M, Ostrem JL, Bardinet E, Welter ML, Lozano AM, Baldermann JC, Kuhn J, Huys D, Foltynie T, Hariz M, Joyce EM, Zrinzo L, Kefalopoulou Z, Zhang JG, Meng FG, Zhang C, Ling Z, Xu X, Yu X, Smeets AY, Ackermans L, Visser-Vandewalle V, Mogilner AY, Pourfar MH, Almeida L, Gunduz A, Hu W, Foote KD, Okun MS, Butson CR. Image-based analysis and long-term clinical outcomes of deep brain stimulation for Tourette syndrome: a multisite study. J Neurol Neurosurg Psychiatry 2019; 90:1078-1090. [PMID: 31129620 PMCID: PMC6744301 DOI: 10.1136/jnnp-2019-320379] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) can be an effective therapy for tics and comorbidities in select cases of severe, treatment-refractory Tourette syndrome (TS). Clinical responses remain variable across patients, which may be attributed to differences in the location of the neuroanatomical regions being stimulated. We evaluated active contact locations and regions of stimulation across a large cohort of patients with TS in an effort to guide future targeting. METHODS We collected retrospective clinical data and imaging from 13 international sites on 123 patients. We assessed the effects of DBS over time in 110 patients who were implanted in the centromedial (CM) thalamus (n=51), globus pallidus internus (GPi) (n=47), nucleus accumbens/anterior limb of the internal capsule (n=4) or a combination of targets (n=8). Contact locations (n=70 patients) and volumes of tissue activated (n=63 patients) were coregistered to create probabilistic stimulation atlases. RESULTS Tics and obsessive-compulsive behaviour (OCB) significantly improved over time (p<0.01), and there were no significant differences across brain targets (p>0.05). The median time was 13 months to reach a 40% improvement in tics, and there were no significant differences across targets (p=0.84), presence of OCB (p=0.09) or age at implantation (p=0.08). Active contacts were generally clustered near the target nuclei, with some variability that may reflect differences in targeting protocols, lead models and contact configurations. There were regions within and surrounding GPi and CM thalamus that improved tics for some patients but were ineffective for others. Regions within, superior or medial to GPi were associated with a greater improvement in OCB than regions inferior to GPi. CONCLUSION The results collectively indicate that DBS may improve tics and OCB, the effects may develop over several months, and stimulation locations relative to structural anatomy alone may not predict response. This study was the first to visualise and evaluate the regions of stimulation across a large cohort of patients with TS to generate new hypotheses about potential targets for improving tics and comorbidities.
Collapse
Affiliation(s)
- Kara A Johnson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - P Thomas Fletcher
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,School of Computing, University of Utah, Salt Lake City, Utah, USA
| | - Domenico Servello
- Neurosurgical Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Lombardia, Italy
| | - Alberto Bona
- Neurosurgical Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Lombardia, Italy
| | - Mauro Porta
- Tourette's Syndrome and Movement Disorders Center, IRCCS Istituto Ortopedico Galeazzi, Milan, Lombardia, Italy
| | - Jill L Ostrem
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Eric Bardinet
- Institut du Cerveau et de la Moelle Epiniere, Paris, Île-de-France, France
| | - Marie-Laure Welter
- Sorbonne Universités, University of Pierre and Marie Curie University of Paris, the French National Institute of Health and Medical Research U 1127, the National Center for Scientific Research 7225, Paris, France
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Juan Carlos Baldermann
- Department of Psychiatry and Psychotherapy, University of Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University of Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, University of Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Thomas Foltynie
- Queen Square, Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience, University College London Institute of Neurology, London, UK
| | - Marwan Hariz
- Queen Square, Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience, University College London Institute of Neurology, London, UK
| | - Eileen M Joyce
- Queen Square, Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience, University College London Institute of Neurology, London, UK
| | - Ludvic Zrinzo
- Queen Square, Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience, University College London Institute of Neurology, London, UK
| | - Zinovia Kefalopoulou
- Queen Square, Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience, University College London Institute of Neurology, London, UK
| | - Jian-Guo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fan-Gang Meng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - ChenCheng Zhang
- Department of Functional Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhipei Ling
- Department of Neurosurgery, PLA Army General Hospital, Beijing, China
| | - Xin Xu
- Department of Neurosurgery, PLA Army General Hospital, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, PLA Army General Hospital, Beijing, China
| | - Anouk Yjm Smeets
- Department of Neurosurgery, Maastricht University Medical Centre+, Maastricht, Limburg, The Netherlands
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Centre+, Maastricht, Limburg, The Netherlands
| | - Veerle Visser-Vandewalle
- Department of Stereotaxy and Functional Neurosurgery, University Hospital Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Alon Y Mogilner
- Center for Neuromodulation, Departments of Neurology and Neurosurgery, New York University Medical Center, New York, New York, USA
| | - Michael H Pourfar
- Center for Neuromodulation, Departments of Neurology and Neurosurgery, New York University Medical Center, New York, New York, USA
| | - Leonardo Almeida
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Aysegul Gunduz
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA.,J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Wei Hu
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Kelly D Foote
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Michael S Okun
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Christopher R Butson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA .,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Departments of Neurology, Neurosurgery, and Psychiatry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
14
|
Farris SM, Giroux ML. Rapid assessment of gait and speech after subthalamic deep brain stimulation. Surg Neurol Int 2016; 7:S545-50. [PMID: 27583181 PMCID: PMC4982349 DOI: 10.4103/2152-7806.187532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/19/2016] [Indexed: 12/27/2022] Open
Abstract
Background: Describe a rapid assessment for patients with idiopathic Parkinson's disease (PD) and deep brain stimulation of the subthalamic nucleus reporting worsening speech and/or gait problems. Methods: We retrospectively reviewed 29 patients that had improvement in gait and/or speech within 30 min after turning stimulation off. Clinical data analyzed include unified PD rating scale motor scores and stimulation parameters before and after adjusting stimulation. All patients received electrode efficacy and side effect threshold testing. Stimulation parameters were adjusted to maximize efficacy, avoid side effects, and maximize battery longevity. Results: Turning stimulation off revealed reversible speech and/or gait stimulation side effects within 30 min. Focusing on six factors revealed stimulation modifications that improved motor symptoms, eliminated stimulation side effects, and reduced battery drain. Primary stimulation parameters modified were cathode selection and pulse width reduction. Conclusions: Stimulation-induced side effects impacting gait and speech can be identified within 30 min. A systematic evaluation can distinguish disease progression from reversible stimulation side effects and improve motor outcomes over the long term.
Collapse
Affiliation(s)
- Sierra M Farris
- Movement and Neuroperformance Center of Colorado, 499 E Hampden Avenue, Suite 250, Englewood, Colorado, USA
| | - Monique L Giroux
- Movement and Neuroperformance Center of Colorado, 499 E Hampden Avenue, Suite 250, Englewood, Colorado, USA
| |
Collapse
|
15
|
Velasco F, Carrillo-Ruiz JD, Salcido V, Castro G, Soto J, Velasco AL. Unilateral Stimulation of Prelemniscal Radiations for the Treatment of Acral Symptoms of Parkinson's Disease: Long-Term Results. Neuromodulation 2016; 19:357-64. [DOI: 10.1111/ner.12433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Francisco Velasco
- Unit for Stereotactic and Functional Neurosurgery and Radiosurgery; Mexico General Hospital; Mexico D.F. Mexico
| | - José D. Carrillo-Ruiz
- Unit for Stereotactic and Functional Neurosurgery and Radiosurgery; Mexico General Hospital; Mexico D.F. Mexico
| | - Víctor Salcido
- Unit for Stereotactic and Functional Neurosurgery and Radiosurgery; Mexico General Hospital; Mexico D.F. Mexico
| | - Guillermo Castro
- Unit for Stereotactic and Functional Neurosurgery and Radiosurgery; Mexico General Hospital; Mexico D.F. Mexico
| | - Julián Soto
- Unit for Stereotactic and Functional Neurosurgery and Radiosurgery; Mexico General Hospital; Mexico D.F. Mexico
| | - Ana Luisa Velasco
- Unit for Stereotactic and Functional Neurosurgery and Radiosurgery; Mexico General Hospital; Mexico D.F. Mexico
| |
Collapse
|
16
|
Agnesi F, Muralidharan A, Baker KB, Vitek JL, Johnson MD. Fidelity of frequency and phase entrainment of circuit-level spike activity during DBS. J Neurophysiol 2015; 114:825-34. [PMID: 26084905 DOI: 10.1152/jn.00259.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/16/2015] [Indexed: 11/22/2022] Open
Abstract
High-frequency stimulation is known to entrain spike activity downstream and upstream of several clinical deep brain stimulation (DBS) targets, including the cerebellar-receiving area of thalamus (VPLo), subthalamic nucleus (STN), and globus pallidus (GP). Less understood are the fidelity of entrainment to each stimulus pulse, whether entrainment patterns are stationary over time, and how responses differ among DBS targets. In this study, three rhesus macaques were implanted with a single DBS lead in VPLo, STN, or GP. Single-unit spike activity was recorded in the resting state in motor cortex during VPLo DBS, in GP during STN DBS, and in STN and pallidal-receiving area of motor thalamus (VLo) during GP DBS. VPLo DBS induced time-locked spike activity in 25% (n = 15/61) of motor cortex cells, with entrained cells following 7.5 ± 7.4% of delivered pulses. STN DBS entrained spike activity in 26% (n = 8/27) of GP cells, which yielded time-locked spike activity for 8.7 ± 8.4% of stimulus pulses. GP DBS entrained 67% (n = 14/21) of STN cells and 32% (n = 19/59) of VLo cells, which showed a higher fraction of pulses effectively inhibiting spike activity (82.0 ± 9.6% and 86.1 ± 16.6%, respectively). Latency of phase-locked spike activity increased over time in motor cortex (58%, VPLo DBS) and to a lesser extent in GP (25%, STN DBS). In contrast, the initial inhibitory phase observed in VLo and STN during GP DBS remained stable following stimulation onset. Together, these data suggest that circuit-level entrainment is low-pass filtered during high-frequency stimulation, most notably for glutamatergic pathways. Moreover, phase entrainment is not stationary or consistent at the circuit level for all DBS targets.
Collapse
Affiliation(s)
- Filippo Agnesi
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | | | - Kenneth B Baker
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota
| | - Matthew D Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|