1
|
Gao C, Koko MY, Hong W, Gankhuyag J, Hui M, Gantumur MA, Dong N. Protective Properties of Intestinal Alkaline Phosphatase Supplementation on the Intestinal Barrier: Interactions and Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27-45. [PMID: 37964463 DOI: 10.1021/acs.jafc.3c05119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The intestinal barrier is critical for maintaining intestinal homeostasis, and its dysfunction is associated with various diseases. Recent findings have revealed the multifunctional role of intestinal alkaline phosphatase (IAP) in diverse biological processes, including gut health maintenance and function. This review summarizes the protective effects of IAP on intestinal barrier integrity, encompassing the physical, chemical, microbial, and immune barriers. We discuss the results and insights from in vitro, animal model, and clinical studies as well as the available evidence regarding the impact of diet on IAP activity and expression. IAP can also be used as an indicator to assess intestinal-barrier-related diseases. Further research into the mechanisms of action and long-term health effects of IAP in maintaining overall intestinal health is essential for its future use as a dietary supplement or functional component in medical foods.
Collapse
Affiliation(s)
- Chenzhe Gao
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China 150030
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Marwa Yagoub Koko
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Weichen Hong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Javzan Gankhuyag
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Mizhou Hui
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Munkh-Amgalan Gantumur
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China 150030
| |
Collapse
|
2
|
Guowei G, Yuzhong Z, Xuan Z, Zhi D, Juanhui D, Jing W, Peikui Y, Xiangzhi L, Zhen W. Zhuanggu Guanjie herbal formula mitigates osteoarthritis via the NF-κB transduction mechanism. Front Pharmacol 2022; 13:896397. [PMID: 36532734 PMCID: PMC9751418 DOI: 10.3389/fphar.2022.896397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
The Zhuanggu Guanjie herbal formula has been a famous Chinese prescription for treating bone diseases since time immemorial. The anti-osteoarthritis (OA) properties of this botanical prescription are well documented in the Chinese Pharmacopoeia. However, the detailed mechanisms behind the phenomenon have not been elucidated. Hence, we aimed to investigate the anti-OA efficacy of the Zhuanggu Guanjie herbal formula and its underlying mechanism. The anti-OA properties of Zhuanggu Guanjie capsule (ZGC) were determined by the cytokine contents and inflammatory-related proteins, which were measured by RT-PCR, flow cytometry, Western blot, and laser confocal assay in ATDC5 cells. The levels of interleukin-6, tumor necrosis factor-α, inducible nitric oxide synthase, cyclooxygenase-2, and prostaglandin synthesis E2 have been markedly reduced after being treated with ZGC for 48 h in a dose-dependent manner. Furthermore, ZGC prevented the translocation of NF-κB from the cytosol to the nucleus. On the other hand, we used the mono-iodoacetate (MIA)-induced OA model to confirm the in vivo efficacies of this herbal formula. Oral administration of ZGC attenuated MIA-induced OA damage through changes in histopathological and knee joint volumes. The serum matrix metalloproteinase-13 contents in the ZGC treatment group declined as compared to those in the MIA model group. Through our in vitro and in vivo studies, we confirmed the anti-OA efficacy of ZGC and uncovered its detailed mechanism, and this treatment shed light on OA pathophysiology.
Collapse
Affiliation(s)
- Gong Guowei
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, China,Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Hanshan Normal University, Chaozhou, China,*Correspondence: Gong Guowei, ; Zheng Yuzhong,
| | - Zheng Yuzhong
- Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Hanshan Normal University, Chaozhou, China,*Correspondence: Gong Guowei, ; Zheng Yuzhong,
| | - Zhou Xuan
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Dai Zhi
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen, China
| | - Duan Juanhui
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen, China
| | - Wang Jing
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen, China
| | - Yang Peikui
- Department of Medical Laboratory, Chaozhou People’s Hospital, Chaozhou, China
| | - Liu Xiangzhi
- Department of Medical Laboratory, Chaozhou People’s Hospital, Chaozhou, China
| | - Wen Zhen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Mukherjee PK, Efferth T, Das B, Kar A, Ghosh S, Singha S, Debnath P, Sharma N, Bhardwaj PK, Haldar PK. Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153930. [PMID: 35114450 PMCID: PMC8730822 DOI: 10.1016/j.phymed.2022.153930] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND The worldwide corona virus disease outbreak, generally known as COVID-19 pandemic outbreak resulted in a major health crisis globally. The morbidity and transmission modality of COVID-19 appear more severe and uncontrollable. The respiratory failure and following cardiovascular complications are the main pathophysiology of this deadly disease. Several therapeutic strategies are put forward for the development of safe and effective treatment against SARS-CoV-2 virus from the pharmacological view point but till date there are no specific treatment regimen developed for this viral infection. PURPOSE The present review emphasizes the role of herbs and herbs-derived secondary metabolites in inhibiting SARS-CoV-2 virus and also for the management of post-COVID-19 related complications. This approach will foster and ensure the safeguards of using medicinal plant resources to support the healthcare system. Plant-derived phytochemicals have already been reported to prevent the viral infection and to overcome the post-COVID complications like parkinsonism, kidney and heart failure, liver and lungs injury and mental problems. In this review, we explored mechanistic approaches of herbal medicines and their phytocomponenets as antiviral and post-COVID complications by modulating the immunological and inflammatory states. STUDY DESIGN Studies related to diagnosis and treatment guidelines issued for COVID-19 by different traditional system of medicine were included. The information was gathered from pharmacological or non-pharmacological interventions approaches. The gathered information sorted based on therapeutic application of herbs and their components against SARSCoV-2 and COVID-19 related complications. METHODS A systemic search of published literature was conducted from 2003 to 2021 using different literature database like Google Scholar, PubMed, Science Direct, Scopus and Web of Science to emphasize relevant articles on medicinal plants against SARS-CoV-2 viral infection and Post-COVID related complications. RESULTS Collected published literature from 2003 onwards yielded with total 625 articles, from more than 18 countries. Among these 625 articles, more than 95 medicinal plants and 25 active phytomolecules belong to 48 plant families. Reports on the therapeutic activity of the medicinal plants belong to the Lamiaceae family (11 reports), which was found to be maximum reported from 4 different countries including India, China, Australia, and Morocco. Other reports on the medicinal plant of Asteraceae (7 reports), Fabaceae (8 reports), Piperaceae (3 reports), Zingiberaceae (3 reports), Ranunculaceae (3 reports), Meliaceae (4 reports) were found, which can be explored for the development of safe and efficacious products targeting COVID-19. CONCLUSION Keeping in mind that the natural alternatives are in the priority for the management and prevention of the COVID-19, the present review may help to develop an alternative approach for the management of COVID-19 viral infection and post-COVID complications from a mechanistic point of view.
Collapse
Affiliation(s)
- Pulok K Mukherjee
- Institute of Bioresources and Sustainable Development, Imphal-795001, India; School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Bhaskar Das
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | - Suparna Ghosh
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Seha Singha
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Pradip Debnath
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | | | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| |
Collapse
|
4
|
Yang L, Yu H, Hou A, Man W, Wang S, Zhang J, Wang X, Zheng S, Jiang H, Kuang H. A Review of the Ethnopharmacology, Phytochemistry, Pharmacology, Application, Quality Control, Processing, Toxicology, and Pharmacokinetics of the Dried Rhizome of Atractylodes macrocephala. Front Pharmacol 2021; 12:727154. [PMID: 34803677 PMCID: PMC8595830 DOI: 10.3389/fphar.2021.727154] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/13/2021] [Indexed: 01/30/2023] Open
Abstract
The product investigated herein is the dried rhizome of Atractylodes macrocephala Koidz. [Asteraceae] (Baizhu), which is also known as Dongbaizhu, Wuzhu, Yuzhu, Zhezhu, and Zhongzhu, among others. It invigorates the spleen, replenishes qi, and removes dampness, diuresis, and hidroschesis, and impacts fetal safety. It is often used for the treatment of diseases such as spleen function deficiency, abdominal distension, diarrhea, sputum, vertigo, edema, fever, and sweating and also aids cessation of minimal vaginal bleeding during pregnancy. In this study, research pertaining to the ethnopharmacology, application, phytochemistry, analytical methods, quality control, processing, pharmacology, toxicology, and pharmacokinetics of Baizhu has been reviewed. Relevant information and data reported for Baizhu were collected from CNKI, VIP, PubMed, Web of Science, scientific databases, Chinese Medicinal Material Encyclopedia, Chinese herbal medicine classics, Chinese medicine dictionary, doctoral and master's theses, and so on. Baizhu demonstrates diuretic, antidiuretic, anti-inflammatory effects and antitumor function and aids regulation of gastrointestinal function, hypoglycemic effect, analgesic action, protection on the liver ischemia-reperfusion injury (IRI) in rats, inhibition of aromatase, treatment of bone disease, strengthening myocardial contraction ability, detoxification and cholagogic effect, fall hematic fat action, such as the treatment of acute renal injury, and so on. It also can be an anticoagulant, improve the nervous system disease, affect the immune system, and regulate uterine smooth muscle, antioxidation, antiaging, and antibacterial effect. Sesquiterpenoids, triterpenoids, polyacetylenes, phenylpropanoids, coumarins, flavonoids, flavonoid glycosides, steroids, benzoquinones, polysaccharides, and other compounds were isolated from Baizhu. Among them, sesquiterpenoids, polysaccharides, and polyacetylenes are the main components of Baizhu. Baizhu exhibits a wide range of pharmacological effects and constitutes a considerable proportion of the composition of many proprietary crude drugs. It mainly affects the endocrine, nervous, and urinary systems. The presented information suggests that we should focus on the development of new drugs related to Baizhu, including specific components, to achieve a greater therapeutic potential that can be considered to further explore the information related to Baizhu.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hai Jiang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| |
Collapse
|
5
|
Du Y, Zheng Y, Yu CX, Zhong L, Li Y, Wu B, Hu W, Zhu EW, Xie VW, Xu Q, Zhan X, Huang Y, Zeng L, Zhang Z, Liu X, Yin J, Zha G, Chan K, Tsim KWK. The Mechanisms of Yu Ping Feng San in Tracking the Cisplatin-Resistance by Regulating ATP-Binding Cassette Transporter and Glutathione S-Transferase in Lung Cancer Cells. Front Pharmacol 2021; 12:678126. [PMID: 34135758 PMCID: PMC8202081 DOI: 10.3389/fphar.2021.678126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/10/2021] [Indexed: 12/23/2022] Open
Abstract
Cisplatin is one of the first line anti-cancer drugs prescribed for treatment of solid tumors; however, the chemotherapeutic drug resistance is still a major obstacle of cisplatin in treating cancers. Yu Ping Feng San (YPFS), a well-known ancient Chinese herbal combination formula consisting of Astragali Radix, Atractylodis Macrocephalae Rhizoma and Saposhnikoviae Radix, is prescribed as a herbal decoction to treat immune disorders in clinic. To understand the fast-onset action of YPFS as an anti-cancer drug to fight against the drug resistance of cisplatin, we provided detailed analyses of intracellular cisplatin accumulation, cell viability, and expressions and activities of ATP-binding cassette transporters and glutathione S-transferases (GSTs) in YPFS-treated lung cancer cell lines. In cultured A549 or its cisplatin-resistance A549/DDP cells, application of YPFS increased accumulation of intracellular cisplatin, resulting in lower cell viability. In parallel, the activities and expressions of ATP-binding cassette transporters and GSTs were down-regulated in the presence of YPFS. The expression of p65 subunit of NF-κB complex was reduced by treating the cultures with YPFS, leading to a high ratio of Bax/Bcl-2, i.e. increasing the rate of cell death. Prim-O-glucosylcimifugin, one of the abundant ingredients in YPFS, modulated the activity of GSTs, and then elevated cisplatin accumulation, resulting in increased cell apoptosis. The present result supports the notion of YPFS in reversing drug resistance of cisplatin in lung cancer cells by elevating of intracellular cisplatin, and the underlying mechanism may be down regulating the activities and expressions of ATP-binding cassette transporters and GSTs.
Collapse
Affiliation(s)
- Yingqing Du
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuzhong Zheng
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Ciel Xiaomei Yu
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Lishan Zhong
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yafang Li
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Baomeng Wu
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Weihui Hu
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Kowloon, China
| | - Elsa Wanyi Zhu
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Venus Wei Xie
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Qitian Xu
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Xingri Zhan
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yamiao Huang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Liyi Zeng
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Zhenxia Zhang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Xi Liu
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Jiachuan Yin
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Guangcai Zha
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Kelvin Chan
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool, United Kingdom.,United Kingdom and NICM Health Research Institute, Western Sydney University, Sydney, NSW, Australia
| | - Karl Wah Keung Tsim
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Kowloon, China
| |
Collapse
|
6
|
Liao Y, Zhong J, Liu S, Dai M, Liu Y, Li X, Yang Y, Zhang D, Lai D, Lu T, Zhang Q, Zhao Y. Yu ping feng san for pediatric allergic rhinitis: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2021; 100:e24534. [PMID: 33787571 PMCID: PMC8021384 DOI: 10.1097/md.0000000000024534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/08/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The potential treatment effects and safety of Yu ping feng san (YPFS) for pediatric allergic rhinitis (PAR) patients have yet to be studied systematically. OBJECTIVES To assess the effects and safety of YPFS for treat pediatric patients, allergic rhinitis. METHODS We systematically searched PubMed, EMBASE (Excerpta Medical Database), Cochrane library, Chinese Cochrane Centre's Controlled Trials Register platform, Wanfang Chinese Digital Periodical and Conference Database, China National Knowledge Infrastructure Database, and VIP Chinese Science, from inception dates to November 1, 2019. Randomized controlled trials (RCTs) were included. The risk of bias in the trials was assessed in accordance with the Cochrane Handbook, version 5.1.0. RevMan 5.3 software was used to perform a meta-analysis. Grading of Recommendations Assessment, Development and Evaluation methodology was applied to evaluate the evidence quality for each outcome. The quality of evidence for each outcome measurement was low for 4 outcomes and very low for 5 outcomes. RESULTS A total of 10 RCTs involving 1069 participants (3-15 years old) fulfilled the inclusion criteria. After exclusion, 8 RCTs were pooled for efficacy assessment. The overall efficacy evaluation result did not show benefit for the experimental group (relative risk 0.32, CI 95% 0.24-0.45; P = .98;) Investigation of variation of serum IgA, immunoglobulin E, IgG in three studies in 2 groups returned no statistical significance. YPFS gave relatively better safety (relative risk 0.29, CI 95% 0.14-0.58; P = .0005; Fig. S8, http://links.lww.com/MD/F751) and lower recurrence rates than did Western medical therapy. CONCLUSIONS Current evidence cannot support the routine use of YPFS for treatment of PAR. This may be due to poor-quality study-design limitations of the included YPFS studies. Our data showed that the use of YPFS for PAR is relatively safe compared to Western medical therapy, but a conclusion could not be drawn because only 5 studies were analyzed. Every study suffered from some methodological limitation. Therefore, further large, rigorously-designed studies are necessary to determine conclusively the utility of YPFS in PAR.
Collapse
Affiliation(s)
- Yong Liao
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu
- Department of Otorhinolaryngology Head and Neck Surgery, Minda Hospital of Hubei Minzu University, Enshi
| | - Juan Zhong
- Hospital of Chengdu University of Traditional Chinese Medicine
- School of Medical and Life Sciences/Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine
| | - Shuqin Liu
- Hospital of Chengdu University of Traditional Chinese Medicine
| | - Menglin Dai
- Hospital of Chengdu University of Traditional Chinese Medicine
| | - Yang Liu
- Hospital of Chengdu University of Traditional Chinese Medicine
| | - Xinrong Li
- Hospital of Chengdu University of Traditional Chinese Medicine
| | - Yepeng Yang
- Hospital of Chengdu University of Traditional Chinese Medicine
| | - Dazheng Zhang
- Chengdu University of Traditional Chinese Medicine
- Dujiangyan medical centre
- China qingcheng medical research laboratory of Traditional Chinese Medicine
| | - Dan Lai
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing Street, Luzhou, Sichuan, China
| | - Tao Lu
- Otolaryngology and Head & Neck Surgery Department One, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan
| | - Qinxiu Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine
- School of Medical and Life Sciences/Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine
| | - Yu Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu
| |
Collapse
|
7
|
Evaluation of Anti-Inflammatory Components of Guizhi Fuling Capsule, an Ancient Chinese Herbal Formula, in Human Umbilical Vein Endothelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2029134. [PMID: 33149750 PMCID: PMC7603573 DOI: 10.1155/2020/2029134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 11/17/2022]
Abstract
Background Guizhi Fuling capsule (GFC), a well-known formula composed of five medicinal herbs, is commonly prescribed to treat primary dysmenorrhea, as well as to achieve good clinical efficacy in China. However, the active components of GFC have not been identified. Here, the anti-inflammatory functions of GFC, as well as its major ingredients, were evaluated in human umbilical vein endothelial cells (HUVECs). Methods Lipopolysaccharide (LPS) was used in HUVECs to imitate the cellular inflammation. Then, GFC-triggered mRNA expressions of cyclooxygenase-1 (COX-1) and COX-2 were determined by real-time PCR, while the expression of COX-2 protein was revealed by western blotting. Besides, nine components of GFC were evaluated for their contribution value in the anti-dysmenorrhea effects. Results The application of GFC downregulated the mRNA expressions of COX-1 and COX-2 mRNAs. Nine major components of GFC were tested in the inflammatory system, and three compounds, including paeoniflorin, benzoylpaeoniflorin, and amygdalin, exhibited robust activation in HUVECs. The combination of paeoniflorin, benzoylpaeoniflorin, and amygdalin showed over 80% of the anti-inflammatory activation. Conclusion Our study supports that GFC plays a promising role in anti-dysmenorrhea function by decreasing COXs' expression. Besides, paeoniflorin, benzoylpaeoniflorin, and amygdalin could be considered as major regulators for the anti-dysmenorrhea effects of GFC.
Collapse
|
8
|
Bilski J, Wojcik D, Danielak A, Mazur-Bialy A, Magierowski M, Tønnesen K, Brzozowski B, Surmiak M, Magierowska K, Pajdo R, Ptak-Belowska A, Brzozowski T. Alternative Therapy in the Prevention of Experimental and Clinical Inflammatory Bowel Disease. Impact of Regular Physical Activity, Intestinal Alkaline Phosphatase and Herbal Products. Curr Pharm Des 2020; 26:2936-2950. [DOI: 10.2174/1381612826666200427090127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are multifactorial, chronic, disabling, and progressive diseases characterised by cyclical nature, alternating between active and quiescent states. While the aetiology of IBD is not fully understood, this complex of diseases involve a combination of factors including the genetic predisposition and changes in microbiome as well as environmental risk factors such as high-fat and low-fibre diets, reduced physical activity, air pollution and exposure to various toxins and drugs such as antibiotics. The prevalence of both IBD and obesity is increasing in parallel, undoubtedly proving the existing interactions between these risk factors common to both disorders to unravel poorly recognized cell signaling and molecular alterations leading to human IBD. Therefore, there is still a significant and unmet need for supportive and adjunctive therapy for IBD patients directed against the negative consequences of visceral obesity and bacterial dysbiosis. Among the alternative therapies, a moderate-intensity exercise can benefit the health and well-being of IBD patients and improve both the healing of human IBD and experimental animal colitis. Intestinal alkaline phosphatase (IAP) plays an essential role in the maintenance of intestinal homeostasis intestinal and the mechanism of mucosal defence. The administration of exogenous IAP could be recommended as a therapeutic strategy for the cure of diseases resulting from the intestinal barrier dysfunction such as IBD. Curcumin, a natural anti-inflammatory agent, which is capable of stimulating the synthesis of endogenous IAP, represents another alternative approach in the treatment of IBD. This review was designed to discuss potential “nonpharmacological” alternative and supplementary therapeutic approaches taking into account epidemiological and pathophysiological links between obesity and IBD, including changes in the functional parameters of the intestinal mucosa and alterations in the intestinal microbiome.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Dagmara Wojcik
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Aleksandra Danielak
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Agnieszka Mazur-Bialy
- Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Magierowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Katherine Tønnesen
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Bartosz Brzozowski
- Gastroenterology and Hepatology Clinic, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Surmiak
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Katarzyna Magierowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Robert Pajdo
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Agata Ptak-Belowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
9
|
Lallès JP. Recent advances in intestinal alkaline phosphatase, inflammation, and nutrition. Nutr Rev 2020; 77:710-724. [PMID: 31086953 DOI: 10.1093/nutrit/nuz015] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, much new data on intestinal alkaline phosphatase (IAP) have been published, and major breakthroughs have been disclosed. The aim of the present review is to critically analyze the publications released over the last 5 years. These breakthroughs include, for example, the direct implication of IAP in intestinal tight junction integrity and barrier function maintenance; chronic intestinal challenge with low concentrations of Salmonella generating long-lasting depletion of IAP and increased susceptibility to inflammation; the suggestion that genetic mutations in the IAP gene in humans contribute to some forms of chronic inflammatory diseases and loss of functional IAP along the gut and in stools; stool IAP as an early biomarker of incipient diabetes in humans; and omega-3 fatty acids as direct inducers of IAP in intestinal tissue. Many recent papers have also explored the prophylactic and therapeutic potential of IAP and other alkaline phosphatase (AP) isoforms in various experimental settings and diseases. Remarkably, nearly all data confirm the potent anti-inflammatory properties of (I)AP and the negative consequences of its inhibition on health. A simplified model of the body AP system integrating the IAP compartment is provided. Finally, the list of nutrients and food components stimulating IAP has continued to grow, thus emphasizing nutrition as a potent lever for limiting inflammation.
Collapse
Affiliation(s)
- Jean-Paul Lallès
- Institut National de la Recherche Agronomique (INRA), Human Nutrition Division, Clermont-Ferrand, France, and the Centre de Recherche en Nutrition Humaine Ouest, Nantes, France
| |
Collapse
|
10
|
Lou JS, Xia YT, Wang HY, Kong XP, Yao P, Dong TTX, Zhou ZY, Tsim KWK. The WT1/MVP-Mediated Stabilization on mTOR/AKT Axis Enhances the Effects of Cisplatin in Non-small Cell Lung Cancer by a Reformulated Yu Ping Feng San Herbal Preparation. Front Pharmacol 2018; 9:853. [PMID: 30131696 PMCID: PMC6090061 DOI: 10.3389/fphar.2018.00853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022] Open
Abstract
Chemo-resistance is an obstacle in therapy of lung cancer. Alternative therapy of using herbal medicine has been proposed to resolve this obstacle. Yu Ping Feng San (YPFS), a common Chinese herbal medicinal mixture, has been reported to show anti-drug resistance on cisplatin (DDP), a common lung cancer drug. To optimize the anti-cancer function of YPFS, different Chinese herbal extracts having known function to overcome lung cancer were screened in combining with YPFS, as to increase the efficacy of DDP in drug resistance lung cancer cell, A549/DDP. Amongst these herbal extracts, Ginkgo Folium exhibited the most promoting sensitized effect. This revised herbal formula, named as YPFS+GF, promoted the DDP-induced toxicity by over 2-fold as compared to that of YPFS alone; this potentiation was confirmed by inducing cell apoptosis. The anti-drug resistance of YPFS, triggered by an increase of intracellular concentration of DDP, was accompanied by an increased expression and activity of WT1, which consequently decreased the transcript level of MVP. In addition, the MVP-mediated downstream effector mTOR2/AKT was disrupted after application of YPFS+GF in DDP-treated A549/DDP cell: this disruption was characterized by the decline of mTORC2 components, e.g., Rictor, p-mTOR, as well as the phosphorylation level of its downstream protein AKT. The disruption on mTORC2/AKT could be reversed by mTORC2 inducer insulin and promoted by mTORC2 inhibitor PP242. Thus, the anti-drug resistance of YPFS+GF in DDP-treated lung cancer cells might be mediated by the down regulation of WT1/MVP axis, as well as the downstream anti-apoptotic pathway of mTORC2/AKT signaling. Herbal medicine is one of the main adjuvant therapies in non-small cell lung cancer, and this novel herbal formula supports the prescription of traditional Chinese medicine in cancer treatment.
Collapse
Affiliation(s)
- Jian-Shu Lou
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China
| | - Yi-Teng Xia
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Huai-You Wang
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Xiang-Peng Kong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Ping Yao
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Tina T X Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Zhong-Yu Zhou
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China.,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Karl W K Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
11
|
Mao Q, Shi L, Wang ZG, Luo YH, Wang YY, Li X, Lu M, Ju JM, Xu JD, Kong M, Zhou SS, Shen MQ, Li SL. Chemical profiles and pharmacological activities of Chang-Kang-Fang, a multi-herb Chinese medicinal formula, for treating irritable bowel syndrome. JOURNAL OF ETHNOPHARMACOLOGY 2017; 201:123-135. [PMID: 28263849 DOI: 10.1016/j.jep.2017.02.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 02/21/2017] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chang-Kang-Fang formula (CKF), a multi-herb traditional Chinese medicinal formula, has been clinically used for treatment of irritable bowel syndrome (IBS). The mechanisms of CKF for treating IBS and the components that are responsible for the activities were still unknown. AIM OF THE STUDY To investigate the chemical profiles and effects of CKF on IBS model. MATERIALS AND METHODS The chemical profiles of CKF were investigated by ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q/TOF-MS/MS). On colon irritation induced rat neonates IBS model, the influence of CKF on neuropeptides, including substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP) and 5-hydroxytryptamine (5-HT), were measured by ELISA, and the effect on intestinal sensitivity was assessed based on the abdominal withdrawal reflex (AWR) scores. In addition, the activities of CKF against acetic acid-induced nociceptive responses and prostigmin methylsulfate triggered intestinal propulsion in mice were also evaluated. RESULTS 80 components were identified or tentatively assigned from CKF, including 11 alkaloids, 20 flavanoids, 4 monoterpenoids, 9 iridoid glycoside, 9 phenylethanoid glycosides, 10 chromones, 7 organic acid, 3 coumarins, 2 triterpene and 5 other compounds. On IBS rat model, CKF was observed to reduce AWR scores and levels of SP, CGRP, VIP and 5-HT. Moreover, CKF reduced the acetic acid-induced writhing scores at all dosages and reduced the intestinal propulsion ration at dosage of 7.5 and 15.0g/kg/d. CONCLUSIONS CKF could alleviate the symptoms of IBS by modulating the brain-gut axis through increasing the production of neuropeptides such as CGRP, VIP, 5-HT and SP, releasing pain and reversing disorders of intestinal propulsion. Berberine, paeoniflorin, acteoside, flavonoids and chromones may be responsible for the multi-bioactivities of CKF.
Collapse
Affiliation(s)
- Qian Mao
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China.
| | - Lei Shi
- Department of Pharmacology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China.
| | - Zhi-Gang Wang
- Department of Pharmacology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China.
| | - Yu-Hui Luo
- Department of Pharmacology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China.
| | - Yin-Yu Wang
- Department of Pharmacology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China.
| | - Xue Li
- Department of Pharmacology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China.
| | - Min Lu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China.
| | - Jian-Min Ju
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China.
| | - Jin-Di Xu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China.
| | - Ming Kong
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China.
| | - Shan-Shan Zhou
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China.
| | - Min-Qin Shen
- Department of Pharmacology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China.
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China.
| |
Collapse
|
12
|
Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity. Nutr Res Rev 2016; 29:234-248. [PMID: 27841104 DOI: 10.1017/s0954422416000159] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diet-induced obesity is associated with low-grade inflammation, which, in most cases, leads to the development of metabolic disorders, primarily insulin resistance and type 2 diabetes. Although prior studies have implicated the adipose tissue as being primarily responsible for obesity-associated inflammation, the latest discoveries have correlated impairments in intestinal immune homeostasis and the mucosal barrier with increased activation of the inflammatory pathways and the development of insulin resistance. Therefore, it is essential to define the mechanisms underlying the obesity-associated gut alterations to develop therapies to prevent and treat obesity and its associated diseases. Flavonoids appear to be promising candidates among the natural preventive treatments that have been identified to date. They have been shown to protect against several diseases, including CVD and various cancers. Furthermore, they have clear anti-inflammatory properties, which have primarily been evaluated in non-intestinal models. At present, a growing body of evidence suggests that flavonoids could exert a protective role against obesity-associated pathologies by modulating inflammatory-related cellular events in the intestine and/or the composition of the microbiota populations. The present paper will review the literature to date that has described the protective effects of flavonoids on intestinal inflammation, barrier integrity and gut microbiota in studies conducted using in vivo and in vitro models.
Collapse
|
13
|
Lou JS, Yan L, Bi CWC, Chan GKL, Wu QY, Liu YL, Huang Y, Yao P, Du CYQ, Dong TTX, Tsim KWK. Yu Ping Feng San reverses cisplatin-induced multi-drug resistance in lung cancer cells via regulating drug transporters and p62/TRAF6 signalling. Sci Rep 2016; 6:31926. [PMID: 27558312 PMCID: PMC4997265 DOI: 10.1038/srep31926] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/28/2016] [Indexed: 12/20/2022] Open
Abstract
Yu Ping Feng San (YPFS), an ancient Chinese herbal decoction composed of Astragali Radix, Atractylodis Macrocephalae Rhizoma and Saposhnikoviae Radix, has been used in the clinic for treating immune deficiency. In cancer therapy, YPFS is being combined with chemotherapy drugs to achieve improved efficacy; however, scientific evidence to illustrate this combination effect is lacking. The present study aims to demonstrate the anti-drug resistance of YPFS in cisplatin (DDP)-resistant non-small cell lung cancer cells (A549/DDP). The application of YPFS exhibited a synergistic enhancement of DDP-induced cytotoxicity as well as of the apoptotic signalling molecules. DDP-induced expression of the multi-drug-resistance efflux transporters was markedly reduced in the presence of YPFS, resulting in a higher intracellular concentration of DDP. In addition, the application of YPFS increased DDP-induced ROS accumulation and MMP depletion, decreased p62/TRAF6 signalling in DDP-treated A549/DDP cells. The co-treatment of DDP and YPFS in tumour-bearing mice reduced the tumour size robustly (by more than 80%), which was much better than the effect of DDP alone. These results indicate that YPFS can notably improve the DDP-suppressed cancer effect, which may be a consequence of the elevation of intracellular DDP via the drug transporters as well as the down regulation of p62/TRAF6 signalling.
Collapse
Affiliation(s)
- Jian-Shu Lou
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, 518057, China
| | - Lu Yan
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Cathy W. C. Bi
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, 518057, China
| | - Gallant K. L. Chan
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Qi-Yun Wu
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yun-Le Liu
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yun Huang
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ping Yao
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Crystal Y. Q. Du
- Department of Biology, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Tina T. X. Dong
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Karl W. K. Tsim
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
14
|
Raina P, M. D, C.V. C, Agarwal A, Wagh N, Kaul-Ghanekar R. Comparative analysis of anti-inflammatory activity of aqueous and methanolic extracts of Ocimum basilicum (basil) in RAW264.7, SW1353 and human primary chondrocytes in respect of the management of osteoarthritis. J Herb Med 2016. [DOI: 10.1016/j.hermed.2016.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
NK Cell-Dependent Growth Inhibition of Lewis Lung Cancer by Yu-Ping-Feng, an Ancient Chinese Herbal Formula. Mediators Inflamm 2016; 2016:3541283. [PMID: 27034590 PMCID: PMC4789500 DOI: 10.1155/2016/3541283] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/03/2016] [Indexed: 12/15/2022] Open
Abstract
Little is known about Yu-Ping-Feng (YPF), a typical Chinese herbal decoction, for its antitumor efficacy in non-small-cell lung cancer (NSCLC). Here, we found that YPF significantly inhibited the growth of Lewis lung cancer, prolonged the survival of tumor-bearing mice, promoted NK cell tumor infiltration, increased the population of NK cells in spleen, and enhanced NK cell-mediated killing activity. The growth suppression of tumors by YPF was significantly reversed by the depletion of NK cells. Furthermore, we found that YPF significantly downregulated the expression of TGF-β, indoleamine 2,3-dioxygenase, and IL-10 in tumor microenvironment. These results demonstrated that YPF has a NK cell-dependent inhibitory effect on Lewis lung cancer.
Collapse
|
16
|
Du CYQ, Zheng KYZ, Bi CW, Dong TTX, Lin H, Tsim KWK. Yu Ping Feng San, an Ancient Chinese Herbal Decoction, Induces Gene Expression of Anti-viral Proteins and Inhibits Neuraminidase Activity. Phytother Res 2015; 29:656-61. [PMID: 25586308 DOI: 10.1002/ptr.5290] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 11/10/2022]
Abstract
Yu Ping Feng San (YPFS), a Chinese herbal decoction comprised of Astragali Radix (Huangqi), Atractylodis Macrocephalae Rhizoma (Baizhu) and Saposhnikoviae Radix (Fangfeng), has been used clinically for colds and flus; however, the action mechanism of which is not known. Previously, we had demonstrated that YPFS could modulate inflammatory response and phagocytosis in exerting anti-viral and anti-bacterial effects. Here, we further evaluated the bioactivities of YPFS in gene expression regulated by interferon (IFN) signaling and neuraminidase activity of influenza virus A. Application of YPFS onto cultured murine macrophages, the expressions of mRNAs encoding ribonuclease L (RNaseL), myxovirus (influenza virus) resistance 2 (Mx2), protein kinase R (PKR) and IFN-stimulated gene 15 (ISG15) were induced from 2 to 30 folds in dose-dependent manners. In parallel, the transcriptional activity of IFN-stimulated response element (ISRE), an up stream regulator of the above anti-viral proteins, was also triggered by YPFS treatment. Conversely, YPFS was found to suppress the neuraminidase activity of influenza virus A in cultured epithelial cells, thereby preventing the viral release and spreading. Taken together, YPFS exerted anti-bacterial and anti-viral effects in innate immunity.
Collapse
Affiliation(s)
- Crystal Y Q Du
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, SAR, China; Department of Biology, Hanshan Normal University, Chaozhou, Guangdong, 521041, China
| | | | | | | | | | | |
Collapse
|