1
|
Nevalainen MT, Vähä J, Räsänen L, Bode MK. Diagnostic utility of 3D MRI sequences in the assessment of central, recess and foraminal stenoses of the spine: a systematic review. Skeletal Radiol 2024; 53:2575-2584. [PMID: 38676747 PMCID: PMC11493830 DOI: 10.1007/s00256-024-04689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
OBJECTIVE To perform a systematic literature review on the diagnostic utility of 3D MRI sequences in the assessment of central canal, recess and foraminal stenosis in the spine. METHODS The databases PubMed, MEDLINE (via OVID) and The Cochrane Central Register of Controlled Trials, were searched for studies that investigated the diagnostic use of 3D MRI to evaluate stenoses in various parts of the spine in humans. Three reviewers examined the literature and conducted systematic review according to PRISMA 2020 guidelines. RESULTS Thirty studies were retrieved from 2 595 publications for this systematic review. The overall diagnostic performance of 3D MRI outperformed the conventional 2D MRI with reported sensitivities ranging from 79 to 100% and specificities ranging from 86 to 100% regarding the evaluation of central, recess and foraminal stenoses. In general, high level of agreement (both intra- and interrater) regarding visibility and pathology on 3D sequences was reported. Studies show that well-optimized 3D sequences allow the use of higher spatial resolution, similar scan time and increased SNR and CNR when compared to corresponding 2D sequences. However, the benefit of 3D sequences is in the additional information provided by them and in the possibility to save total protocol scan times. CONCLUSION The literature on the spine 3D MRI assessment of stenoses is heterogeneous with varying MRI protocols and diagnostic results. However, the 3D sequences offer similar or superior detection of stenoses with high reliability. Especially, the advantage of 3D MRI seems to be the better evaluation of recess stenoses.
Collapse
Affiliation(s)
- Mika T Nevalainen
- Faculty of Medicine, Research Unit of Health Sciences and Technology, University of Oulu, POB 5000, 90014, Oulu, Finland.
- Department of Diagnostic Radiology, Oulu University Hospital, P.O. Box 50, 90029, Oulu, Finland.
| | - Juho Vähä
- Faculty of Medicine, Research Unit of Health Sciences and Technology, University of Oulu, POB 5000, 90014, Oulu, Finland
| | - Lasse Räsänen
- Department of Diagnostic Radiology, Oulu University Hospital, P.O. Box 50, 90029, Oulu, Finland
| | - Michaela K Bode
- Faculty of Medicine, Research Unit of Health Sciences and Technology, University of Oulu, POB 5000, 90014, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, P.O. Box 50, 90029, Oulu, Finland
| |
Collapse
|
2
|
Jin Y, Zhao B, Lu X, Zhao Y, Zhao X, Wang X, Zhou R, Qi D, Wang W. Mid- and Long-Term Follow-Up Efficacy Analysis of 3D-Printed Interbody Fusion Cages for Anterior Cervical Discectomy and Fusion. Orthop Surg 2021; 13:1969-1978. [PMID: 34523808 PMCID: PMC8528997 DOI: 10.1111/os.13005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To evaluate the safety and stability of 3D-printed interbody fusion cages (3D-printed cages) in anterior cervical discectomy and fusion (ACDF) by investigating the mid- and long-term follow-up outcomes. METHODS In this prospective study, the clinical data of 30 patients with CSM admitted to the Second Hospital of Shanxi Medical University from May 2012 to May 2014 were analyzed. The cohort comprised 18 males and 12 females with an average age of 60.22 ± 3.2 years. All patients were examined by X-ray, CT and MRI before the operation. A total of 30 cases of CSM were treated by ACDF with 3D printed cage implantation. Mid- and long-term follow-ups were performed after the surgery. Clinical efficacy was evaluated by comparing the JOA score, SF-36 score, change in neurological function, cervical curvature index (CCI), vertebral intervertebral height (VIH) and fusion rate before the operation, 6 months after the operation, and at the last follow-up. RESULTS Two of the 30 patients were lost to follow-up. The remaining patients were followed up for 48-76 (65.23 ± 3.54) months. The patients recovered satisfactorily with a significant clinical effect. The JOA score increased meanfully and the improvement rate was 89.4% at the final follow-up. The SF-36 score increased significantly from pre- to postoperatively. The height of the intervertebral space at the last follow-up was not statistically significantly different from that at 6 months after surgery (P > 0.05), showing that the height of the intervertebral space did not change much and the severity of cage subsidence (CS) decreased. The CCI improved from pre- to postoperatively. The CCI did not change much from the 6-month follow-up to the last follow-up. and the cage rate (CR) was 100% at the 6-month and last follow-ups. No severe complications, such as spinal cord injury, esophageal fistula, cerebrospinal fluid leakage, cervical hematoma or wound infection, occurred in any of the patients. CONCLUSION The clinical and radiological results show that the application of 3D-printed cages in ACDF can significantly relieve symptoms. Moreover, 3D-printed cages can restore the curvature of the cervical spine, effectively maintain the intervertebral height for a long time, and prevent complications related to postoperative subsidence.
Collapse
Affiliation(s)
- Yuan‐zhang Jin
- Department of OrthopaedicsThe Second Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Bin Zhao
- Department of OrthopaedicsThe Second Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Xiang‐dong Lu
- Department of OrthopaedicsThe Second Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Yi‐bo Zhao
- Department of OrthopaedicsThe Second Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Xiao‐feng Zhao
- Department of OrthopaedicsThe Second Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Xiao‐nan Wang
- Department of OrthopaedicsThe Second Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Run‐tian Zhou
- Department of OrthopaedicsThe Second Hospital of Shanxi Medical UniversityTaiyuanChina
| | - De‐tai Qi
- Department of OrthopaedicsThe Second Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Wen‐xuan Wang
- Department of OrthopaedicsThe Second Hospital of Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
3
|
Agarwal V, Shah LM, Parsons MS, Boulter DJ, Cassidy RC, Hutchins TA, Jamlik-Omari Johnson, Kendi AT, Khan MA, Liebeskind DS, Moritani T, Ortiz AO, Reitman C, Shah VN, Snyder LA, Timpone VM, Corey AS. ACR Appropriateness Criteria® Myelopathy: 2021 Update. J Am Coll Radiol 2021; 18:S73-S82. [PMID: 33958120 DOI: 10.1016/j.jacr.2021.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 01/22/2023]
Abstract
Myelopathy is a clinical diagnosis with localization of the neurological findings to the spinal cord, rather than the brain or the peripheral nervous system, and then to a particular segment of the spinal cord. Myelopathy can be the result of primary intrinsic disorders of the spinal cord or from secondary conditions, which result in extrinsic compression of the spinal cord. While the causes of myelopathy may be multiple, the acuity of presentation and symptom onset frame a practical approach to the differential diagnosis. Imaging plays a crucial role in the evaluation of myelopathy with MRI the preferred modality. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
Affiliation(s)
- Vikas Agarwal
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, Vice Chair of Education, Department of Radiology, University of Pittsburgh Medical Center, Program Director, Neuroradiology Fellowship, University of Pittsburgh Medical Center.
| | - Lubdha M Shah
- Panel Chair, University of Utah, Salt Lake City, Utah, Chair, Committee on Appropriateness Criteria, Co-Chair, Neurological Imaging Panel, member of the ACR Commission on Neuroradiology
| | - Matthew S Parsons
- Panel Vice-Chair, Mallinckrodt Institute of Radiology, Saint Louis, Missouri
| | | | - R Carter Cassidy
- UK Healthcare Spine and Total Joint Service, Lexington, Kentucky, American Academy of Orthopaedic Surgeons, Evidence Based Guideline Committee, North American Spine Society
| | | | | | - A Tuba Kendi
- Mayo Clinic, Rochester, Minnesota, Director of Nuclear Medicine Therapies, Mayo Clinic Rochester
| | | | - David S Liebeskind
- University of California Los Angeles, Los Angeles, California, American Academy of Neurology, President of SVIN
| | | | | | - Charles Reitman
- Medical University of South Carolina, Charleston, South Carolina, North American Spine Society
| | - Vinil N Shah
- University of California San Francisco, San Francisco, California
| | - Laura A Snyder
- Barrow Neurological Institute, Phoenix, Arizona, Neurosurgery expert
| | - Vincent M Timpone
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado
| | - Amanda S Corey
- Specialty Chair, Atlanta VA Health Care System and Emory University, Atlanta, Georgia
| |
Collapse
|
4
|
Dolan RT, Butler JS, O’Byrne JM, Poynton AR. Mechanical and cellular processes driving cervical myelopathy. World J Orthop 2016; 7:20-9. [PMID: 26807352 PMCID: PMC4716567 DOI: 10.5312/wjo.v7.i1.20] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 10/12/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023] Open
Abstract
Cervical myelopathy is a well-described clinical syndrome that may evolve from a combination of etiological mechanisms. It is traditionally classified by cervical spinal cord and/or nerve root compression which varies in severity and number of levels involved. The vast array of clinical manifestations of cervical myelopathy cannot fully be explained by the simple concept that a narrowed spinal canal causes compression of the cord, local tissue ischemia, injury and neurological impairment. Despite advances in surgical technology and treatment innovations, there are limited neuro-protective treatments for cervical myelopathy, which reflects an incomplete understanding of the pathophysiological processes involved in this disease. The aim of this review is to provide a comprehensive overview of the key pathophysiological processes at play in the development of cervical myelopathy.
Collapse
|
5
|
[Utility of coronal oblique slices in cervical spine MRI: Improved detection of the neuroforamina]. Radiologe 2015; 55:1000-8. [PMID: 26311439 DOI: 10.1007/s00117-015-0007-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Angulated projections are standard in conventional radiography of the cervical spine, but rarely used in magnetic resonance imaging (MRI). As neuroforaminal pathology plays an important role in the etiology of radicular syndromes and may influence an operative approach, the utility of coronal oblique slices in MRI is explored. MATERIALS AND METHODS In a retrospective setting, 25 consecutive patients with neurologically diagnosed cervical monoradiculopathy were identified. T2-weighted sagittal, coronal oblique, and transversal slice orientations were anonymized. Two radiologists and two neurosurgeons independently assessed the cases. Criteria were site, cause, and grading of the neuroforaminal stenosis and the level of confidence on a 100-point visual analog scale (VAS). We computed interrater agreement, sensitivity, and t tests. RESULTS Using only one slice orientation, the sensitivity in detecting the relevant neuroforamen was 0.40 for transversal, 0.68 for sagittal, and 0.64 for coronal oblique scans. A combination of the different angulations increased sensitivity and in 4 cases only the coronal oblique scans proved diagnostic. The readers felt significantly more confident in attributing the cause of the pathology on coronal oblique planes (a mean of 72 VAS points, p = 0.0003 vs 58 (sagittal) vs 64 (transversal)). Interrater agreement was significantly better for experienced (kappa 0. 48) than for inexperienced readers (0.32, p = 0.02). CONCLUSIONS Adding coronal oblique planes in cervical spine MRI increases sensitivity and confidence in attributing the cause of neuroforaminal pathology. They are regarded as useful by all the readers.
Collapse
|