1
|
Luiz Antonio E, de Oliveira HA, Albuquerque-Pontes GM, Teixeira ILA, Yoshizaki AP, Dos Santos LFN, Leal-Junior ECP, Tucci PJF, Serra AJ. Examining the impact of varying low-level laser dose on cardiac failure. Photochem Photobiol 2025; 101:483-493. [PMID: 39126163 DOI: 10.1111/php.14012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Low-level laser therapy (LLLT) has been targeted as a promising tool that can mitigate post-infarction cardiac remodeling. However, there is no gold standard energy delivered to the heart and few studies have evaluated the impact of LLLT on cardiac performance. This study evaluated effects of repeated LLLT applications with different energies delivered to the infarcted myocardium. Echocardiography and hemodynamic measurements were applied to evaluate left ventricular (LV) performance in rats with large infarcts. ELISA, Western blot and biochemical assays were used to assess LV inflammation and oxidative stress. An 830-nm Laser Photon III semiconductor aluminum gallium arsenide diode (DMC, São Carlos, SP, Brazil) was applied transthoracically three times a week for 4 weeks based on the energy (i.e., 10J, 20J, and 40J; respectively). LLLT on 10J and 20J had a similar action in attenuating pulmonary congestion and myocardial fibrosis. Moreover, 10J and 20J attenuated LV end-diastolic pressure and improved +dP/dt and -dP/dt. All LLLT groups had lower levels of inflammatory mediators, but only the 10J group had normalized oxidative stress. All LLLT doses improved superoxide dismutase levels; however, only the 20J group showed a high content of the catalase. There was a lower level of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a in the infarcted myocardium, which it was normalized in the 20J and 40J groups. A higher phospholamban content was found in the 10J group. This study supports the beneficial LLLT role post-infarction. Apparently, the 10J and 20J doses show to be chosen for clinical translation.
Collapse
Affiliation(s)
- Ednei Luiz Antonio
- Laboratory of Physiology and Cardiac Pathophysiology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Helenita Antonia de Oliveira
- Laboratory of Physiology and Cardiac Pathophysiology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Gianna Móes Albuquerque-Pontes
- Laboratory of Physiology and Cardiac Pathophysiology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ighor Luiz Azevedo Teixeira
- Laboratory of Physiology and Cardiac Pathophysiology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Amanda Pereira Yoshizaki
- Laboratory of Physiology and Cardiac Pathophysiology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Paulo José Ferreira Tucci
- Laboratory of Physiology and Cardiac Pathophysiology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Andrey Jorge Serra
- Laboratory of Physiology and Cardiac Pathophysiology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Razzaghi M, Sheibani F, Barati M, Alirezaei T, Razzaghi Z, Hajimoradi M, Najafi F, Hajimoradi B. Evaluation of Photobiomodulation on myocardial function of patients with advanced ischemic cardiomyopathy, A case series. Photodiagnosis Photodyn Ther 2024; 47:104092. [PMID: 38685548 DOI: 10.1016/j.pdpdt.2024.104092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Heart failure is a growing cardiovascular disease burden with high mortality rates, primarily attributed to myocardial ischemia. Previous studies have shown promising effects of Photobiomodulation in heart failure treatment. In this study, we aimed to investigate the effect of Photobiomodulation on myocardial function of patients with advanced ischemic heart failure. METHOD A non-randomized case series study involving 10 advanced heart failure patients was conducted. Patients received 15 sessions of transcutaneous and intravenous Photobiomodulation therapy using low-level red (658 nm) and infrared lasers (810 nm). All participants were evaluated by six-minute walk tests, dyspnea function classes, and echocardiography. 3 months after the sessions, the mentioned tests were reevaluated RESULT: The study included ten cardiomyopathic patients, 90 % male and the mean age was 63.20±6.01 years. The six-minute walk test change and shortness of breath function class change has 0.852 (p-value=0.006) correlation and the correlation between the Six-minute walk test change and the Systolic ejection fraction rate change, was 0.73 (p-value=0.025). CONCLUSION Based on the results of the study, it can be concluded that interventions in cardiomyopathic patients have shown promising improvements in certain cardiac function parameters. Specifically, the significant enhancement in the six-minute walk test post-intervention (p = 0.013) suggests a positive impact on functional capacity. Although the increase in systolic ejection fraction rate was not statistically significant (p = 0.197), the correlations identified provide valuable insights into the interplay between variables such as shortness of breath function class and the six-minute walk test. These findings underscore the complexity of managing cardiomyopathy and highlight the importance of further research to elucidate the relationships between different clinical parameters and patient outcomes in this population.
Collapse
Affiliation(s)
- Mohammadreza Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sheibani
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Barati
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Toktam Alirezaei
- Cardiovascular department of Shohada Tajrish Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Hajimoradi
- Cardiovascular department of Shohada Tajrish Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Behzad Hajimoradi
- Cardiovascular department of Shohada Tajrish Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Ganipineni VDP, Gutlapalli SD, Ajay Sai Krishna Kumar I, Monica P, Vagdevi M, Samuel Sowrab T. Exploring the Potential of Energy-Based Therapeutics (Photobiomodulation/Low-Level Laser Light Therapy) in Cardiovascular Disorders: A Review and Perspective. Cureus 2023; 15:e37880. [PMID: 37214067 PMCID: PMC10199710 DOI: 10.7759/cureus.37880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/23/2023] Open
Abstract
Based on the review of the literature, this article examines the potential therapeutic benefits of photobiomodulation therapy (PBMT) or low-level laser therapy (LLLT) for the treatment of cardiovascular disorders. The methodology involved searching PubMed, Google Scholar, and Central databases for relevant articles published from inception till date. The articles included in this review were preclinical and clinical studies investigating the effects of PBMT and LLLT on the heart. The article summarizes the findings of nineteen studies investigating the effects of PBMT and LLLT on various parameters related to heart failure (HF) and myocardial infarction (MI), including inflammation, oxidative stress, angiogenesis, cardiac function, and remodeling. The studies suggest that PBMT and LLLT have potential therapeutic benefits for the treatment of cardiovascular diseases and could be used in combination with traditional pharmacological therapies to enhance their effects or as a stand-alone treatment for patients who are not responsive to or cannot tolerate traditional therapies. In conclusion, this review article highlights the promising potential of PBMT for the treatment of HF and MI and the need for further research to fully understand its mechanisms of action and optimize treatment protocols.
Collapse
Affiliation(s)
- Vijay Durga Pradeep Ganipineni
- Department of General Medicine, SRM Medical College Hospital and Research Center, Chennai, IND
- Department of General Medicine, Andhra Medical College/King George Hospital, Visakhapatnam, IND
| | - Sai Dheeraj Gutlapalli
- Department of Internal Medicine, Richmond University Medical Center - Mount Sinai Health System/Icahn School of Medicine at Mount Sinai, Staten Island, USA
- Internal Medicine Clinical Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Potru Monica
- Department of Medicine, Guntur Medical College, Guntur, IND
| | - Moparthi Vagdevi
- Department of Medicine, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Vijayawada, IND
| | | |
Collapse
|
4
|
Syed SB, Ahmet I, Chakir K, Morrell CH, Arany PR, Lakatta EG. Photobiomodulation therapy mitigates cardiovascular aging and improves survival. Lasers Surg Med 2023; 55:278-293. [PMID: 36821717 PMCID: PMC10084725 DOI: 10.1002/lsm.23644] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/03/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Photobiomodulation (PBM) therapy, a form of low-dose light therapy, has been noted to be effective in several age-associated chronic diseases such as hypertension and atherosclerosis. Here, we examined the effects of PBM therapy on age-associated cardiovascular changes in a mouse model of accelerated cardiac aging. METHODS Fourteen months old Adenylyl cyclase type VIII (AC8) overexpressing transgenic mice (n = 8) and their wild-type (WT) littermates (n = 8) were treated with daily exposure to Near-Infrared Light (850 nm) at 25 mW/cm2 for 2 min each weekday for a total dose of 1 Einstein (4.5 p.J/cm2 or fluence 3 J/cm2 ) and compared to untreated controls over an 8-month period. PBM therapy was administered for 3.5 months (Early Treatment period), paused, due to Covid-19 restrictions for the following 3 months, and restarted again for 1.5 months. Serial echocardiography and gait analyses were performed at monthly intervals, and serum TGF-β1 levels were assessed following sacrifice. RESULTS During the Early Treatment period PBM treatments: reduced the age-associated increases in left ventricular (LV) mass in both genotypes (p = 0.0003), reduced the LV end-diastolic volume (EDV) in AC8 (p = 0.04); and reduced the left atrial dimension in both genotypes (p = 0.02). PBM treatments substantially increased the LV ejection fraction (p = 0.03), reduced the aortic wall stiffness (p = 0.001), and improved gait symmetry, an index of neuro-muscular coordination (p = 0.005). The effects of PBM treatments, measured following the pause, persisted. Total TGF-β1 levels were significantly increased in circulation (serum) in AC8 following PBM treatments (p = 0.01). We observed a striking increase in cumulative survival in PBM-treated AC8 mice (100%; p = 0.01) compared to untreated AC8 mice (43%). CONCLUSION PBM treatment mitigated age-associated cardiovascular remodeling and reduced cardiac function, improved neuromuscular coordination, and increased longevity in an experimental animal model. These responses correlate with increased TGF-β1 in circulation. Future mechanistic and dose optimization studies are necessary to assess these anti-aging effects of PBM, and validation in future controlled human studies is required for effective clinical translation.
Collapse
Affiliation(s)
| | - Ismayil Ahmet
- Laboratory of Cardiovascular Sciences, NIA, NIH, Baltimore, Maryland, USA
| | - Khalid Chakir
- Laboratory of Cardiovascular Sciences, NIA, NIH, Baltimore, Maryland, USA
| | | | - Praveen R Arany
- Oral Biology, Surgery, and Biomedical Engineering, University of Buffalo, Buffalo, New York, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Sciences, NIA, NIH, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Sayed MA, El-Sherif RM, Ismail A, Abou Warda AE, Mohamed AR, El-Sherif AA. Effect of low-level laser physiotherapy on left ventricular function among patients with chronic systolic heart failure. Egypt Heart J 2023; 75:12. [PMID: 36780088 PMCID: PMC9925616 DOI: 10.1186/s43044-023-00337-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/04/2023] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND Low-level laser therapy (LLLT) is a promising noninvasive physiotherapeutic approach that has been demonstrated to improve cardiac performance. This study aimed to assess the impact of low-level laser therapy on cardiac functions and clinical status in patients with chronic left ventricular systolic heart failure who were not candidates for cardiac revascularization or resynchronization. A case series of 27 patients received a course of low-level laser physiotherapy, the clinical outcomes, echocardiographic parameters, and serum nitric oxide levels were evaluated before and after LLLT. RESULTS Of the total patients enrolled in the study, 21 (or 77.8%) were male, with a mean age of 57.7 ± 6.89 years. NYHA classification significantly improved after low-level laser therapy, 15 patients were in class III,12 were in class IV, and no one was in class II before laser therapy while after laser therapy; 25 patients shifted to class II, two patients were in class III with P < 0.001, Six-minute walk distance test was performed, and the results showed that the mean of 6MWT was less than 200 m (148.556 ± 39.092) before the study but increased to more than 300 after laser therapy (385.074 ± 61.740), left ventricular ejection fraction before laser therapy was 26 ± 7.5 while after laser therapy it became 30 ± 8.6 but diastolic function did not change after low-level laser therapy, the mean peak TR pressure was 40.0 ± 9.0 mmHg and 33.0 ± 7.0 before and after laser therapy respectively P < 0.001. A significant change was observed in NO level from 4.1 ± 1.4 IU/ml before laser therapy to 5.2 ± 1.7 IU/ml after laser therapy P < 0.001. CONCLUSIONS Low-level laser therapy may add benefits to improve symptoms, clinical condition, and quality of life in patients with left ventricular systolic dysfunction, further studies are necessary to evaluate the changes in cardiac functions at a longer follow-up duration.
Collapse
Affiliation(s)
| | - Rania M. El-Sherif
- grid.7776.10000 0004 0639 9286Department of Critical Care Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amira Ismail
- grid.7776.10000 0004 0639 9286Department of Critical Care Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Essam Abou Warda
- Department of Clinical Pharmacy, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt.
| | - Amany R. Mohamed
- grid.7776.10000 0004 0639 9286Department of Physiotherapy, Cairo University, Cairo, Egypt
| | - Ahmed A. El-Sherif
- grid.7776.10000 0004 0639 9286Department of Critical Care Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Feliciano RDS, Manchini MT, Atum ALB, da Silva GA, Antônio EL, Serra AJ, Tucci PJF, Andrade de Mello R, Chavantes MC, Baltatu OC, Silva Júnior JA. Photobiomodulation therapy's effects on cardiac fibrosis activation after experimental myocardial infarction. Lasers Surg Med 2022; 54:883-894. [PMID: 35366381 DOI: 10.1002/lsm.23544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/14/2022] [Accepted: 03/18/2022] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Ischemic heart disease is the leading cause of death worldwide, and interventions to reduce myocardial infarction (MI) complications are widely researched. Photobiomodulation therapy (PBMT) has altered multiple biological processes in tissues and organs, including the heart. OBJECTIVES This study aimed to assess the temporal effects of PBMT on cardiac fibrosis activation after MI in rats. In this proof-of-concept study, we monitored the change in expression patterns over time of genes and microRNAs (miRNAs) involved in the formation of cardiac fibrosis post-MI submitted to PBMT. MATERIALS AND METHODS Experimental MI was induced, and PBMT was applied shortly after coronary artery ligation (laser light of wavelength 660 nm, 15 mW of power, energy density 22.5 J/cm2 , 60 seconds of application, irradiated area 0.785 cm2 , fluence 1.1 J/cm2 ). Ventricular septal samples were collected at 30 minutes, 3, 6, 24 hours, and 3 days post-MI to determine temporal PBMT's effects on messenger RNA (mRNA) expression associated with cardiac fibrosis activation and miRNAs expression. RESULTS PBMT, when applied after ischemia, reversed the changes in mRNA expression of myocardial extracellular matrix genes induced by MI. Surprisingly, PBMT modified cardiac miRNAs expression related to fibrosis replacement in the myocardium. Expression correlations between myocardial mRNAs were assessed. The correlation coefficient between miRNAs and target mRNAs was also determined. A positive correlation was detected among miR-21 and transforming growth factor beta-1 mRNA. The miR-29a expression negatively correlated to Col1a1, Col3a1, and MMP-2 mRNA expressions. In addition, we observed that miR-133 and Col1a1 mRNA were negatively correlated. CONCLUSION The results suggest that PBMT, through the modulation of gene transcription and miRNA expressions, can interfere in cardiac fibrosis activation after MI, mainly reversing the signaling pathway of profibrotic genes.
Collapse
Affiliation(s)
| | - Martha T Manchini
- Postgraduate Program in Medicine, Universidade Nove de Julho, UNINOVE, São Paulo, Brazil.,Department of Cardiovascular Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Allan L B Atum
- Postgraduate Program in Medicine, Universidade Nove de Julho, UNINOVE, São Paulo, Brazil
| | | | - Ednei L Antônio
- Department of Cardiovascular Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Andrey J Serra
- Department of Cardiovascular Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paulo J F Tucci
- Department of Cardiovascular Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ramon Andrade de Mello
- Postgraduate Program in Medicine, Universidade Nove de Julho, UNINOVE, São Paulo, Brazil
| | - Maria C Chavantes
- Postgraduate Program in Medicine, Universidade Nove de Julho, UNINOVE, São Paulo, Brazil
| | - Ovidiu C Baltatu
- Department of Public Health and Epidemiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.,Center of Innovation, Technology and Education (CITE), Anhembi Morumbi University-Anima Institute, São José dos Campos, Brazil
| | - José A Silva Júnior
- Postgraduate Program in Medicine, Universidade Nove de Julho, UNINOVE, São Paulo, Brazil
| |
Collapse
|
7
|
Liebert A, Seyedsadjadi N, Pang V, Litscher G, Kiat H. Evaluation of Gender Differences in Response to Photobiomodulation Therapy, Including Laser Acupuncture: A Narrative Review and Implication to Precision Medicine. Photobiomodul Photomed Laser Surg 2022; 40:78-87. [PMID: 34964662 DOI: 10.1089/photob.2021.0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: The influence of gender is significant in the manifestation and response to many diseases and in the treatment strategy. Photobiomodulation (PBM) therapy, including laser acupuncture, is an evidence-based treatment and disease prevention modality that has shown promising efficacy for a myriad of chronic and acute diseases. Anecdotal experience and limited clinical trials suggest gender differences exist in treatment outcomes to PBM therapy. There is preliminary evidence that gender may be as important as skin color in the individual response to PBM therapy. Purpose: To conduct a literature search of publications addressing the effects of gender differences in PBM therapy, including laser acupuncture, to provide a narrative review of the findings, and to explore potential mechanisms for the influence of gender. Methods: A narrative review of the literature on gender differences in PBM applications was conducted using key words relating to PBM therapy and gender. Results: A total of 13 articles were identified. Of these articles, 11 have direct experimental investigations into the response difference in gender for PBM, including laser acupuncture. A variety of cadaver, human, and experimental studies demonstrated results that gender effects were significant in PBM outcome responses, including differences in tendon structural and mechanical outcomes, and mitochondrial gene expression. One cadaver experiment showed that gender was more important than skin tone. The physiologic mechanisms directing gender differences are explored and postulated. Conclusions: The review suggests that to address the requirements of a proficient precision medicine-based strategy, it is important for PBM therapy to consider gender in its treatment plan and dosing prescription. Further research is warranted to determine the correct dose for optimal gender treatment, including gender-specific treatment plans to improve outcomes, taking into account wavelength, energy exposure, intensity, and parameters related to the deliverance of treatment to each anatomical location.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia.,Research and Governance, Adventist Hospital Group, Wahroonga, Australia.,SYMBYX Pty Ltd., Artarmon, Australia
| | - Neda Seyedsadjadi
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | | | - Gerhard Litscher
- Traditional Chinese Medicine, Research Center Graz, Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, and Research Unit for Complementary and Integrative Laser Medicine, Medical University of Graz, Graz, Austria
| | - Hosen Kiat
- Cardiac Health Institute, Sydney, Australia.,Faculty of Medicine, University of NSW, Kensington, Australia.,Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, Australia
| |
Collapse
|
8
|
Photobiomodulation therapy preconditioning modifies nitric oxide pathway and oxidative stress in human-induced pluripotent stem cell-derived ventricular cardiomyocytes treated with doxorubicin. Lasers Med Sci 2021; 37:1667-1675. [PMID: 34536182 DOI: 10.1007/s10103-021-03416-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic that exhibits high heart toxicity. Human-induced pluripotent stem cell-derived ventricular cardiomyocytes (hiPSC-vCMs) are important in vitro models for testing drug cardiotoxicity. Photobiomodulation therapy (PBMT) is a non-invasive therapy that stimulates cells growth and self-repair using light irradiation. This study aimed to investigate the in vitro effects of PBMT preconditioning on cardiotoxicity induced by DOX. HiPSC-vCMs were treated with PBMT for 500 s, followed by the addition of 2 μM DOX. LED irradiation preconditioning parameters were at 660 nm with an irradiance of 10 mW/cm2, performing 5 J/cm2, followed by 24-h DOX exposure (2 μM). Human iPSC-vCMs treated with 2 μM DOX or irradiated with PBMT composed the second and third groups, respectively. The control group did neither receive PBMT preconditioning nor DOX and was irradiated with a white standard lamp. Cells from all groups were collected to perform mRNA and miRNA expressions quantification. PBMT, when applied before the DOX challenge, restored the viability of hiPSC-vCMs and reduced ROS levels. Although downregulated by DOX, myocardial UCP2 mRNA expression presented marked upregulation after PBMT preconditioning. Expression of eNOS and UCP2 mRNA and NO production were decreased after DOX exposure, and PBMT preconditioning before the DOX challenge reversed these changes. Moreover, our data indicated that PBMT preconditioning lowered the miR-24 expression. Our data suggested that PBMT preconditioning ameliorated in vitro DOX-induced cardiotoxicity on transcription level, restoring NO levels and reducing oxidative stress.
Collapse
|
9
|
Photobiomodulation Regulation as One Promising Therapeutic Approach for Myocardial Infarction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9962922. [PMID: 34336126 PMCID: PMC8313355 DOI: 10.1155/2021/9962922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/20/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Myocardial infarction refers to myocardial necrosis caused by acute or persistent coronary ischemia and hypoxia. It is considered to be one of the significant crises threatening human health in the world. Following myocardial infarction, collagen gradually replaces the original tissue due to the loss of many cardiomyocytes, myocardial contractile function decreases, and myocardial fibrosis eventually leads to heart failure. Phototherapy is a new treatment which has shown superior efficacy on the nerve, skeletal muscle, skin, and other tissues. Likewise, there is growing evidence that phototherapy also has many positive effects on the heart. Therefore, this article introduces the progress of research on phototherapy as a new therapeutic strategy in the treatment of myocardial infarction. The wavelength of photobiomodulation in the treatment of myocardial infarction is specific, and the influence of light source power and light duration on the tissue presents a bell-shaped distribution. Under these conditions, phototherapy can promote ATP synthesis and angiogenesis, inhibit the inflammatory response, improve heart function, reduce infarct size, and protect myocardium. In addition, we summarized the molecular mechanisms of phototherapy. According to the location of photoreceptors, they can be divided into mitochondrial and nonmitochondrial parts.
Collapse
|
10
|
Post-resistance exercise photobiomodulation therapy has a more effective antioxidant effect than pre-application on muscle oxidative stress. Photochem Photobiol Sci 2021; 20:585-595. [PMID: 33864617 DOI: 10.1007/s43630-021-00042-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/08/2021] [Indexed: 01/04/2023]
Abstract
This study evaluated the effect of photobiomodulation therapy (PBMt) before or after a high-intensity resistance exercise (RE) session on muscle oxidative stress. Female Wistar rats were assigned to one of the following groups: Sham (non-exercised, undergoing placebo-PBMt); NLRE (exercised, undergoing placebo-PBMt); PBMt + RE (pre-exercise PBMt); RE + PBMt (post-exercise PBMt). The RE comprised four climbs bearing the maximum load with a 2 min rest between each climb. An 830-nm aluminum gallium arsenide diode laser (100 mW; 0.028 cm2; 3.57 mW/cm2; 142.8 J/cm2; 4 J; Photon Laser III, DMC, São Paulo, Brazil) was applied 60 s before or after RE in gastrocnemius muscles. Analyses were performed at 24 h after RE: lipoperoxidation using malondialdehyde (MDA) and protein oxidation (OP) on Western blot. Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activity were spectrophotometrically assessed. Nitric oxide (NO) level was determined by the Griess reaction. The MDA and OP levels were significantly higher in the NLRE group. Increased OP was prevented in all PBMt groups; however, increased MDA was prevented only in the RE + PBMT group. The RE + PBMt group had higher SOD activity compared to all other groups. A higher GPx activity was observed only in the PBMT + RE compared to Sham group, and CAT activity was reduced by RE, without PBMt effect. NO levels were unchanged with RE or PBMt. Therefore, PBMt application after a RE section has a more potent antioxidant effect than previous PBMt. Rats submitted to post-RE PBMt illustrated prevention of increased lipoperoxidation and protein oxidation as well as increased SOD activity. The photobiomodulation can attenuate oxidative stress induced by resistance exercise. A more evident benefit shows to be obtained with the application after exercise, in which it has increased the activity of superoxide dismustase.
Collapse
|
11
|
Feliciano RDS, Atum ALB, Ruiz ÉGDS, Serra AJ, Antônio EL, Manchini MT, Silva JMA, Tucci PJF, Nathanson L, Morris M, Chavantes MC, Silva Júnior JA. Photobiomodulation Therapy on Myocardial Infarction in Rats: Transcriptional and Posttranscriptional Implications to Cardiac Remodeling. Lasers Surg Med 2021; 53:1247-1257. [PMID: 33846991 DOI: 10.1002/lsm.23407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND OBJECTIVES Induction of myocardial infarction (MI) in rats by occlusion of the left anterior descending coronary artery is an experimental model used in research to elucidate functional, structural, and molecular modifications associated with ischemic heart disease. Photobiomodulation therapy (PBMT) has become a therapeutic alternative by modulating various biological processes eliciting several effects, including anti-inflammatory and pro-proliferative actions. The main objective of this work was to evaluate the effect of PBMT in the modulation of transcriptional and post-transcriptional changes that occurred in myocardium signal transduction pathways after MI. STUDY DESIGN/MATERIALS AND METHODS Continuous wave (CW) non-thermal laser parameters were: 660 nm wavelength, power 15 mW, with a total energy of 0.9 J, fluence of 1.15 J/cm2 , spot size of 0.785 cm2 , and time of 60 seconds. Using in silico analysis, we selected and then, quantified the expression of messenger RNA (mRNA) of 47 genes of 9 signaling pathways associated with MI (angiogenesis, cell survival, hypertrophy, oxidative stress, apoptosis, extracellular matrix, calcium kinetics, cell metabolism, and inflammation). Messenger RNA expression quantification was performed in myocardial samples by polymerase chain reaction real-time array using TaqMan customized plates. RESULTS Our results evidenced that MI modified mRNA expression of several well-known biomarkers related to detrimental cardiac activity in almost all signaling pathways analyzed. However, PBMT reverted most of these transcriptional changes. More expressively, PBMT provoked a robust decrease in mRNA expression of molecules that participate in post-MI inflammation and ECM composition, such as IL-6, TNF receptor, TGFb1, and collagen I and III. Global microRNA (miRNA) expression analysis revealed that PBMT decreased miR-221, miR-34c, and miR-93 expressions post-MI, which are related to deleterious effects in cardiac remodeling. CONCLUSION Thus, the identification of transcriptional and post-transcriptional changes induced by PBMT may be used to interfere in the molecular dynamics of cardiac remodeling post-MI.
Collapse
Affiliation(s)
| | | | | | - Andrey Jorge Serra
- Universidade Federal de São Paulo, Rua Pedro de Toledo 709, Vila Clementino, São Paulo, SP, 04039-001, Brazil
| | - Ednei Luiz Antônio
- Universidade Federal de São Paulo, Rua Pedro de Toledo 709, Vila Clementino, São Paulo, SP, 04039-001, Brazil
| | | | | | - Paulo José Ferreira Tucci
- Universidade Federal de São Paulo, Rua Pedro de Toledo 709, Vila Clementino, São Paulo, SP, 04039-001, Brazil
| | - Lubov Nathanson
- Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, Florida, 33314
| | - Mariana Morris
- Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, Florida, 33314
| | | | | |
Collapse
|
12
|
Colombo E, Signore A, Aicardi S, Zekiy A, Utyuzh A, Benedicenti S, Amaroli A. Experimental and Clinical Applications of Red and Near-Infrared Photobiomodulation on Endothelial Dysfunction: A Review. Biomedicines 2021; 9:biomedicines9030274. [PMID: 33803396 PMCID: PMC7998572 DOI: 10.3390/biomedicines9030274] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Under physiological conditions, endothelial cells are the main regulator of arterial tone homeostasis and vascular growth, sensing and transducing signals between tissue and blood. Disease risk factors can lead to their unbalanced homeostasis, known as endothelial dysfunction. Red and near-infrared light can interact with animal cells and modulate their metabolism upon interaction with mitochondria's cytochromes, which leads to increased oxygen consumption, ATP production and ROS, as well as to regulate NO release and intracellular Ca2+ concentration. This medical subject is known as photobiomodulation (PBM). We present a review of the literature on the in vitro and in vivo effects of PBM on endothelial dysfunction. METHODS A search strategy was developed consistent with the PRISMA statement. The PubMed, Scopus, Cochrane, and Scholar electronic databases were consulted to search for in vitro and in vivo studies. RESULTS Fifty out of >12,000 articles were selected. CONCLUSIONS The PBM can modulate endothelial dysfunction, improving inflammation, angiogenesis, and vasodilatation. Among the studies, 808 nm and 18 J (0.2 W, 2.05 cm2) intracoronary irradiation can prevent restenosis as well as 645 nm and 20 J (0.25 W, 2 cm2) can stimulate angiogenesis. PBM can also support hypertension cure. However, more extensive randomised controlled trials are necessary.
Collapse
Affiliation(s)
- Esteban Colombo
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (A.S.); (S.B.)
| | - Antonio Signore
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (A.S.); (S.B.)
- Department of Therapeutic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Stefano Aicardi
- Department for the Earth, Environment and Life Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Angelina Zekiy
- Department of Orthopaedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Z.); (A.U.)
| | - Anatoliy Utyuzh
- Department of Orthopaedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Z.); (A.U.)
| | - Stefano Benedicenti
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (A.S.); (S.B.)
| | - Andrea Amaroli
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (A.S.); (S.B.)
- Department of Orthopaedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Z.); (A.U.)
- Correspondence: ; Tel.: +39-010-3537309
| |
Collapse
|
13
|
Enhancing the Therapeutic Potential of Mesenchymal Stem Cells with Light-Emitting Diode: Implications and Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6663539. [PMID: 33623634 PMCID: PMC7875639 DOI: 10.1155/2021/6663539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/05/2021] [Accepted: 01/22/2021] [Indexed: 01/08/2023]
Abstract
This study evaluated the effects of light-emitting diode (LED) on mesenchymal stem cells (MSCs). An electronic search was conducted in PubMed/MEDLINE, Scopus, and Web of Science database for articles published from 1980 to February 2020. Ten articles met the search criteria and were included in this review. The risk of bias was evaluated to report quality, safety, and environmental standards. MSCs were derived from adipose tissue, bone marrow, dental pulp, gingiva, and umbilical cord. Protocols for cellular irradiation used red and blue light spectrum with variations of the parameters. The LED has been shown to induce greater cellular viability, proliferation, differentiation, and secretion of growth factors. The set of information available leads to proposing a complex signaling cascade for the action of photobiomodulation, including angiogenic factors, singlet oxygen, mitogen-activated protein kinase/extracellular signal-regulated protein kinase, Janus kinase/signal transducer, and reactive oxygen species. In conclusion, although our results suggest that LED can boost MSCs, a nonuniformity in the experimental protocol, bias, and the limited number of studies reduces the power of systematic review. Further research is essential to find the optimal LED irradiation parameters to boost MSCs function and evaluate its impact in the clinical setting.
Collapse
|
14
|
Liebert A, Bicknell B, Markman W, Kiat H. A Potential Role for Photobiomodulation Therapy in Disease Treatment and Prevention in the Era of COVID-19. Aging Dis 2020; 11:1352-1362. [PMID: 33269093 PMCID: PMC7673843 DOI: 10.14336/ad.2020.0901] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/01/2020] [Indexed: 12/23/2022] Open
Abstract
COVID-19 is an evolving pandemic that has far reaching global effects, with a combination of factors that makes the virus difficult to contain. The symptoms of infection can be devastating or at the least very debilitating for vulnerable individuals. It is clear that the elderly are at most risk of the adverse impacts of the virus, including hospitalization and death. Others at risk are those with comorbidities such as cardiovascular disease and metabolic conditions and those with a hyper-excitable immune response. Treatment options for those with acute responses to the virus are limited and there is an urgent need for potential strategies that can mitigate these severe effects. One potential avenue for treatment that has not been explored is the microbiome gut/lung axis. In addition to those severely affected by their acute reaction to the virus, there is also a need for treatment options for those that are slow to recover from the effects of the infection and also those who have been adversely affected by the measures put in place to arrest the spread of the virus. One potential treatment option is photobiomodulation (PBM) therapy. PBM has been shown over many years to be a safe, effective, non-invasive and easily deployed adjunctive treatment option for inflammatory conditions, pain, tissue healing and cellular energy. We have also recently demonstrated the effectiveness of PBM to alter the gut microbiome. PBM therapy is worthy of consideration as a potential treatment for those most vulnerable to COVID-19, such as the elderly and those with comorbidities. The treatment may potentially be advantageous for those infected with the virus, those who have a slow recovery from the effects of the virus and those who have been denied their normal exercise/rehabilitation programs due to the isolation restrictions that have been imposed to control the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
- Research and Governance, Adventist Hospital Group, Wahroonga, Australia.
- SYMBYX Pty Ltd, Artarmon, Australia.
| | - Brian Bicknell
- SYMBYX Pty Ltd, Artarmon, Australia.
- Faculty of Health Science, Australian Catholic University, North Sydney, Australia.
| | - Wayne Markman
- SYMBYX Pty Ltd, Artarmon, Australia.
- School of Business, University of Technology, Sydney, Australia.
| | - Hosen Kiat
- Cardiac Health Institute, Sydney, Australia.
- Faculty of Medicine, University of NSW, Kensington, Australia.
- Faculty of Medicine, health and Human Sciences, Macquarie University, Macquarie Park, Australia
| |
Collapse
|
15
|
Grandinetti V, Carlos FP, Antonio EL, de Oliveira HA, Dos Santos LFN, Yoshizaki A, Mansano BSDM, Silva FA, Porte LA, Albuquerque-Pontes GM, de Carvalho PDTC, Manchini MT, Leal-Junior EC, Tucci PJF, Serra AJ. Photobiomodulation therapy combined with carvedilol attenuates post-infarction heart failure by suppressing excessive inflammation and oxidative stress in rats. Sci Rep 2019; 9:9425. [PMID: 31263132 PMCID: PMC6603025 DOI: 10.1038/s41598-019-46021-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022] Open
Abstract
The post-myocardial infarction heart failure (HF) still carries a huge burden since current therapy is unsuccessful to abrogate poor prognosis. Thus, new approaches are needed, and photobiomodulation therapy (PBMt) may be a way. However, it is not known whether PBMt added to a standard HF therapy provides additional improvement in cardiac remodeling in infarcted rats. This study sought to determine the combined carvedilol-drug and PBMt with low-level laser therapy value in HF. Rats with large infarcts were treated for 30 days. The functional fitness was evaluated using a motorized treadmill. Echocardiography and hemodynamic measurements were used for functional evaluations of left ventricular (LV). ELISA, Western blot and biochemical assays were used to evaluate inflammation and oxidative stress in the myocardium. Carvedilol and PBMt had a similar action in normalizing pulmonary congestion and LV end-diastolic pressure, attenuating LV dilation, and improving LV systolic function. Moreover, the application of PBMt to carvedilol-treated rats inhibited myocardial hypertrophy and improved +dP/dt of LV. PBMt alone prevented inflammation with a superior effect than carvedilol. Carvedilol and PBMt normalized 4-hydroxynonenal (a lipoperoxidation marker) levels in the myocardium. However, importantly, the addition of PBMt to carvedilol attenuated oxidized protein content and triggered a high activity of the anti-oxidant catalase enzyme. In conclusion, these data show that the use of PBMt plus carvedilol therapy results in a significant additional improvement in HF in a rat model of myocardial infarction. These beneficial effects were observed to be due, at least in part, to decreased myocardial inflammation and oxidative stress.
Collapse
Affiliation(s)
- Vanessa Grandinetti
- Universidade Nove de Julho, Programa de Pós-graduação em Biofotônica Aplicada as Ciências da Saúde, São Paulo, Brazil
| | - Fernando Pereira Carlos
- Universidade Nove de Julho, Programa de Pós-graduação em Biofotônica Aplicada as Ciências da Saúde, São Paulo, Brazil
| | - Ednei Luiz Antonio
- Universidade Federal de São Paulo, Programa de Pós-graduação em Cardiologia, São Paulo, Brazil
| | | | | | - Amanda Yoshizaki
- Universidade Federal de São Paulo, Programa de Pós-graduação em Cardiologia, São Paulo, Brazil
| | | | - Flávio André Silva
- Universidade Federal de São Paulo, Programa de Pós-graduação em Cardiologia, São Paulo, Brazil.,Universidade Adventista de São Paulo, São Paulo, Brazil
| | - Leslie Andrews Porte
- Universidade Federal de São Paulo, Programa de Pós-graduação em Cardiologia, São Paulo, Brazil.,Universidade Adventista de São Paulo, São Paulo, Brazil
| | | | | | - Martha Trindade Manchini
- Universidade Nove de Julho, Programa de Pós-graduação em Biofotônica Aplicada as Ciências da Saúde, São Paulo, Brazil.,Universidade Federal de São Paulo, Programa de Pós-graduação em Cardiologia, São Paulo, Brazil
| | - Ernesto Cesar Leal-Junior
- Universidade Nove de Julho, Programa de Pós-graduação em Biofotônica Aplicada as Ciências da Saúde, São Paulo, Brazil
| | | | - Andrey Jorge Serra
- Universidade Nove de Julho, Programa de Pós-graduação em Biofotônica Aplicada as Ciências da Saúde, São Paulo, Brazil. .,Universidade Federal de São Paulo, Programa de Pós-graduação em Cardiologia, São Paulo, Brazil.
| |
Collapse
|
16
|
de Souza Vieira S, Antonio EL, de Melo BL, Portes LA, Montemor J, Oliveira HA, Martins FL, Zogbi C, Girardi AC, Silva JA, Camillo de Carvalho PDT, Tucci PJF, Serra AJ. Exercise Training Potentiates The Cardioprotective Effects of Stem Cells Post-infarction. Heart Lung Circ 2019; 28:263-271. [PMID: 29503239 DOI: 10.1016/j.hlc.2017.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Preconditioning of cell recipients may exert a significant role in attenuating the hostility of the infarction milieu, thereby enhancing the efficacy of cell therapy. This study was conducted to examine whether exercise training potentiates the cardioprotective effects of adipose-derived stem cell (ADSC) transplantation following myocardial infarction (MI) in rats. METHODS Four groups of female Fisher-344 rats were studied: Sham; non-trained rats with MI (sMI); non-trained rats with MI submitted to ADSCs transplantation (sADSC); trained rats with MI submitted to ADSCs (tADSC). Rats were trained 9 weeks prior to MI and ADSCs transplantation. Echocardiography was applied to assess cardiac function. Myocardial performance was evaluated in vitro. Protein expression analyses were carried out by immunoblotting. Periodic acid-Schiff staining was used to analyse capillary density and apoptosis was evaluated with terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay. RESULTS Echocardiography performed 4 weeks after the infarction revealed attenuated scar size in the both sADSC and tADSC groups compared to the sMI group. However, fractional shortening was improved only in the tADSC group. In vitro myocardial performance was similar between the tADSC and Sham groups. The expression of phosphoSer473Akt1 and VEGF were found to be higher in the hearts of the tADSC group compared to both the sADSC and sMI groups. Histologic analysis demonstrated that tADSC rats had higher capillary density in the remote and border zones of the infarcted sites compared to the sMI rats. CONCLUSIONS Preconditioning with exercise induces a pro-angiogenic milieu that may potentiate the therapeutic effects of ADSCs on cardiac remodelling following MI.
Collapse
Affiliation(s)
| | | | | | - Leslie Andrews Portes
- Cardiology Division, Federal University of São Paulo, São Paulo, Brazil; Adventist Center University of São Paulo, São Paulo, Brazil
| | - Jairo Montemor
- Cardiology Division, Federal University of São Paulo, São Paulo, Brazil
| | | | - Flavia Leticia Martins
- Laboratory of Genetic and Molecular Cardiology, Heart Institute (InCor), University of São Paulo, São Paulo, Brazil
| | - Camila Zogbi
- Laboratory of Genetic and Molecular Cardiology, Heart Institute (InCor), University of São Paulo, São Paulo, Brazil
| | - Adriana Costa Girardi
- Laboratory of Genetic and Molecular Cardiology, Heart Institute (InCor), University of São Paulo, São Paulo, Brazil
| | - José Antônio Silva
- Laboratory of Biophotonic, Universidade Nove de Julho, São Paulo, Brazil
| | | | | | - Andrey Jorge Serra
- Cardiology Division, Federal University of São Paulo, São Paulo, Brazil; Laboratory of Biophotonic, Universidade Nove de Julho, São Paulo, Brazil.
| |
Collapse
|
17
|
Oxidative Stress in Muscle Diseases: Current and Future Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6439138. [PMID: 29854088 PMCID: PMC5944258 DOI: 10.1155/2018/6439138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 02/18/2018] [Indexed: 11/23/2022]
|
18
|
de Oliveira HA, Antonio EL, Silva FA, de Carvalho PDTC, Feliciano R, Yoshizaki A, Vieira SDS, de Melo BL, Leal-Junior ECP, Labat R, Bocalini DS, Silva Junior JA, Tucci PJF, Serra AJ. Protective effects of photobiomodulation against resistance exercise-induced muscle damage and inflammation in rats. J Sports Sci 2018; 36:2349-2357. [PMID: 29578836 DOI: 10.1080/02640414.2018.1457419] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We investigated whether low-level laser therapy (LLLT) prior to or post resistance exercise could attenuate muscle damage and inflammation. Female Wistar rats were assigned to non-LLLT or LLLT groups. An 830-nm DMC Laser Photon III was used to irradiate their hind legs with 2J, 4J, and 8J doses. Irradiations were performed prior to or post (4J) resistance exercise bouts. Resistance exercise consisted of four maximum load climbs. The load work during a resistance exercise bout was similar between Control (non-LLLT, 225 ± 10 g), 2J (215 ± 8 g), 4J (210 ± 9 g), and 8J (226 ± 9 g) groups. Prior LLLT did not induce climbing performance improvement, but exposure to 4J irradiation resulted in lower blood lactate levels post-exercise. The 4J dose decreased creatine kinase and lactic dehydrogenase levels post-exercise regardless of the time of application. Moreover, 4-J irradiation exposure significantly attenuated tumor necrosis factor alpha, interleukin-6, interleukin-1β, cytokine-induced neutrophil chemoattractant-1, and monocyte chemoattractant protein-1. There was minor macrophage muscle infiltration in 4J-exposed rats. These data indicate that LLLT prior to or post resistance exercise can reduce muscle damage and inflammation, resulting in muscle recovery improvement. We attempted to determine an ideal LLLT dose for suitable results, wherein 4J irradiation exposure showed a significant protective role.
Collapse
Affiliation(s)
| | | | | | | | - Regiane Feliciano
- a Laboratory of Biophotonic , Nove de Julho University , São Paulo , Brazil
| | | | | | | | | | - Rodrigo Labat
- c Postgraduate Program in Biophotonics Applied to Health Sciences , Nove de Julho University , São Paulo , Brazil
| | - Danilo Sales Bocalini
- d Translational Physiology Laboratory and Physical Education and Aging Science Program , São Judas Tadeu University , São Paulo , Brazil
| | | | | | - Andrey Jorge Serra
- a Laboratory of Biophotonic , Nove de Julho University , São Paulo , Brazil
| |
Collapse
|
19
|
Photobiomodulation Leads to Reduced Oxidative Stress in Rats Submitted to High-Intensity Resistive Exercise. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5763256. [PMID: 29636849 PMCID: PMC5832038 DOI: 10.1155/2018/5763256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/11/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022]
Abstract
The aim of this study was to determine whether oxidative stress markers are influenced by low-intensity laser therapy (LLLT) in rats subjected to a high-intensity resistive exercise session (RE). Female Wistar rats divided into three experimental groups (Ctr: control, 4J: LLLT, and RE) and subdivided based on the sampling times (instantly or 24 h postexercise) underwent irradiation with LLLT using three-point transcutaneous method on the hind legs, which was applied to the gastrocnemius muscle at the distal, medial, and proximal points. Laser (4J) or placebo (device off) were carried out 60 sec prior to RE that consisted of four climbs bearing the maximum load with a 2 min time interval between each climb. Lipoperoxidation levels and antioxidant capacity were obtained in muscle. Lipoperoxidation levels were increased (4-HNE and CL markers) instantly post-RE. LLLT prior to RE avoided the increase of the lipid peroxidation levels. Similar results were also notified for oxidation protein assays. The GPx and FRAP activities did not reduce instantly or 24 h after RE. SOD increased 24 h after RE, while CAT activity did not change with RE or LLLT. In conclusion, LLLT prior to RE reduced the oxidative stress markers, as well as, avoided reduction, and still increased the antioxidant capacity.
Collapse
|
20
|
Photobiomodulation Therapy Improves Acute Inflammatory Response in Mice: the Role of Cannabinoid Receptors/ATP-Sensitive K+ Channel/p38-MAPK Signalling Pathway. Mol Neurobiol 2017; 55:5580-5593. [DOI: 10.1007/s12035-017-0792-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/26/2017] [Indexed: 01/10/2023]
|
21
|
Liebert A, Krause A, Goonetilleke N, Bicknell B, Kiat H. A Role for Photobiomodulation in the Prevention of Myocardial Ischemic Reperfusion Injury: A Systematic Review and Potential Molecular Mechanisms. Sci Rep 2017; 7:42386. [PMID: 28181487 PMCID: PMC5299427 DOI: 10.1038/srep42386] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/09/2017] [Indexed: 12/31/2022] Open
Abstract
Myocardial ischemia reperfusion injury is a negative pathophysiological event that may result in cardiac cell apoptosis and is a result of coronary revascularization and cardiac intervention procedures. The resulting loss of cardiomyocyte cells and the formation of scar tissue, leads to impaired heart function, a major prognostic determinant of long-term cardiac outcomes. Photobiomodulation is a novel cardiac intervention that has displayed therapeutic effects in reducing myocardial ischemia reperfusion related myocardial injury in animal models. A growing body of evidence supporting the use of photobiomodulation in myocardial infarct models has implicated multiple molecular interactions. A systematic review was conducted to identify the strength of the evidence for the therapeutic effect of photobiomodulation and to summarise the current evidence as to its mechanisms. Photobiomodulation in animal models showed consistently positive effects over a range of wavelengths and application parameters, with reductions in total infarct size (up to 76%), decreases in inflammation and scarring, and increases in tissue repair. Multiple molecular pathways were identified, including modulation of inflammatory cytokines, signalling molecules, transcription factors, enzymes and antioxidants. Current evidence regarding the use of photobiomodulation in acute and planned cardiac intervention is at an early stage but is sufficient to inform on clinical trials.
Collapse
Affiliation(s)
- Ann Liebert
- Australasian Research Institute, Wahroonga, Australia
- Sydney University, Sydney, Australia
| | | | - Neil Goonetilleke
- Sydney University, Sydney, Australia
- Blacktown Hospital, Sydney, Australia
| | - Brian Bicknell
- Australasian Research Institute, Wahroonga, Australia
- Australian Catholic University, North Sydney, Australia
| | - Hosen Kiat
- University of New South Wales, Kensington, Australia
- Macquarie University, Marsfield, Australia
| |
Collapse
|
22
|
Manchini MT, Antônio EL, Silva Junior JA, de Carvalho PDTC, Albertini R, Pereira FC, Feliciano R, Montemor J, Vieira SS, Grandinetti V, Yoshizaki A, Chaves M, da Silva MP, de Lima RDN, Bocalini DS, de Melo BL, Tucci PJF, Serra AJ. Low-Level Laser Application in the Early Myocardial Infarction Stage Has No Beneficial Role in Heart Failure. Front Physiol 2017; 8:23. [PMID: 28194115 PMCID: PMC5278498 DOI: 10.3389/fphys.2017.00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/11/2017] [Indexed: 11/26/2022] Open
Abstract
Low-level laser therapy (LLLT) has been targeted as a promising approach that can mitigate post-infarction cardiac remodeling. There is some interesting evidence showing that the beneficial role of the LLLT could persist long-term even after the end of the application, but it remains to be systematically evaluated. Therefore, the present study aimed to test the hypothesis that LLLT beneficial effects in the early post-infarction cardiac remodeling could remain in overt heart failure even with the disruption of irradiations. Female Wistar rats were subjected to the coronary occlusion to induce myocardial infarction or Sham operation. A single LLLT application was carried out after 60 s and 3 days post-coronary occlusion, respectively. Echocardiography was performed 3 days and at the end of the experiment (5 weeks) to evaluate cardiac function. After the last echocardiographic examination, LV hemodynamic evaluation was performed at baseline and on sudden afterload increases. Compared with the Sham group, infarcted rats showed increased systolic and diastolic internal diameter as well as a depressed shortening fraction of LV. The only benefit of the LLLT was a higher shortening fraction after 3 days of infarction. However, treated-LLLT rats show a lower shortening fraction in the 5th week of study when compared with Sham and non-irradiated rats. A worsening of cardiac function was confirmed in the hemodynamic analysis as evidenced by the higher LV end-diastolic pressure and lower +dP/dt and −dP/dt with five weeks of study. Cardiac functional reserve was also impaired by infarction as evidenced by an attenuated response of stroke work index and cardiac output to a sudden afterload stress, without LLLT repercussions. No significant differences were found in the myocardial expression of Akt1/VEGF pathway. Collectively, these findings illustrate that LLLT improves LV systolic function in the early post-infarction cardiac remodeling. However, this beneficial effect may be dependent on the maintenance of phototherapy. Long-term studies with LLLT application are needed to establish whether these effects ultimately translate into improved cardiac remodeling.
Collapse
Affiliation(s)
- Martha T Manchini
- Laboratory of Biophotonic, Nove de Julho University, São PauloSão Paulo, Brazil; Laboratory of Cardiac Physiology, Federal University of São PauloSão Paulo, Brazil
| | - Ednei L Antônio
- Laboratory of Cardiac Physiology, Federal University of São Paulo São Paulo, Brazil
| | | | | | - Regiane Albertini
- Laboratory of Cardiac Physiology, Federal University of São Paulo São Paulo, Brazil
| | - Fernando C Pereira
- Laboratory of Biophotonic, Nove de Julho University, São Paulo São Paulo, Brazil
| | - Regiane Feliciano
- Laboratory of Biophotonic, Nove de Julho University, São Paulo São Paulo, Brazil
| | - Jairo Montemor
- Laboratory of Cardiac Physiology, Federal University of São Paulo São Paulo, Brazil
| | - Stella S Vieira
- Laboratory of Biophotonic, Nove de Julho University, São PauloSão Paulo, Brazil; Laboratory of Cardiac Physiology, Federal University of São PauloSão Paulo, Brazil
| | - Vanessa Grandinetti
- Laboratory of Biophotonic, Nove de Julho University, São Paulo São Paulo, Brazil
| | - Amanda Yoshizaki
- Laboratory of Cardiac Physiology, Federal University of São Paulo São Paulo, Brazil
| | - Marcio Chaves
- Laboratory of Biophotonic, Nove de Julho University, São Paulo São Paulo, Brazil
| | - Móises P da Silva
- Laboratory of Biophotonic, Nove de Julho University, São Paulo São Paulo, Brazil
| | | | - Danilo S Bocalini
- Translational Physiology Laboratory, Brazil Physical Education and Aging Science Program, São Judas Tadeu University São Paulo, Brazil
| | - Bruno L de Melo
- Laboratory of Cardiac Physiology, Federal University of São Paulo São Paulo, Brazil
| | - Paulo J F Tucci
- Laboratory of Cardiac Physiology, Federal University of São Paulo São Paulo, Brazil
| | - Andrey J Serra
- Laboratory of Biophotonic, Nove de Julho University, São PauloSão Paulo, Brazil; Laboratory of Cardiac Physiology, Federal University of São PauloSão Paulo, Brazil
| |
Collapse
|
23
|
de Melo BL, Vieira SS, Antônio EL, Dos Santos LFN, Portes LA, Feliciano RS, de Oliveira HA, Silva JA, de Carvalho PDTC, Tucci PJF, Serra AJ. Exercise Training Attenuates Right Ventricular Remodeling in Rats with Pulmonary Arterial Stenosis. Front Physiol 2016; 7:541. [PMID: 27994552 PMCID: PMC5136544 DOI: 10.3389/fphys.2016.00541] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/27/2016] [Indexed: 12/04/2022] Open
Abstract
Introduction: Pulmonary arterial stenosis (PAS) is a congenital defect that causes outflow tract obstruction of the right ventricle (RV). Currently, negative issues are reported in the PAS management: not all patients may be eligible to surgeries; there is often the need for another surgery during passage to adulthood; patients with mild stenosis may have later cardiac adverse repercussions. Thus, the search for approaches to counteract the long-term PAS effects showed to be a current target. At the study herein, we evaluated the cardioprotective role of exercise training in rats submitted to PAS for 9 weeks. Methods and Results: Exercise resulted in improved physical fitness and systolic RV function. Exercise also blunted concentric cavity changes, diastolic dysfunction, and fibrosis induced by PAS. Exercise additional benefits were also reported in a pro-survival signal, in which there were increased Akt1 activity and normalized myocardial apoptosis. These findings were accompanied by microRNA-1 downregulation and microRNA-21 upregulation. Moreover, exercise was associated with a higher myocardial abundance of the sarcomeric protein α-MHC and proteins that modulate calcium handling—ryanodine receptor and Serca 2, supporting the potential role of exercise in improving myocardial performance. Conclusion: Our results represent the first demonstration that exercise can attenuate the RV remodeling in an experimental PAS. The cardioprotective effects were associated with positive modulation of RV function, survival signaling pathway, apoptosis, and proteins involved in the regulation of myocardial contractility.
Collapse
Affiliation(s)
- Brunno Lemes de Melo
- Cardiac Physiology Laboratory, Federal University of São Paulo São Paulo, Brazil
| | - Stella S Vieira
- Cardiac Physiology Laboratory, Federal University of São Paulo São Paulo, Brazil
| | - Ednei L Antônio
- Cardiac Physiology Laboratory, Federal University of São Paulo São Paulo, Brazil
| | - Luís F N Dos Santos
- Cardiac Physiology Laboratory, Federal University of São Paulo São Paulo, Brazil
| | - Leslie A Portes
- Cardiac Physiology Laboratory, Federal University of São Paulo São Paulo, Brazil
| | | | | | - José A Silva
- Biophotonic Laboratory, Nove de Julho University São Paulo, Brazil
| | | | - Paulo J F Tucci
- Cardiac Physiology Laboratory, Federal University of São Paulo São Paulo, Brazil
| | - Andrey J Serra
- Cardiac Physiology Laboratory, Federal University of São PauloSão Paulo, Brazil; Biophotonic Laboratory, Nove de Julho UniversitySão Paulo, Brazil
| |
Collapse
|
24
|
Santana ET, Feliciano RDS, Serra AJ, Brigidio E, Antonio EL, Tucci PJF, Nathanson L, Morris M, Silva JA. Comparative mRNA and MicroRNA Profiling during Acute Myocardial Infarction Induced by Coronary Occlusion and Ablation Radio-Frequency Currents. Front Physiol 2016; 7:565. [PMID: 27932994 PMCID: PMC5123550 DOI: 10.3389/fphys.2016.00565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/07/2016] [Indexed: 12/24/2022] Open
Abstract
The ligation of the left anterior descending coronary artery is the most commonly used experimental model to induce myocardial infarction (MI) in rodents. A high mortality in the acute phase and the heterogeneity of the size of the MI obtained are drawbacks recognized in this model. In an attempt to solve the problem, our group recently developed a new MI experimental model which is based on application of myocardial ablation radio-frequency currents (AB-RF) that yielded MI with homogeneous sizes and significantly reduce acute mortality. In addition, cardiac structural, and functional changes aroused by AB-RF were similar to those seen in animals with MI induced by coronary artery ligation. Herein, we compared mRNA expression of genes that govern post-MI milieu in occlusion and ablation models. We analyzed 48 mRNAs expressions of nine different signal transduction pathways (cell survival and metabolism signs, matrix extracellular, cell cycle, oxidative stress, apoptosis, calcium signaling, hypertrophy markers, angiogenesis, and inflammation) in rat left ventricle 1 week after MI generated by both coronary occlusion and AB-RF. Furthermore, high-throughput miRNA analysis was also assessed in both MI procedures. Interestingly, mRNA expression levels and miRNA expressions showed strong similarities between both models after MI, with few specificities in each model, activating similar signal transduction pathways. To our knowledge, this is the first comparison of genomic alterations of mRNA and miRNA contents after two different MI procedures and identifies key signaling regulators modulating the pathophysiology of these two models that might culminate in heart failure. Furthermore, these analyses may contribute with the current knowledge concerning transcriptional and post-transcriptional changes of AB-RF protocol, arising as an alternative and effective MI method that reproduces most changes seem in coronary occlusion.
Collapse
Affiliation(s)
- Eduardo T Santana
- Rehabilitation Department, Universidade Nove de Julho São Paulo, Brazil
| | - Regiane Dos Santos Feliciano
- Biophotonics Department, Universidade Nove de JulhoSão Paulo, Brazil; Medicine Department, Universidade Nove de JulhoSão Paulo, Brazil
| | - Andrey J Serra
- Biophotonics Department, Universidade Nove de Julho São Paulo, Brazil
| | - Eduardo Brigidio
- Medicine Department, Universidade Nove de Julho São Paulo, Brazil
| | - Ednei L Antonio
- Cardiac Physiology Department, Universidade Federal de São Paulo São Paulo, Brazil
| | - Paulo J F Tucci
- Cardiac Physiology Department, Universidade Federal de São Paulo São Paulo, Brazil
| | - Lubov Nathanson
- Institute for Neuro-Immune Medicine, Nova Southeastern University Fort Lauderdale, FL, USA
| | - Mariana Morris
- Institute for Neuro-Immune Medicine, Nova Southeastern University Fort Lauderdale, FL, USA
| | - José A Silva
- Medicine Department, Universidade Nove de Julho São Paulo, Brazil
| |
Collapse
|
25
|
de Oliveira VLC, Silva JA, Serra AJ, Pallotta RC, da Silva EAP, de Farias Marques AC, Feliciano RDS, Marcos RL, Leal-Junior ECP, de Carvalho PDTC. Photobiomodulation therapy in the modulation of inflammatory mediators and bradykinin receptors in an experimental model of acute osteoarthritis. Lasers Med Sci 2016; 32:87-94. [PMID: 27726041 DOI: 10.1007/s10103-016-2089-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/27/2016] [Indexed: 01/10/2023]
Abstract
The objective of this study was to evaluate the effects of photobiomodulation therapy (PBMT) on inflammatory indicators, i.e., inflammatory mediators (TNF-α and CINC-1), and pain characterized by hyperalgesia and B1 and B2 receptor activation at 6, 24, and 48 h after papain-induced osteoarthritis (OA) in rats. Fifty-four rats were subjected to hyperalgesia evaluations and then divided randomly into three groups-a control group and two groups OA and OA PBMT group by using laser parameters at wavelength (808 nm), output power (50 mW), energy per point (4 Joules), power density (1.78 W/cm2), laser beam (0.028 cm2), and energy density (144 J/cm2)-the induction of osteoarthritis was then performed with 20-μl injections of a 4 % papain solution dissolved in 10 μl of saline solution, to which 10 μl of cysteine solution (0.03 M). The statistical analysis was performed using two-way ANOVA with Bonferroni's post hoc test for comparisons between the 6, 24, and 48 h and team points within each group, and between the control, injury, and PBMT groups, and p < 0.05 was considered to indicate a significant difference. The hyperalgesia was evaluated at 6, 24, and 48 h after the injury. PBMT at a wavelength of 808 nm and doses of 4 J, administered afterward, promotes increase at the threshold of pressure stimulus at 6, 24, and 48 h after application and promote cytokine attenuation levels (TNF and CINC-1) and bradykinin receptor (B1 and B2) along the experimental period. We conclude that photobiomodulation therapy was able to promote the reduction of proinflammatory cytokines such as TNF-α and CINC-1, to reduce the gene and protein expression of the bradykinin receptor (B1 and B2), as well as increasing the stimulus response threshold of pressure in an experimental model of acute osteoarthritis.
Collapse
Affiliation(s)
| | - José Antonio Silva
- Postgraduate Program in Medicine Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Andrey Jorge Serra
- Postgraduate Program in Biophotonics, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Rodney Capp Pallotta
- Postgraduate Program in Biophotonics, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | | | - Anna Cristina de Farias Marques
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro 235, São Paulo, SP, Brazil
| | | | - Rodrigo Labat Marcos
- Postgraduate Program in Biophotonics, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Ernesto Cesar Pinto Leal-Junior
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro 235, São Paulo, SP, Brazil.,Postgraduate Program in Biophotonics, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Paulo de Tarso Camillo de Carvalho
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro 235, São Paulo, SP, Brazil. .,Postgraduate Program in Biophotonics, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil.
| |
Collapse
|
26
|
Role of low-level laser therapy on the cardiac remodeling after myocardial infarction: A systematic review of experimental studies. Life Sci 2016; 151:109-114. [DOI: 10.1016/j.lfs.2016.02.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/15/2016] [Indexed: 11/18/2022]
|
27
|
Fernandes GHC, de Carvalho PDTC, Serra AJ, Crespilho AM, Peron JPS, Rossato C, Leal-Junior ECP, Albertini R. The effect of low-level laser irradiation on sperm motility, and integrity of the plasma membrane and acrosome in cryopreserved bovine sperm. PLoS One 2015; 10:e0121487. [PMID: 25781016 PMCID: PMC4364308 DOI: 10.1371/journal.pone.0121487] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/02/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Freezing changes sperm integrity remarkably. Cryopreservation involves cooling, freezing, and thawing and all these contribute to structural damage in sperm, resulting in reduced fertility potential. Low-level laser irradiation (LLLI) could increase energy supply to the cell and cause reactive oxygen species reduction (ROS), contributing to the restoration of oxygen consumption and adenosine triphosphate synthesis (ATP) in the mitochondria. Our goal was to analyze the effects of low-level laser irradiation on sperm motility and integrity of the plasma membrane and acrosome in cryopreserved bovine sperm. STUDY DESIGN/MATERIALS AND METHODS We analyzed 09 samples of bull semen (Bos taurus indicus), divided into three groups: a control group without laser irradiation, a 4J group subjected to a laser irradiation dose of 4 joules, and a 6J group subjected to dose of 6 joules. Samples were divided for the analysis of cell viability and acrosomal membrane integrity using flow cytometry; another portion was used for motion analysis. Irradiation was performed in petri dishes of 30 mm containing 3 ml of semen by an aluminum gallium indium phosphide laser diode with a wavelength of 660 nm, 30 mW power, and energy of 4 and 6 joules for 80 and 120 seconds respectively. Subsequently, the irradiated and control semen samples were subjected to cryopreservation and analyzed by flow cytometry (7AAD and FITC-PSA) using the ISAS--Integrated Semen Analysis System. RESULTS Flow cytometry showed an increase in the percentage of live sperm cells and acrosome integrity in relation to control cells when subjected to irradiation of low-power laser in two different doses of 4 and 6 joules (p < 0.05). In the analysis of straightness, percentage of cell movement, and motility, a dose of 4 joules was more effective (p < 0.05). CONCLUSION We conclude that LLLI may exert beneficial effects in the preservation of live sperm. A dose of 4 joules prior to cryopreservation was more effective than a dose of 6 joules in preserving sperm motility.
Collapse
Affiliation(s)
| | - Paulo de Tarso Camillo de Carvalho
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
- Postgraduate Program in Biophotonics, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
- * E-mail:
| | - Andrey Jorge Serra
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - André Maciel Crespilho
- Postgraduate Program in Veterinary Medicine—Universidade de Santo Amaro (UNISA) São Paulo, São Paulo, SP, Brazil
| | | | - Cristiano Rossato
- Instituto de Ciências Biomédicas da Universidade de São Paulo—USP—São Paulo, São Paulo, SP, Brazil
| | - Ernesto Cesar Pinto Leal-Junior
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
- Postgraduate Program in Biophotonics, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Regiane Albertini
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
- Postgraduate Program in Biophotonics, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| |
Collapse
|
28
|
Curra M, Pellicioli ACA, Filho NAK, Ochs G, Matte Ú, Filho MS, Martins MAT, Martins MD. Photobiomodulation reduces oral mucositis by modulating NF-kB. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:125008. [PMID: 26720873 DOI: 10.1117/1.jbo.20.12.125008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/20/2015] [Indexed: 06/05/2023]
Abstract
The aim of this study was to evaluate NF-kB during 5-fluorouracil (FU)-induced oral mucositis and ascertain whether photobiomodulation (PBM), as a preventive and/or therapeutic modality, influences this transcription factor. Ninety-six male golden Syrian hamsters were allocated into four groups: control (no treatment); PBM therapeutic, PBM preventive, and PBM combined. Animals received an injection of 5-FU on days 0 and 2. On days 3 and 4, the buccal mucosa was scratched. Irradiation was carried out using a 660-nm, 40-mW diode laser at 6 J/cm(2) during 6 s/point, 0.24 J/point, for a total dose of 1.44 J/day of application. Animals were euthanized on days 0, 5, 10, and 15 (n=6). Buccal mucosa was removed for protein quantification by Western blot. Clinical analysis revealed that PBM groups exhibited less mucositis than controls on day 10. Control animals exhibited lower levels of NF-kB during mucositis development and healing. The preventive and combined protocols were associated with higher NF-kB levels at day 5; however, the therapeutic group had higher levels at days 10 and 15. These findings suggest that the preventive and/or therapeutic PBM protocols reduced the severity of oral mucositis by activating the NF-kB pathway.
Collapse
Affiliation(s)
- Marina Curra
- Universidade Federal do Rio Grande do Sul, School of Dentistry, Department of Oral Pathology, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Ana Carolina Amorim Pellicioli
- Universidade Federal do Rio Grande do Sul, School of Dentistry, Department of Oral Pathology, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Nélson Alexandre Kretzmann Filho
- Hospital de Clínicas de Porto Alegre, Department of Gene Therapy, Rua Ramiro Barcelos, 2350, Porto Alegre, Rio Grande do Sul 90950-000, Brazil
| | - Gustavo Ochs
- Hospital de Clínicas de Porto Alegre, Department of Gene Therapy, Rua Ramiro Barcelos, 2350, Porto Alegre, Rio Grande do Sul 90950-000, Brazil
| | - Úrsula Matte
- Hospital de Clínicas de Porto Alegre, Department of Gene Therapy, Rua Ramiro Barcelos, 2350, Porto Alegre, Rio Grande do Sul 90950-000, Brazil
| | - Manoel Sant'Ana Filho
- Universidade Federal do Rio Grande do Sul, School of Dentistry, Department of Oral Pathology, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Marco Antonio Trevizani Martins
- Universidade Federal do Rio Grande do Sul, School of Dentistry, Department of Oral Pathology, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Manoela Domingues Martins
- Universidade Federal do Rio Grande do Sul, School of Dentistry, Department of Oral Pathology, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| |
Collapse
|