1
|
van Hattem T, Verkaar L, Krugliakova E, Adelhöfer N, Zeising M, Drinkenburg WHIM, Claassen JAHR, Bódizs R, Dresler M, Rosenblum Y. Targeting Sleep Physiology to Modulate Glymphatic Brain Clearance. Physiology (Bethesda) 2025; 40:0. [PMID: 39601891 DOI: 10.1152/physiol.00019.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/12/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Sleep has been postulated to play an important role in the removal of potentially neurotoxic molecules, such as amyloid-β, from the brain via the glymphatic system. Disturbed sleep, on the other hand, may contribute to the accumulation of neurotoxins in brain tissue, eventually leading to neuronal death. A bidirectional relationship has been proposed between impaired sleep and neurodegenerative processes, which start years before the onset of clinical symptoms associated with conditions like Alzheimer's and Parkinson's diseases. Given the heavy burden these conditions place on society, it is imperative to develop interventions that promote efficient brain clearance, thereby potentially aiding in the prevention or slowing of neurodegeneration. In this review, we explore whether the metabolic clearance function of sleep can be enhanced through sensory (e.g., auditory, vestibular) or transcranial (e.g., magnetic, ultrasound, infrared light) stimulation, as well as pharmacological (e.g., antiepileptics) and behavioral (e.g., sleeping position, physical exercise, cognitive intervention) modulation of sleep physiology. A particular focus is placed on strategies to enhance slow-wave activity during nonrapid eye movement sleep as a driver of glymphatic brain clearance. Overall, this review provides a comprehensive overview on the potential preventative and therapeutic applications of sleep interventions in combating neurodegeneration, cognitive decline, and dementia.
Collapse
Affiliation(s)
- Timo van Hattem
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lieuwe Verkaar
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elena Krugliakova
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nico Adelhöfer
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel Zeising
- Klinikum Ingolstadt, Centre of Mental Health, Ingolstadt, Germany
| | - Wilhelmus H I M Drinkenburg
- Groningen Institute for Evolutionary Life Sciences, Neurobiology, University of Groningen, Groningen, The Netherlands
| | - Jurgen A H R Claassen
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yevgenia Rosenblum
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
van der Heijden AC, van der Werf YD, van den Heuvel OA, Talamini LM, van Marle HJF. Targeted memory reactivation to augment treatment in post-traumatic stress disorder. Curr Biol 2024; 34:3735-3746.e5. [PMID: 39116885 DOI: 10.1016/j.cub.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/30/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder with traumatic memories at its core. Post-treatment sleep may offer a unique time window to increase therapeutic efficacy through consolidation of therapeutically modified traumatic memories. Targeted memory reactivation (TMR) enhances memory consolidation by presenting reminder cues (e.g., sounds associated with a memory) during sleep. Here, we applied TMR in PTSD patients to strengthen therapeutic memories during sleep after one treatment session with eye movement desensitization and reprocessing (EMDR). PTSD patients received either slow oscillation (SO) phase-targeted TMR, using modeling-based closed-loop neurostimulation (M-CLNS) with EMDR clicks as a reactivation cue (n = 17), or sham stimulation (n = 16). Effects of TMR on sleep were assessed through high-density polysomnography. Effects on treatment outcome were assessed through subjective, autonomic, and fMRI responses to script-driven imagery (SDI) of the targeted traumatic memory and overall PTSD symptom level. Compared to sham stimulation, TMR led to stimulus-locked increases in SO and spindle dynamics, which correlated positively with PTSD symptom reduction in the TMR group. Given the role of SOs and spindles in memory consolidation, these findings suggest that TMR may have strengthened the consolidation of the EMDR-treatment memory. Clinically, TMR vs. sham stimulation resulted in a larger reduction of avoidance level during SDI. TMR did not disturb sleep or trigger nightmares. Together, these data provide first proof of principle that TMR may be a safe and viable future treatment augmentation strategy for PTSD. The required follow-up studies may implement multi-night TMR or TMR during REM sleep to further establish the clinical effect of TMR for traumatic memories.
Collapse
Affiliation(s)
- Anna C van der Heijden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department Anatomy & Neuroscience, Boelelaan 1081 HV Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Oldenaller 1081 HJ Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Stress Sleep, Boelelaan 1081 HV Amsterdam, the Netherlands; University of Amsterdam, Department of Psychology, Brain & Cognition, Nieuwe Achtergracht 1018 WS Amsterdam, the Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department Anatomy & Neuroscience, Boelelaan 1081 HV Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Boelelaan 1081 HV Amsterdam, the Netherlands
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department Anatomy & Neuroscience, Boelelaan 1081 HV Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Oldenaller 1081 HJ Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Boelelaan 1081 HV Amsterdam, the Netherlands
| | - Lucia M Talamini
- University of Amsterdam, Department of Psychology, Brain & Cognition, Nieuwe Achtergracht 1018 WS Amsterdam, the Netherlands; University of Amsterdam, Amsterdam Brain and Cognition, Nieuwe Achtergracht 1001 NK Amsterdam, the Netherlands
| | - Hein J F van Marle
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Oldenaller 1081 HJ Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Stress Sleep, Boelelaan 1081 HV Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Oldenaller 1081 HJ Amsterdam, the Netherlands; ARQ National Psychotrauma Center, Nienoord 1112 XE Diemen, the Netherlands.
| |
Collapse
|
3
|
Schmidig FJ, Ruch S, Henke K. Episodic long-term memory formation during slow-wave sleep. eLife 2024; 12:RP89601. [PMID: 38661727 PMCID: PMC11045222 DOI: 10.7554/elife.89601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words' linguistic processing raised neural complexity. The words' semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.
Collapse
Affiliation(s)
| | - Simon Ruch
- Institute of Psychology, University of BernBernSwitzerland
- Faculty of Psychology, UniDistance SuisseBrigSwitzerland
| | | |
Collapse
|
4
|
Ataei S, Simo E, Bergers M, Schoch SF, Axmacher N, Dresler M. Learning during sleep in humans - A historical review. Sleep Med Rev 2023; 72:101852. [PMID: 37778137 DOI: 10.1016/j.smrv.2023.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
Sleep helps to consolidate previously acquired memories. Whether new information such as languages and other useful skills can also be learned during sleep has been debated for over a century, however, the sporadic studies' different objectives and varied methodologies make it difficult to draw definitive conclusions. This review provides a comprehensive overview of the history of sleep learning research conducted in humans, from its empirical beginnings in the 1940s to the present day. Synthesizing the findings from 51 research papers, we show that several studies support the notion that simpler forms of learning, such as habituation and conditioning, are possible during sleep. In contrast, the findings for more complex, applied learning (e.g., learning a new language during sleep) are more divergent. While there is often an indication of processing and learning during sleep when looking at neural markers, behavioral evidence for the transfer of new knowledge to wake remains inconclusive. We close by critically examining the limitations and assumptions that have contributed to the discrepancies in the literature and highlight promising new directions in the field.
Collapse
Affiliation(s)
- Somayeh Ataei
- Department of Neuropsychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eni Simo
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mathijs Bergers
- Department of Psychiatry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sarah F Schoch
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, CH, Switzerland
| | - Nikolai Axmacher
- Department of Neuropsychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
5
|
Baxter BS, Mylonas D, Kwok KS, Talbot CE, Patel R, Zhu L, Vangel M, Stickgold R, Manoach DS. The effects of closed-loop auditory stimulation on sleep oscillatory dynamics in relation to motor procedural memory consolidation. Sleep 2023; 46:zsad206. [PMID: 37531587 PMCID: PMC11009689 DOI: 10.1093/sleep/zsad206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/13/2023] [Indexed: 08/04/2023] Open
Abstract
STUDY OBJECTIVES Healthy aging and many disorders show reduced sleep-dependent memory consolidation and corresponding alterations in non-rapid eye movement sleep oscillations. Yet sleep physiology remains a relatively neglected target for improving memory. We evaluated the effects of closed-loop auditory stimulation during sleep (CLASS) on slow oscillations (SOs), sleep spindles, and their coupling, all in relation to motor procedural memory consolidation. METHODS Twenty healthy young adults had two afternoon naps: one with auditory stimulation during SO upstates and another with no stimulation. Twelve returned for a third nap with stimulation at variable times in relation to SO upstates. In all sessions, participants trained on the motor sequence task prior to napping and were tested afterward. RESULTS Relative to epochs with no stimulation, upstate stimuli disrupted sleep and evoked SOs, spindles, and SO-coupled spindles. Stimuli that successfully evoked oscillations were delivered closer to the peak of the SO upstate and when spindle power was lower than stimuli that failed to evoke oscillations. Across conditions, participants showed similar significant post-nap performance improvement that correlated with the density of SO-coupled spindles. CONCLUSIONS Despite its strong effects on sleep physiology, CLASS failed to enhance motor procedural memory. Our findings suggest methods to overcome this failure, including better sound calibration to preserve sleep continuity and the use of real-time predictive algorithms to more precisely target SO upstates and to avoid disrupting endogenous SO-coupled spindles and their mnemonic function. They motivate continued development of CLASS as an intervention to manipulate sleep oscillatory dynamics and improve memory.
Collapse
Affiliation(s)
- Bryan S Baxter
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Dimitrios Mylonas
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Kristi S Kwok
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christine E Talbot
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rudra Patel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lin Zhu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark Vangel
- Department of Biostatistics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| |
Collapse
|
6
|
Kumral D, Matzerath A, Leonhart R, Schönauer M. Spindle-dependent memory consolidation in healthy adults: A meta-analysis. Neuropsychologia 2023; 189:108661. [PMID: 37597610 DOI: 10.1016/j.neuropsychologia.2023.108661] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
Accumulating evidence suggests a central role for sleep spindles in the consolidation of new memories. However, no meta-analysis of the association between sleep spindles and memory performance has been conducted so far. Here, we report meta-analytical evidence for spindle-memory associations and investigate how multiple factors, including memory type, spindle type, spindle characteristics, and EEG topography affect this relationship. The literature search yielded 53 studies reporting 1427 effect sizes, resulting in a small to moderate effect for the average association. We further found that spindle-memory associations were significantly stronger for procedural memory than for declarative memory. Neither spindle types nor EEG scalp topography had an impact on the strength of the spindle-memory relation, but we observed a distinct functional role of global and fast sleep spindles, especially for procedural memory. We also found a moderation effect of spindle characteristics, with power showing the largest effect sizes. Collectively, our findings suggest that sleep spindles are involved in learning, thereby representing a general physiological mechanism for memory consolidation.
Collapse
Affiliation(s)
- Deniz Kumral
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Alina Matzerath
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany
| | - Rainer Leonhart
- Institute of Psychology, Social Psychology and Methodology, University of Freiburg, Freiburg Im Breisgau, Germany
| | - Monika Schönauer
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany; Bernstein Center Freiburg, Freiburg Im Breisgau, Germany
| |
Collapse
|
7
|
Esfahani MJ, Farboud S, Ngo HVV, Schneider J, Weber FD, Talamini LM, Dresler M. Closed-loop auditory stimulation of sleep slow oscillations: Basic principles and best practices. Neurosci Biobehav Rev 2023; 153:105379. [PMID: 37660843 DOI: 10.1016/j.neubiorev.2023.105379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Sleep is essential for our physical and mental well-being. During sleep, despite the paucity of overt behavior, our brain remains active and exhibits a wide range of coupled brain oscillations. In particular slow oscillations are characteristic for sleep, however whether they are directly involved in the functions of sleep, or are mere epiphenomena, is not yet fully understood. To disentangle the causality of these relationships, experiments utilizing techniques to detect and manipulate sleep oscillations in real-time are essential. In this review, we first overview the theoretical principles of closed-loop auditory stimulation (CLAS) as a method to study the role of slow oscillations in the functions of sleep. We then describe technical guidelines and best practices to perform CLAS and analyze results from such experiments. We further provide an overview of how CLAS has been used to investigate the causal role of slow oscillations in various sleep functions. We close by discussing important caveats, open questions, and potential topics for future research.
Collapse
Affiliation(s)
| | - Soha Farboud
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, the Netherlands
| | - Hong-Viet V Ngo
- Department of Psychology, University of Essex, United Kingdom; Department of Psychology, University of Lübeck, Germany; Center for Brain, Behaviour and Metabolism, University of Lübeck, Germany
| | - Jules Schneider
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Frederik D Weber
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, the Netherlands; Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Lucia M Talamini
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, the Netherlands.
| |
Collapse
|
8
|
Closed-Loop tACS Delivered during Slow-Wave Sleep Reduces Retroactive Interference on a Paired-Associates Learning Task. Brain Sci 2023; 13:brainsci13030468. [PMID: 36979277 PMCID: PMC10046133 DOI: 10.3390/brainsci13030468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Previous studies have found a benefit of closed-loop transcranial alternating current stimulation (CL-tACS) matched to ongoing slow-wave oscillations (SWO) during sleep on memory consolidation for words in a paired associates task (PAT). Here, we examined the effects of CL-tACS in a retroactive interference PAT (ri-PAT) paradigm, where additional stimuli were presented to increase interference and reduce memory performance. Thirty-one participants were tested on a PAT before sleep, and CL-tACS was applied over the right and left DLPFC (F3 and F4) vs. mastoids for five cycles after detection of the onset of each discrete event of SWO during sleep. Participants were awoken the following morning, learned a new PAT list, and then were tested on the original list. There was a significant effect of stimulation condition (p = 0.04297; Cohen’s d = 0.768), where verum stimulation resulted in reduced retroactive interference compared with sham and a significant interaction of encoding strength and stimulation condition (p = 0.03591). Planned simple effects testing within levels of encoding revealed a significant effect of stimulation only for low-encoders (p = 0.0066; Cohen’s d = 1.075) but not high-encoders. We demonstrate here for the first time that CL-tACS during sleep can enhance the protective benefits on retroactive interference in participants who have lower encoding aptitude.
Collapse
|
9
|
Zeller CJ, Züst MA, Wunderlin M, Nissen C, Klöppel S. The promise of portable remote auditory stimulation tools to enhance slow-wave sleep and prevent cognitive decline. J Sleep Res 2023:e13818. [PMID: 36631001 DOI: 10.1111/jsr.13818] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023]
Abstract
Dementia is the seventh leading cause of mortality, and a major source of disability and dependency in older individuals globally. Cognitive decline (and, to a lesser extent, normal ageing) are associated with sleep fragmentation and loss of slow-wave sleep. Evidence suggests a bidirectional causal link between these losses. Phase-locked auditory stimulation has emerged as a promising non-invasive tool to enhance slow-wave sleep, potentially ameliorating cognitive decline. In laboratory settings, auditory stimulation is usually supervised by trained experts. Different algorithms (simple amplitude thresholds, topographic correlation, sine-wave fitting, phase-locked loop, and phase vocoder) are used to precisely target auditory stimulation to a desired phase of the slow wave. While all algorithms work well in younger adults, the altered sleep physiology of older adults and particularly those with neurodegenerative disorders requires a tailored approach that can adapt to older adults' fragmented sleep and reduced amplitudes of slow waves. Moreover, older adults might require a continuous intervention that is not feasible in laboratory settings. Recently, several auditory stimulation-capable portable devices ('Dreem®', 'SmartSleep®' and 'SleepLoop®') have been developed. We discuss these three devices regarding their potential as tools for science, and as clinical remote-intervention tools to combat cognitive decline. Currently, SleepLoop® shows the most promise for scientific research in older adults due to high transparency and customizability but is not commercially available. Studies evaluating down-stream effects on cognitive abilities, especially in patient populations, are required before a portable auditory stimulation device can be recommended as a clinical preventative remote-intervention tool.
Collapse
Affiliation(s)
- Céline J Zeller
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Marc A Züst
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Marina Wunderlin
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Division of Psychiatric Specialties, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Ruch S, Schmidig FJ, Knüsel L, Henke K. Closed-loop modulation of local slow oscillations in human NREM sleep. Neuroimage 2022; 264:119682. [PMID: 36240988 DOI: 10.1016/j.neuroimage.2022.119682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Slow-wave sleep is the deep non-rapid eye-movement (NREM) sleep stage that is most relevant for the recuperative function of sleep. Its defining property is the presence of slow oscillations (<2 Hz) in the scalp electroencephalogram (EEG). Slow oscillations are generated by a synchronous back and forth between highly active UP-states and silent DOWN-states in neocortical neurons. Growing evidence suggests that closed-loop sensory stimulation targeted at UP-states of EEG-defined slow oscillations can enhance the slow oscillatory activity, increase sleep depth, and boost sleep's recuperative functions. However, several studies failed to replicate such findings. Failed replications might be due to the use of conventional closed-loop stimulation algorithms that analyze the signal from one single electrode and thereby neglect the fact that slow oscillations vary with respect to their origins, distributions, and trajectories on the scalp. In particular, conventional algorithms nonspecifically target functionally heterogeneous UP-states of distinct origins. After all, slow oscillations at distinct sites of the scalp have been associated with distinct functions. Here we present a novel EEG-based closed-loop stimulation algorithm that allows targeting UP- and DOWN-states of distinct cerebral origins based on topographic analyses of the EEG: the topographic targeting of slow oscillations (TOPOSO) algorithm. We present evidence that the TOPOSO algorithm can detect and target local slow oscillations with specific, predefined voltage maps on the scalp in real-time. When compared to a more conventional, single-channel-based approach, TOPOSO leads to fewer but locally more specific stimulations in a simulation study. In a validation study with napping participants, TOPOSO targets auditory stimulation reliably at local UP-states over frontal, sensorimotor, and centro-parietal regions. Importantly, auditory stimulation temporarily enhanced the targeted local state. However, stimulation then elicited a standard frontal slow oscillation rather than local slow oscillations. The TOPOSO algorithm is suitable for the modulation and the study of the functions of local slow oscillations.
Collapse
Affiliation(s)
- Simon Ruch
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tuebingen, Otfried-Müller-Str. 45, Tübingen 72076, Germany; Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland.
| | - Flavio Jean Schmidig
- Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| | - Leona Knüsel
- Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| | - Katharina Henke
- Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| |
Collapse
|
11
|
Debellemanière E, Pinaud C, Schneider J, Arnal PJ, Casson AJ, Chennaoui M, Galtier M, Navarrete M, Lewis PA. Optimising sounds for the driving of sleep oscillations by closed-loop auditory stimulation. J Sleep Res 2022; 31:e13676. [PMID: 35762085 PMCID: PMC9788124 DOI: 10.1111/jsr.13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/30/2022]
Abstract
Recent studies have shown that slow oscillations (SOs) can be driven by rhythmic auditory stimulation, which deepens slow-wave sleep (SWS) and improves memory and the immune-supportive hormonal milieu related to this sleep stage. While different attempts have been made to optimise the driving of the SOs by changing the number of click stimulations, no study has yet investigated the impact of applying more than five clicks in a row. Likewise, the importance of the type of sounds in eliciting brain responses is presently unclear. In a study of 12 healthy young participants (10 females; aged 18-26 years), we applied an established closed-loop stimulation method, which delivered sequences of 10 pink noises, 10 pure sounds (B note of 247 Hz), 10 pronounced "a" vowels, 10 sham, 10 variable sounds, and 10 "oddball" sounds on the up phase of the endogenous SOs. By analysing area under the curve, amplitude, and event related potentials, we explored whether the nature of the sound had a differential effect on driving SOs. We showed that every stimulus in a 10-click sequence, induces a SO response. Interestingly, all three types of sounds that we tested triggered SOs. However, pink noise elicited a more pronounced response compared to the other sounds, which was explained by a broader topographical recruitment of brain areas. Our data further suggest that varying the sounds may partially counteract habituation.
Collapse
Affiliation(s)
- Eden Debellemanière
- Unité Fatigue et VigilanceInstitut de recherche biomédicale des armées (IRBA)Brétigny sur OrgeFrance,EA7330 VIFASOM, Hôtel DieuUniversité Paris 5 DescartesParisFrance,Research Team, DreemParisFrance
| | | | - Jules Schneider
- School of Biological Sciencesthe University of ManchesterManchesterUK,CUBRIC, Psychology DepartmentCardiff UniversityCardiffUK
| | | | - Alexander J. Casson
- School of Electrical and Electronic Engineeringthe University of ManchesterManchesterUK
| | - Mounir Chennaoui
- Unité Fatigue et VigilanceInstitut de recherche biomédicale des armées (IRBA)Brétigny sur OrgeFrance,EA7330 VIFASOM, Hôtel DieuUniversité Paris 5 DescartesParisFrance
| | | | - Miguel Navarrete
- School of Biomedical EngineeringUniversity of Los AndesBogotáColombia
| | | |
Collapse
|
12
|
Wunderlin M, Koenig T, Zeller C, Nissen C, Züst MA. Automatized online prediction of slow-wave peaks during non-rapid eye movement sleep in young and old individuals: Why we should not always rely on amplitude thresholds. J Sleep Res 2022; 31:e13584. [PMID: 35274389 PMCID: PMC9787564 DOI: 10.1111/jsr.13584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/02/2022] [Accepted: 02/25/2022] [Indexed: 12/30/2022]
Abstract
Brain-state-dependent stimulation during slow-wave sleep is a promising tool for the treatment of psychiatric and neurodegenerative diseases. A widely used slow-wave prediction algorithm required for brain-state-dependent stimulation is based on a specific amplitude threshold in the electroencephalogram. However, due to decreased slow-wave amplitudes in aging and psychiatric conditions, this approach might miss many slow-waves because they do not fulfill the amplitude criterion. Here, we compared slow-wave peaks predicted via an amplitude-based versus a multidimensional approach using a topographical template of slow-wave peaks in 21 young and 21 older healthy adults. We validate predictions against the gold-standard of offline detected peaks. Multidimensionally predicted peaks resemble the gold-standard regarding spatiotemporal dynamics but exhibit lower peak amplitudes. Amplitude-based prediction, by contrast, is less sensitive, less precise and - especially in the older group - predicts peaks that differ from the gold-standard regarding spatiotemporal dynamics. Our results suggest that amplitude-based slow-wave peak prediction might not always be the ideal choice. This is particularly the case in populations with reduced slow-wave amplitudes, like older adults or psychiatric patients. We recommend the use of multidimensional prediction, especially in studies targeted at populations other than young and healthy individuals.
Collapse
Affiliation(s)
- Marina Wunderlin
- University Hospital of Old Age Psychiatry and PsychotherapyUniversity of BernBernSwitzerland
| | - Thomas Koenig
- University Hospital of Psychiatry and PsychotherapyUniversity of BernBernSwitzerland,Interfaculty Research Cooperation ‐ Decoding SleepUniversity of BernBernSwitzerland
| | - Céline Zeller
- University Hospital of Old Age Psychiatry and PsychotherapyUniversity of BernBernSwitzerland
| | - Christoph Nissen
- University Hospital of Psychiatry and PsychotherapyUniversity of BernBernSwitzerland,Interfaculty Research Cooperation ‐ Decoding SleepUniversity of BernBernSwitzerland
| | - Marc Alain Züst
- University Hospital of Old Age Psychiatry and PsychotherapyUniversity of BernBernSwitzerland
| |
Collapse
|
13
|
Howard MD, Skorheim SW, Pilly PK. A model of bi-directional interactions between complementary learning systems for memory consolidation of sequential experiences. Front Syst Neurosci 2022; 16:972235. [PMID: 36313529 PMCID: PMC9606815 DOI: 10.3389/fnsys.2022.972235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
The standard theory of memory consolidation posits a dual-store memory system: a fast-learning fast-decaying hippocampus that transfers memories to slow-learning long-term cortical storage. Hippocampal lesions interrupt this transfer, so recent memories are more likely to be lost than more remote memories. Existing models of memory consolidation that simulate this temporally graded retrograde amnesia operate only on static patterns or unitary variables as memories and study only one-way interaction from the hippocampus to the cortex. However, the mechanisms underlying the consolidation of episodes, which are sequential in nature and comprise multiple events, are not well-understood. The representation of learning for sequential experiences in the cortical-hippocampal network as a self-consistent dynamical system is not sufficiently addressed in prior models. Further, there is evidence for a bi-directional interaction between the two memory systems during offline periods, whereby the reactivation of waking neural patterns originating in the cortex triggers time-compressed sequential replays in the hippocampus, which in turn drive the consolidation of the pertinent sequence in the cortex. We have developed a computational model of memory encoding, consolidation, and recall for storing temporal sequences that explores the dynamics of this bi-directional interaction and time-compressed replays in four simulation experiments, providing novel insights into whether hippocampal learning needs to be suppressed for stable memory consolidation and into how new and old memories compete for limited replay opportunities during offline periods. The salience of experienced events, based on factors such as recency and frequency of use, is shown to have considerable impact on memory consolidation because it biases the relative probability that a particular event will be cued in the cortex during offline periods. In the presence of hippocampal learning during sleep, our model predicts that the fast-forgetting hippocampus can continually refresh the memory traces of a given episodic sequence if there are no competing experiences to be replayed.
Collapse
|
14
|
Henao D, Navarrete M, Juez JY, Dinh H, Gómez R, Valderrama M, Le Van Quyen M. Auditory closed‐loop stimulation on sleep slow oscillations using in‐ear EEG sensors. J Sleep Res 2022; 31:e13555. [DOI: 10.1111/jsr.13555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022]
Affiliation(s)
- David Henao
- Department of Biomedical Engineering Universidad de Los Andes Bogotá D.C. Colombia
| | - Miguel Navarrete
- Department of Biomedical Engineering Universidad de Los Andes Bogotá D.C. Colombia
- Cardiff University Brain Research Imaging Centre (CUBRIC) School of Psychology Cardiff University Cardiff UK
| | - José Yesith Juez
- Department of Biomedical Engineering Universidad de Los Andes Bogotá D.C. Colombia
| | | | - Rodrigo Gómez
- Department of Biomedical Engineering Universidad de Los Andes Bogotá D.C. Colombia
| | - Mario Valderrama
- Department of Biomedical Engineering Universidad de Los Andes Bogotá D.C. Colombia
| | - Michel Le Van Quyen
- Laboratoire d’Imagerie Biomédicale (LIB) Inserm U1146/Sorbonne Université UMCR2/UMR7371 CNRS Paris France
| |
Collapse
|
15
|
Ruch S, Alain Züst M, Henke K. Sleep-learning impairs subsequent awake-learning. Neurobiol Learn Mem 2021; 187:107569. [PMID: 34863922 DOI: 10.1016/j.nlm.2021.107569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 09/21/2021] [Accepted: 11/26/2021] [Indexed: 01/11/2023]
Abstract
Although we can learn new information while asleep, we usually cannot consciously remember the sleep-formed memories - presumably because learning occurred in an unconscious state. Here, we ask whether sleep-learning expedites the subsequent awake-learning of the same information. To answer this question, we reanalyzed data (Züst et al., 2019, Curr Biol) from napping participants, who learned new semantic associations between pseudowords and translation-words (guga-ship) while in slow-wave sleep. They retrieved sleep-formed associations unconsciously on an implicit memory test following awakening. Then, participants took five runs of paired-associative learning to probe carry-over effects of sleep-learning on awake-learning. Surprisingly, sleep-learning diminished awake-learning when participants learned semantic associations that were congruent to sleep-learned associations (guga-boat). Yet, learning associations that conflicted with sleep-learned associations (guga-coin) was unimpaired relative to learning new associations (resun-table; baseline). We speculate that the impeded wake-learning originated in a deficient synaptic downscaling and resulting synaptic saturation in neurons that were activated during both sleep-learning and awake-learning.
Collapse
Affiliation(s)
- Simon Ruch
- Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland.
| | - Marc Alain Züst
- Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| | - Katharina Henke
- Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| |
Collapse
|
16
|
Stanyer EC, Baniqued PDE, Awais M, Kouara L, Davies AG, Killan EC, Mushtaq F. The impact of acoustic stimulation during sleep on memory and sleep architecture: A meta-analysis. J Sleep Res 2021; 31:e13385. [PMID: 34850995 DOI: 10.1111/jsr.13385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 11/28/2022]
Abstract
The relationship between sleep and cognition has long been recognized, with slow-wave sleep thought to play a critical role in long-term memory consolidation. Recent research has presented the possibility that non-invasive acoustic stimulation during sleep could enhance memory consolidation. Herein, we report a random-effects model meta-analysis examining the impact of this intervention on memory and sleep architecture in healthy adults. Sixteen studies were identified through a systematic search. We found a medium significant effect of acoustic stimulation on memory task performance (g = 0.68, p = .031) in young adults <35 years of age, but no statistically significant effect in adults >35 years of age (g = -0.83, p = .223). In young adults, there was a large statistically significant effect for declarative memory tasks (g = 0.87, p = .014) but no effect for non-declarative tasks (g = -0.25, p = .357). There were no statistically significant differences in polysomnography-derived sleep architecture values between sham and stimulation conditions in either young or older adults. Based on these results, it appears that acoustic stimulation during sleep may only be an effective intervention for declarative memory consolidation in young adults. However, the small number of studies in this area, their small sample sizes, the short-term nature of most investigations and the high between-studies heterogeneity highlight a need for high-powered and long-term experiments to better elucidate, and subsequently maximise, any potential benefits of this novel approach.
Collapse
Affiliation(s)
- Emily C Stanyer
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, UK.,Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Paul Dominick E Baniqued
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, UK.,School of Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, West Yorkshire, UK
| | - Muhammad Awais
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, UK.,Department of Computer Science, Edgehill University, Ormskirk, Lancashire, UK
| | - Layla Kouara
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, UK
| | - Andrew G Davies
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, UK
| | - Edward C Killan
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, UK
| | - Faisal Mushtaq
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, UK
| |
Collapse
|
17
|
Hubbard RJ, Zadeh I, Jones AP, Robert B, Bryant NB, Clark VP, Pilly PK. Brain connectivity alterations during sleep by closed-loop transcranial neurostimulation predict metamemory sensitivity. Netw Neurosci 2021; 5:734-756. [PMID: 34746625 PMCID: PMC8567828 DOI: 10.1162/netn_a_00201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/15/2021] [Indexed: 12/23/2022] Open
Abstract
Metamemory involves the ability to correctly judge the accuracy of our memories. The retrieval of memories can be improved using transcranial electrical stimulation (tES) during sleep, but evidence for improvements to metamemory sensitivity is limited. Applying tES can enhance sleep-dependent memory consolidation, which along with metamemory requires the coordination of activity across distributed neural systems, suggesting that examining functional connectivity is important for understanding these processes. Nevertheless, little research has examined how functional connectivity modulations relate to overnight changes in metamemory sensitivity. Here, we developed a closed-loop short-duration tES method, time-locked to up-states of ongoing slow-wave oscillations, to cue specific memory replays in humans. We measured electroencephalographic (EEG) coherence changes following stimulation pulses, and characterized network alterations with graph theoretic metrics. Using machine learning techniques, we show that pulsed tES elicited network changes in multiple frequency bands, including increased connectivity in the theta band and increased efficiency in the spindle band. Additionally, stimulation-induced changes in beta-band path length were predictive of overnight changes in metamemory sensitivity. These findings add new insights into the growing literature investigating increases in memory performance through brain stimulation during sleep, and highlight the importance of examining functional connectivity to explain its effects. Numerous studies have demonstrated a clear link between sleep and memory—namely, memories are consolidated during sleep, leading to more stable and long-lasting representations. We have previously shown that tagging episodes with specific patterns of brain stimulation during encoding and replaying those patterns during sleep can enhance this consolidation process to improve confidence and decision-making of memories (metamemory). Here, we extend this work to examine network-level brain changes that occur following stimulation during sleep that predict metamemory improvements. Using graph theoretic and machine-learning methods, we found that stimulation-induced changes in beta-band path length predicted overnight improvements in metamemory. This novel finding sheds new light on the neural mechanisms of memory consolidation and suggests potential applications for improving metamemory.
Collapse
Affiliation(s)
- Ryan J Hubbard
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, USA
| | - Iman Zadeh
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, USA
| | - Aaron P Jones
- Psychology Clinical Neuroscience Center, Department of Psychology, The University of New Mexico, Albuquerque, NM, USA
| | - Bradley Robert
- Psychology Clinical Neuroscience Center, Department of Psychology, The University of New Mexico, Albuquerque, NM, USA
| | - Natalie B Bryant
- Psychology Clinical Neuroscience Center, Department of Psychology, The University of New Mexico, Albuquerque, NM, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Department of Psychology, The University of New Mexico, Albuquerque, NM, USA
| | - Praveen K Pilly
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, USA
| |
Collapse
|
18
|
Sifuentes-Ortega R, Lenc T, Nozaradan S, Peigneux P. Partially Preserved Processing of Musical Rhythms in REM but Not in NREM Sleep. Cereb Cortex 2021; 32:1508-1519. [PMID: 34491309 DOI: 10.1093/cercor/bhab303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The extent of high-level perceptual processing during sleep remains controversial. In wakefulness, perception of periodicities supports the emergence of high-order representations such as the pulse-like meter perceived while listening to music. Electroencephalography (EEG) frequency-tagged responses elicited at envelope frequencies of musical rhythms have been shown to provide a neural representation of rhythm processing. Specifically, responses at frequencies corresponding to the perceived meter are enhanced over responses at meter-unrelated frequencies. This selective enhancement must rely on higher-level perceptual processes, as it occurs even in irregular (i.e., syncopated) rhythms where meter frequencies are not prominent input features, thus ruling out acoustic confounds. We recorded EEG while presenting a regular (unsyncopated) and an irregular (syncopated) rhythm across sleep stages and wakefulness. Our results show that frequency-tagged responses at meter-related frequencies of the rhythms were selectively enhanced during wakefulness but attenuated across sleep states. Most importantly, this selective attenuation occurred even in response to the irregular rhythm, where meter-related frequencies were not prominent in the stimulus, thus suggesting that neural processes selectively enhancing meter-related frequencies during wakefulness are weakened during rapid eye movement (REM) and further suppressed in non-rapid eye movement (NREM) sleep. These results indicate preserved processing of low-level acoustic properties but limited higher-order processing of auditory rhythms during sleep.
Collapse
Affiliation(s)
- Rebeca Sifuentes-Ortega
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Center for Research in Cognition & Neurosciences, and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Tomas Lenc
- Institute of Neuroscience (IONS), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Sylvie Nozaradan
- Institute of Neuroscience (IONS), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Philippe Peigneux
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Center for Research in Cognition & Neurosciences, and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| |
Collapse
|
19
|
Real-Time Excitation of Slow Oscillations during Deep Sleep Using Acoustic Stimulation. SENSORS 2021; 21:s21155169. [PMID: 34372405 PMCID: PMC8347755 DOI: 10.3390/s21155169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/20/2022]
Abstract
Slow-wave synchronous acoustic stimulation is a promising research and therapeutic tool. It is essential to clearly understand the principles of the synchronization methods, to know their performances and limitations, and, most importantly, to have a clear picture of the effect of stimulation on slow-wave activity (SWA). This paper covers the mentioned and currently missing parts of knowledge that are essential for the appropriate development of the method itself and future applications. Artificially streamed real sleep EEG data were used to quantitatively compare the two currently used real-time methods: the phase-locking loop (PLL) and the fixed-step stimulus in our own implementation. The fixed-step stimulation method was concluded to be more reliable and practically applicable compared to the PLL method. The sleep experiment with chronic insomnia patients in our sleep laboratory was analyzed in order to precisely characterize the effect of sound stimulation during deep sleep. We found that there is a significant phase synchronization of delta waves, which were shown to be the most sensitive metric of the effect of acoustic stimulation compared to commonly used averaged signal and power analyses. This finding may change the understanding of the effect and function of the SWA stimulation described in the literature.
Collapse
|
20
|
Harrington MO, Cairney SA. Sounding It Out: Auditory Stimulation and Overnight Memory Processing. CURRENT SLEEP MEDICINE REPORTS 2021; 7:112-119. [PMID: 34722123 PMCID: PMC8550047 DOI: 10.1007/s40675-021-00207-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
Abstract
Purpose of Review
Auditory stimulation is a technique that can enhance neural oscillations linked to overnight memory consolidation. In this review, we evaluate the impacts of auditory stimulation on the neural oscillations of sleep and associated memory processes in a variety of populations.
Recent Findings
Cortical EEG recordings of slow-wave sleep (SWS) are characterised by two cardinal oscillations: slow oscillations (SOs) and sleep spindles. Auditory stimulation delivered in SWS enhances SOs and phase-coupled spindle activity in healthy children and adults, children with ADHD, adults with mild cognitive impairment and patients with major depression. Under certain conditions, auditory stimulation bolsters the benefits of SWS for memory consolidation, although further work is required to fully understand the factors affecting stimulation-related memory gains. Recent work has turned to rapid eye movement (REM) sleep, demonstrating that auditory stimulation can be used to manipulate REM sleep theta oscillations.
Summary
Auditory stimulation enhances oscillations linked to overnight memory processing and shows promise as a technique for enhancing the memory benefits of sleep.
Collapse
|
21
|
A new application of TMR: A study on implicit self-esteem. CURRENT PSYCHOLOGY 2021. [DOI: 10.1007/s12144-021-01883-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Cordone S, Scarpelli S, Alfonsi V, De Gennaro L, Gorgoni M. Sleep-Based Interventions in Alzheimer's Disease: Promising Approaches from Prevention to Treatment along the Disease Trajectory. Pharmaceuticals (Basel) 2021; 14:383. [PMID: 33921870 PMCID: PMC8073746 DOI: 10.3390/ph14040383] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
The multifactorial nature of Alzheimer's disease (AD) has led scientific researchers to focus on the modifiable and treatable risk factors of AD. Sleep fits into this context, given the bidirectional relationship with AD confirmed by several studies over the last years. Sleep disorders appear at an early stage of AD and continue throughout the entire course of the pathology. Specifically, sleep abnormalities, such as more fragmented sleep, increase in time of awakenings, worsening of sleep quality and primary sleep disorders raise with the severity and progression of AD. Intervening on sleep, therefore, means acting both with prevention strategies in the pre-clinical phase and with treatments during the course of the disease. This review explores sleep disturbances in the different stages of AD, starting from the pre-clinical stage. Particular attention is given to the empirical evidence investigating obstructive sleep apnea (OSA) disorder and the mechanisms overlapping and sharing with AD. Next, we discuss sleep-based intervention strategies in the healthy elderly population, mild cognitive impairment (MCI) and AD patients. We mention interventions related to behavioral strategies, combination therapies, and bright light therapy, leaving extensive space for new and raising evidence on continuous positive air pressure (CPAP) treatment effectiveness. Finally, we clarify the role of NREM sleep across the AD trajectory and consider the most recent studies based on the promising results of NREM sleep enhancement, which use innovative experimental designs and techniques.
Collapse
Affiliation(s)
- Susanna Cordone
- UniCamillus, Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Serena Scarpelli
- Department of Psychology, University of Rome “Sapienza”, 00185 Rome, Italy; (S.S.); (M.G.)
| | | | - Luigi De Gennaro
- Department of Psychology, University of Rome “Sapienza”, 00185 Rome, Italy; (S.S.); (M.G.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| | - Maurizio Gorgoni
- Department of Psychology, University of Rome “Sapienza”, 00185 Rome, Italy; (S.S.); (M.G.)
| |
Collapse
|
23
|
Voysey ZJ, Barker RA, Lazar AS. The Treatment of Sleep Dysfunction in Neurodegenerative Disorders. Neurotherapeutics 2021; 18:202-216. [PMID: 33179197 PMCID: PMC8116411 DOI: 10.1007/s13311-020-00959-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Sleep dysfunction is highly prevalent across the spectrum of neurodegenerative conditions and is a key determinant of quality of life for both patients and their families. Mounting recent evidence also suggests that such dysfunction exacerbates cognitive and affective clinical features of neurodegeneration, as well as disease progression through acceleration of pathogenic processes. Effective assessment and treatment of sleep dysfunction in neurodegeneration is therefore of paramount importance; yet robust therapeutic guidelines are lacking, owing in part to a historical paucity of effective treatments and trials. Here, we review the common sleep abnormalities evident in neurodegenerative disease states and evaluate the latest evidence for traditional and emerging interventions, both pharmacological and nonpharmacological. Interventions considered include conservative measures, targeted treatments of specific clinical sleep pathologies, established sedating and alerting agents, melatonin, and orexin antagonists, as well as bright light therapy, behavioral measures, and slow-wave sleep augmentation techniques. We conclude by providing a suggested framework for treatment based on contemporary evidence and highlight areas that may emerge as major therapeutic advances in the near future.
Collapse
Affiliation(s)
- Zanna J Voysey
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Roger A Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair and WT-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Alpar S Lazar
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
24
|
Schmid SR, Nissen C, Riemann D, Spiegelhalder K, Frase L. Auditorische Stimulation während des Schlafs. SOMNOLOGIE 2020. [DOI: 10.1007/s11818-020-00255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ZusammenfassungDie Insomnie, d. h. eine Ein- und/oder Durchschlafstörung, die sich negativ auf die Leistungsfähigkeit und Tagesbefindlichkeit auswirkt, ist eine der häufigsten Erkrankungen in der Allgemeinbevölkerung. Sie wird derzeit meistens pharmakologisch und/oder psychotherapeutisch behandelt, wobei die pharmakologische Behandlung mit Benzodiazepin-Rezeptor-Agonisten zu Abhängigkeit führen kann und die Verfügbarkeit von für die Insomnie-Therapie ausgebildeten Psychotherapeuten momentan nicht in ausreichendem Maße gegeben ist. Durch innovative Behandlungsmethoden könnte hier eine Versorgungslücke effektiv geschlossen werden. Hierzu zählt die auditorische Stimulation, welche vorhandene Sinneskanäle nutzt, um den Schlaf zu beeinflussen. Bisher wurde die auditorische Stimulation vor allem zur Untersuchung von Prozessen der Gedächtniskonsolidierung bei gesunden Probanden angewendet, wobei erfolgreich eine Erhöhung langsamer Oszillationen erreicht wurde, welche vor allem während des Tiefschlafs auftreten. Erste Befunde und sekundäre Outcome-Parameter liefern Hinweise, dass die Potenzierung langsamer Oszillationen durch auditorische Stimulation den Schlaf vertiefen kann, jedoch wurde hierzu bislang keine Studie mit Insomniepatienten durchgeführt. Weitere Forschung bezüglich des Einflusses der Potenzierung langsamer Oszillationen auf die Linderung von Ein- und Durchschlafproblemen bei vorliegender nichtorganischer Insomnie erscheint daher geboten zu sein, um der hohen Beschwerdelast dieser Patientengruppe entgegenzuwirken.
Collapse
|
25
|
Neurostimulation techniques to enhance sleep and improve cognition in aging. Neurobiol Dis 2020; 141:104865. [DOI: 10.1016/j.nbd.2020.104865] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/16/2020] [Accepted: 04/02/2020] [Indexed: 01/09/2023] Open
|
26
|
Changes in cross-frequency coupling following closed-loop auditory stimulation in non-rapid eye movement sleep. Sci Rep 2020; 10:10628. [PMID: 32606321 PMCID: PMC7326971 DOI: 10.1038/s41598-020-67392-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/03/2020] [Indexed: 01/03/2023] Open
Abstract
Regional changes of non-rapid eye movement (NREM) sleep delta and sigma activity, and their temporal coupling have been related to experience-dependent plastic changes during previous wakefulness. These sleep-specific rhythms seem to be important for brain recovery and memory consolidation. Recently, it was demonstrated that by targeting slow waves in a particular region at a specific phase with closed-loop auditory stimulation, it is possible to locally manipulate slow-wave activity and interact with training-induced neuroplastic changes. In our study, we tested whether closed-loop auditory stimulation targeting the up-phase of slow waves might not only interact with the main sleep rhythms but also with their coupling within the circumscribed region. We demonstrate that while closed-loop auditory stimulation globally enhances delta, theta and sigma power, changes in cross-frequency coupling of these oscillations were more spatially restricted. Importantly, a significant increase in delta-sigma coupling was observed over the right parietal area, located directly posterior to the target electrode. These findings suggest that closed-loop auditory stimulation locally modulates coupling between delta phase and sigma power in a targeted region, which could be used to manipulate sleep-dependent neuroplasticity within the brain network of interest.
Collapse
|
27
|
|
28
|
Andrillon T, Kouider S. The vigilant sleeper: neural mechanisms of sensory (de)coupling during sleep. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Salfi F, D’Atri A, Tempesta D, De Gennaro L, Ferrara M. Boosting Slow Oscillations during Sleep to Improve Memory Function in Elderly People: A Review of the Literature. Brain Sci 2020; 10:300. [PMID: 32429181 PMCID: PMC7287854 DOI: 10.3390/brainsci10050300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/05/2023] Open
Abstract
Sleep represents a crucial time window for the consolidation of memory traces. In this view, some brain rhythms play a pivotal role, first of all the sleep slow waves. In particular, the neocortical slow oscillations (SOs), in coordination with the hippocampal ripples and the thalamocortical spindles, support the long-term storage of the declarative memories. The aging brain is characterized by a disruption of this complex system with outcomes on the related cognitive functions. In recent years, the advancement of the comprehension of the sleep-dependent memory consolidation mechanisms has encouraged the development of techniques of SO enhancement during sleep to induce cognitive benefits. In this review, we focused on the studies reporting on the application of acoustic or electric stimulation procedures in order to improve sleep-dependent memory consolidation in older subjects. Although the current literature is limited and presents inconsistencies, there is promising evidence supporting the perspective to non-invasively manipulate the sleeping brain electrophysiology to improve cognition in the elderly, also shedding light on the mechanisms underlying the sleep-memory relations during healthy and pathological aging.
Collapse
Affiliation(s)
- Federico Salfi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.S.); (D.T.)
| | - Aurora D’Atri
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (A.D.); (L.D.G.)
| | - Daniela Tempesta
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.S.); (D.T.)
| | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (A.D.); (L.D.G.)
| | - Michele Ferrara
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.S.); (D.T.)
| |
Collapse
|
30
|
Gao C, Fillmore P, Scullin MK. Classical music, educational learning, and slow wave sleep: A targeted memory reactivation experiment. Neurobiol Learn Mem 2020; 171:107206. [PMID: 32145407 DOI: 10.1016/j.nlm.2020.107206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/20/2020] [Accepted: 03/02/2020] [Indexed: 11/19/2022]
Abstract
Poor sleep in college students compromises the memory consolidation processes necessary to retain course materials. A solution may lie in targeting reactivation of memories during sleep (TMR). Fifty undergraduate students completed a college-level microeconomics lecture (mathematics-based) while listening to distinctive classical music (Chopin, Beethoven, and Vivaldi). After they fell asleep, we re-played the classical music songs (TMR) or a control noise during slow wave sleep. Relative to the control condition, the TMR condition showed an 18% improvement for knowledge transfer items that measured concept integration (d = 0.63), increasing the probability of "passing" the test with a grade of 70 or above (OR = 4.68, 95%CI: 1.21, 18.04). The benefits of TMR did not extend to a 9-month follow-up test when performance dropped to floor levels, demonstrating that long-term-forgetting curves are largely resistant to experimentally-consolidated memories. Spectral analyses revealed greater frontal theta activity during slow wave sleep in the TMR condition than the control condition (d = 0.87), and greater frontal theta activity across conditions was associated with protection against long-term-forgetting at the next-day and 9-month follow-up tests (rs = 0.42), at least in female students. Thus, students can leverage instrumental music-which they already commonly pair with studying-to help prepare for academic tests, an approach that may promote course success and persistence.
Collapse
Affiliation(s)
- Chenlu Gao
- Baylor University, Department of Psychology and Neuroscience, Waco, TX, United States
| | - Paul Fillmore
- Baylor University, Department of Communication Sciences and Disorders, Waco, TX, United States
| | - Michael K Scullin
- Baylor University, Department of Psychology and Neuroscience, Waco, TX, United States.
| |
Collapse
|
31
|
Learning During Sleep: A Dream Comes True? Trends Cogn Sci 2020; 24:170-172. [DOI: 10.1016/j.tics.2019.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/15/2019] [Accepted: 12/13/2019] [Indexed: 11/20/2022]
|
32
|
Pilly PK, Skorheim SW, Hubbard RJ, Ketz NA, Roach SM, Lerner I, Jones AP, Robert B, Bryant NB, Hartholt A, Mullins TS, Choe J, Clark VP, Howard MD. One-Shot Tagging During Wake and Cueing During Sleep With Spatiotemporal Patterns of Transcranial Electrical Stimulation Can Boost Long-Term Metamemory of Individual Episodes in Humans. Front Neurosci 2020; 13:1416. [PMID: 31998067 PMCID: PMC6967741 DOI: 10.3389/fnins.2019.01416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/16/2019] [Indexed: 12/01/2022] Open
Abstract
Targeted memory reactivation (TMR) during slow-wave oscillations (SWOs) in sleep has been demonstrated with sensory cues to achieve about 5-12% improvement in post-nap memory performance on simple laboratory tasks. But prior work has not yet addressed the one-shot aspect of episodic memory acquisition, or dealt with the presence of interference from ambient environmental cues in real-world settings. Further, TMR with sensory cues may not be scalable to the multitude of experiences over one's lifetime. We designed a novel non-invasive non-sensory paradigm that tags one-shot experiences of minute-long naturalistic episodes in immersive virtual reality (VR) with unique spatiotemporal amplitude-modulated patterns (STAMPs) of transcranial electrical stimulation (tES). In particular, we demonstrated that these STAMPs can be re-applied as brief pulses during SWOs in sleep to achieve about 10-20% improvement in the metamemory of targeted episodes compared to the control episodes at 48 hours after initial viewing. We found that STAMPs can not only facilitate but also impair metamemory for the targeted episodes based on an interaction between pre-sleep metamemory and the number of STAMP applications during sleep. Overnight metamemory improvements were mediated by spectral power increases following the offset of STAMPs in the slow-spindle band (8-12 Hz) for left temporal areas in the scalp electroencephalography (EEG) during sleep. These results prescribe an optimal strategy to leverage STAMPs for boosting metamemory and suggest that real-world episodic memories can be modulated in a targeted manner even with coarser, non-invasive spatiotemporal stimulation.
Collapse
Affiliation(s)
- Praveen K. Pilly
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Steven W. Skorheim
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Ryan J. Hubbard
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Nicholas A. Ketz
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Shane M. Roach
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Itamar Lerner
- Center of Molecular and Behavior Neuroscience, Rutgers University Newark, Newark, NJ, United States
- Department of Psychology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Aaron P. Jones
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Bradley Robert
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Natalie B. Bryant
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Arno Hartholt
- Institute for Creative Technologies, University of Southern California, Los Angeles, CA, United States
| | - Teagan S. Mullins
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Jaehoon Choe
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Vincent P. Clark
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Michael D. Howard
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| |
Collapse
|
33
|
Closed-Loop Acoustic Stimulation Enhances Sleep Oscillations But Not Memory Performance. eNeuro 2019; 6:ENEURO.0306-19.2019. [PMID: 31604814 PMCID: PMC6831893 DOI: 10.1523/eneuro.0306-19.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 11/21/2022] Open
Abstract
Slow oscillations and spindle activity during non-rapid eye movement sleep have been implicated in memory consolidation. Closed-loop acoustic stimulation has previously been shown to enhance slow oscillations and spindle activity during sleep and improve verbal associative memory. We assessed the effect of closed-loop acoustic stimulation during a daytime nap on a virtual reality spatial navigation task in 12 healthy human subjects in a randomized within-subject crossover design. We show robust enhancement of slow oscillation and spindle activity during sleep. However, no effects on behavioral performance were observed when comparing real versus sham stimulation. To explore whether memory enhancement effects were task specific and dependent on nocturnal sleep, in a second experiment with 19 healthy subjects, we aimed to replicate a previous study that used closed-loop acoustic stimulation to enhance memory for word pairs. The methods used were as close as possible to those used in the original study, except that we used a double-blind protocol, in which both subject and experimenter were unaware of the test condition. Again, we successfully enhanced slow oscillation and spindle power, but again did not strengthen associative memory performance with stimulation. We conclude that enhancement of sleep oscillations may be insufficient to enhance memory performance in spatial navigation or verbal association tasks, and provide possible explanations for lack of behavioral replication.
Collapse
|
34
|
Cox R, Mylonas DS, Manoach DS, Stickgold R. Large-scale structure and individual fingerprints of locally coupled sleep oscillations. Sleep 2019; 41:5089926. [PMID: 30184179 DOI: 10.1093/sleep/zsy175] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 11/14/2022] Open
Abstract
Slow oscillations and sleep spindles, the canonical electrophysiological oscillations of nonrapid eye movement sleep, are thought to gate incoming sensory information, underlie processes of sleep-dependent memory consolidation, and are altered in various neuropsychiatric disorders. Accumulating evidence of the predominantly local expression of these individual oscillatory rhythms suggests that their cross-frequency interactions may have a similar local component. However, it is unclear whether locally coordinated sleep oscillations exist across the cortex, and whether and how these dynamics differ between fast and slow spindles, and sleep stages. Moreover, substantial individual variability in the expression of both spindles and slow oscillations raises the possibility that their temporal organization shows similar individual differences. Using two nights of multichannel electroencephalography recordings from 24 healthy individuals, we characterized the topography of slow oscillation-spindle coupling. We found that while slow oscillations are highly restricted in spatial extent, the phase of the local slow oscillation modulates local spindle activity at virtually every cortical site. However, coupling dynamics varied with spindle class, sleep stage, and cortical region. Moreover, the slow oscillation phase at which spindles were maximally expressed differed markedly across individuals while remaining stable across nights. These findings both add an important spatial aspect to our understanding of the temporal coupling of sleep oscillations and demonstrate the heterogeneity of coupling dynamics, which must be taken into account when formulating mechanistic accounts of sleep-related memory processing.
Collapse
Affiliation(s)
- Roy Cox
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA.,Department of Psychiatry, Harvard Medical School, Boston, MA.,Department of Epileptology, University of Bonn, Germany
| | - Dimitris S Mylonas
- Department of Psychiatry, Harvard Medical School, Boston, MA.,Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA
| | - Dara S Manoach
- Department of Psychiatry, Harvard Medical School, Boston, MA.,Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA.,Department of Psychiatry, Harvard Medical School, Boston, MA
| |
Collapse
|
35
|
Abstract
Is it really possible to learn new information during deep sleep? A new study suggests that implicit vocabulary binding can occur while we are snoozing. It also seems that the success of learning depends heavily upon the timing of such 'sleepy stimulation'.
Collapse
Affiliation(s)
- Miguel Navarrete
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | - Penelope A Lewis
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK.
| |
Collapse
|
36
|
Transcranial Current Stimulation During Sleep Facilitates Insight into Temporal Rules, but does not Consolidate Memories of Individual Sequential Experiences. Sci Rep 2019; 9:1516. [PMID: 30728363 PMCID: PMC6365565 DOI: 10.1038/s41598-018-36107-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/11/2018] [Indexed: 11/17/2022] Open
Abstract
Slow-wave sleep (SWS) is known to contribute to memory consolidation, likely through the reactivation of previously encoded waking experiences. Contemporary studies demonstrate that when auditory or olfactory stimulation is administered during memory encoding and then reapplied during SWS, memory consolidation can be enhanced, an effect that is believed to rely on targeted memory reactivation (TMR) induced by the sensory stimulation. Here, we show that transcranial current stimulations (tCS) during sleep can also be used to induce TMR, resulting in the facilitation of high-level cognitive processes. Participants were exposed to repeating sequences in a realistic 3D immersive environment while being stimulated with particular tCS patterns. A subset of these tCS patterns was then reapplied during sleep stages N2 and SWS coupled to slow oscillations in a closed-loop manner. We found that in contrast to our initial hypothesis, performance for the sequences corresponding to the reapplied tCS patterns was no better than for other sequences that received stimulations only during wake or not at all. In contrast, we found that the more stimulations participants received overnight, the more likely they were to detect temporal regularities governing the learned sequences the following morning, with tCS-induced beta power modulations during sleep mediating this effect.
Collapse
|
37
|
Züst MA, Ruch S, Wiest R, Henke K. Implicit Vocabulary Learning during Sleep Is Bound to Slow-Wave Peaks. Curr Biol 2019; 29:541-553.e7. [DOI: 10.1016/j.cub.2018.12.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/25/2018] [Accepted: 12/20/2018] [Indexed: 01/13/2023]
|
38
|
Jones AP, Choe J, Bryant NB, Robinson CSH, Ketz NA, Skorheim SW, Combs A, Lamphere ML, Robert B, Gill HA, Heinrich MD, Howard MD, Clark VP, Pilly PK. Dose-Dependent Effects of Closed-Loop tACS Delivered During Slow-Wave Oscillations on Memory Consolidation. Front Neurosci 2018; 12:867. [PMID: 30538617 PMCID: PMC6277682 DOI: 10.3389/fnins.2018.00867] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/06/2018] [Indexed: 11/13/2022] Open
Abstract
Sleep is critically important to consolidate information learned throughout the day. Slow-wave sleep (SWS) serves to consolidate declarative memories, a process previously modulated with open-loop non-invasive electrical stimulation, though not always effectively. These failures to replicate could be explained by the fact that stimulation has only been performed in open-loop, as opposed to closed-loop where phase and frequency of the endogenous slow-wave oscillations (SWOs) are matched for optimal timing. The current study investigated the effects of closed-loop transcranial Alternating Current Stimulation (tACS) targeting SWOs during sleep on memory consolidation. 21 participants took part in a three-night, counterbalanced, randomized, single-blind, within-subjects study, investigating performance changes (correct rate and F1 score) on images in a target detection task over 24 h. During sleep, 1.5 mA closed-loop tACS was delivered in phase over electrodes at F3 and F4 and 180° out of phase over electrodes at bilateral mastoids at the frequency (range 0.5-1.2 Hz) and phase of ongoing SWOs for a duration of 5 cycles in each discrete event throughout the night. Data were analyzed in a repeated measures ANOVA framework, and results show that verum stimulation improved post-sleep performance specifically on generalized versions of images used in training at both morning and afternoon tests compared to sham, suggesting the facilitation of schematization of information, but not of rote, veridical recall. We also found a surprising inverted U-shaped dose effect of sleep tACS, which is interpreted in terms of tACS-induced faciliatory and subsequent refractory dynamics of SWO power in scalp EEG. This is the first study showing a selective modulation of long-term memory generalization using a novel closed-loop tACS approach, which holds great potential for both healthy and neuropsychiatric populations.
Collapse
Affiliation(s)
- Aaron P Jones
- Psychology Clinical Neuroscience Center, The University of New Mexico, Albuquerque, NM, United States.,Department of Psychology, The University of New Mexico, Albuquerque, NM, United States
| | - Jaehoon Choe
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Natalie B Bryant
- Psychology Clinical Neuroscience Center, The University of New Mexico, Albuquerque, NM, United States.,Department of Psychology, The University of New Mexico, Albuquerque, NM, United States
| | - Charles S H Robinson
- Psychology Clinical Neuroscience Center, The University of New Mexico, Albuquerque, NM, United States.,Department of Psychology, The University of New Mexico, Albuquerque, NM, United States.,The Mind Research Network, Albuquerque, NM, United States
| | - Nicholas A Ketz
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Steven W Skorheim
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Angela Combs
- Psychology Clinical Neuroscience Center, The University of New Mexico, Albuquerque, NM, United States.,Department of Psychology, The University of New Mexico, Albuquerque, NM, United States
| | - Melanie L Lamphere
- Psychology Clinical Neuroscience Center, The University of New Mexico, Albuquerque, NM, United States.,Department of Psychology, The University of New Mexico, Albuquerque, NM, United States
| | - Bradley Robert
- Psychology Clinical Neuroscience Center, The University of New Mexico, Albuquerque, NM, United States.,Department of Psychology, The University of New Mexico, Albuquerque, NM, United States
| | - Hope A Gill
- Psychology Clinical Neuroscience Center, The University of New Mexico, Albuquerque, NM, United States.,Department of Psychology, The University of New Mexico, Albuquerque, NM, United States
| | - Melissa D Heinrich
- Psychology Clinical Neuroscience Center, The University of New Mexico, Albuquerque, NM, United States.,Department of Psychology, The University of New Mexico, Albuquerque, NM, United States
| | - Michael D Howard
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, The University of New Mexico, Albuquerque, NM, United States.,Department of Psychology, The University of New Mexico, Albuquerque, NM, United States.,The Mind Research Network, Albuquerque, NM, United States.,Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Praveen K Pilly
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| |
Collapse
|
39
|
Léger D, Debellemaniere E, Rabat A, Bayon V, Benchenane K, Chennaoui M. Slow-wave sleep: From the cell to the clinic. Sleep Med Rev 2018; 41:113-132. [DOI: 10.1016/j.smrv.2018.01.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 01/02/2018] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
|
40
|
Cortical circuit activity underlying sleep slow oscillations and spindles. Proc Natl Acad Sci U S A 2018; 115:E9220-E9229. [PMID: 30209214 DOI: 10.1073/pnas.1805517115] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Slow oscillations and sleep spindles are hallmarks of the EEG during slow-wave sleep (SWS). Both oscillatory events, especially when co-occurring in the constellation of spindles nesting in the slow oscillation upstate, are considered to support memory formation and underlying synaptic plasticity. The regulatory mechanisms of this function at the circuit level are poorly understood. Here, using two-photon imaging in mice, we relate EEG-recorded slow oscillations and spindles to calcium signals recorded from the soma of cortical putative pyramidal-like (Pyr) cells and neighboring parvalbumin-positive interneurons (PV-Ins) or somatostatin-positive interneurons (SOM-Ins). Pyr calcium activity was increased more than threefold when spindles co-occurred with slow oscillation upstates compared with slow oscillations or spindles occurring in isolation. Independent of whether or not a spindle was nested in the slow oscillation upstate, the slow oscillation downstate was preceded by enhanced calcium signal in SOM-Ins that vanished during the upstate, whereas spindles were associated with strongly increased PV-In calcium activity. Additional wide-field calcium imaging of Pyr cells confirmed the enhanced calcium activity and its widespread topography associated with spindles nested in slow oscillation upstates. In conclusion, when spindles are nested in slow oscillation upstates, maximum Pyr activity appears to concur with strong perisomatic inhibition of Pyr cells via PV-Ins and low dendritic inhibition via SOM-Ins (i.e., conditions that might optimize synaptic plasticity within local cortical circuits).
Collapse
|
41
|
Farthouat J, Atas A, Wens V, De Tiege X, Peigneux P. Lack of frequency-tagged magnetic responses suggests statistical regularities remain undetected during NREM sleep. Sci Rep 2018; 8:11719. [PMID: 30082719 PMCID: PMC6079006 DOI: 10.1038/s41598-018-30105-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 07/24/2018] [Indexed: 11/24/2022] Open
Abstract
Hypnopedia, or the capacity to learn during sleep, is debatable. De novo acquisition of reflex stimulus-response associations was shown possible both in man and animal. Whether sleep allows more sophisticated forms of learning remains unclear. We recorded during diurnal Non-Rapid Eye Movement (NREM) sleep auditory magnetoencephalographic (MEG) frequency-tagged responses mirroring ongoing statistical learning. While in NREM sleep, participants were exposed at non-awakenings thresholds to fast auditory streams of pure tones, either randomly organized or structured in such a way that the stream statistically segmented in sets of 3 elements (tritones). During NREM sleep, only tone-related frequency-tagged MEG responses were observed, evidencing successful perception of individual tones. No participant showed tritone-related frequency-tagged responses, suggesting lack of segmentation. In the ensuing wake period however, all participants exhibited robust tritone-related responses during exposure to statistical (but not random) streams. Our data suggest that associations embedded in statistical regularities remain undetected during NREM sleep, although implicitly learned during subsequent wakefulness. These results suggest intrinsic limitations in de novo learning during NREM sleep that might confine the NREM sleeping brain's learning capabilities to simple, elementary associations. It remains to be ascertained whether it similarly applies to REM sleep.
Collapse
Affiliation(s)
- Juliane Farthouat
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit at CRCN, Center for Research in Cognition and Neurosciences, Université libre de Bruxelles, Brussels, Belgium
- UNI - ULB Neurosciences Institute, Université libre de Bruxelles, Brussels, Belgium
| | - Anne Atas
- CO3 - Consciousness, Cognition, and Computation Group at CRCN, Center for Research in Cognition and Neurosciences, Université libre de Bruxelles, Brussels, Belgium
- UNI - ULB Neurosciences Institute, Université libre de Bruxelles, Brussels, Belgium
| | - Vincent Wens
- LCFC - Laboratoire de Cartographie Fonctionnelle du Cerveau, Université libre de Bruxelles, Brussels, Belgium
- UNI - ULB Neurosciences Institute, Université libre de Bruxelles, Brussels, Belgium
| | - Xavier De Tiege
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit at CRCN, Center for Research in Cognition and Neurosciences, Université libre de Bruxelles, Brussels, Belgium
- LCFC - Laboratoire de Cartographie Fonctionnelle du Cerveau, Université libre de Bruxelles, Brussels, Belgium
- UNI - ULB Neurosciences Institute, Université libre de Bruxelles, Brussels, Belgium
| | - Philippe Peigneux
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit at CRCN, Center for Research in Cognition and Neurosciences, Université libre de Bruxelles, Brussels, Belgium.
- UNI - ULB Neurosciences Institute, Université libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
42
|
Debellemaniere E, Chambon S, Pinaud C, Thorey V, Dehaene D, Léger D, Chennaoui M, Arnal PJ, Galtier MN. Performance of an Ambulatory Dry-EEG Device for Auditory Closed-Loop Stimulation of Sleep Slow Oscillations in the Home Environment. Front Hum Neurosci 2018; 12:88. [PMID: 29568267 PMCID: PMC5853451 DOI: 10.3389/fnhum.2018.00088] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/23/2018] [Indexed: 01/14/2023] Open
Abstract
Recent research has shown that auditory closed-loop stimulation can enhance sleep slow oscillations (SO) to improve N3 sleep quality and cognition. Previous studies have been conducted in lab environments. The present study aimed to validate and assess the performance of a novel ambulatory wireless dry-EEG device (WDD), for auditory closed-loop stimulation of SO during N3 sleep at home. The performance of the WDD to detect N3 sleep automatically and to send auditory closed-loop stimulation on SO were tested on 20 young healthy subjects who slept with both the WDD and a miniaturized polysomnography (part 1) in both stimulated and sham nights within a double blind, randomized and crossover design. The effects of auditory closed-loop stimulation on delta power increase were assessed after one and 10 nights of stimulation on an observational pilot study in the home environment including 90 middle-aged subjects (part 2).The first part, aimed at assessing the quality of the WDD as compared to a polysomnograph, showed that the sensitivity and specificity to automatically detect N3 sleep in real-time were 0.70 and 0.90, respectively. The stimulation accuracy of the SO ascending-phase targeting was 45 ± 52°. The second part of the study, conducted in the home environment, showed that the stimulation protocol induced an increase of 43.9% of delta power in the 4 s window following the first stimulation (including evoked potentials and SO entrainment effect). The increase of SO response to auditory stimulation remained at the same level after 10 consecutive nights. The WDD shows good performances to automatically detect in real-time N3 sleep and to send auditory closed-loop stimulation on SO accurately. These stimulation increased the SO amplitude during N3 sleep without any adaptation effect after 10 consecutive nights. This tool provides new perspectives to figure out novel sleep EEG biomarkers in longitudinal studies and can be interesting to conduct broad studies on the effects of auditory stimulation during sleep.
Collapse
Affiliation(s)
- Eden Debellemaniere
- Rythm SAS, Paris, France.,Unité Fatigue et Vigilance, Neurosciences et Contraintes Opérationnelles, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,EA7330 Vigilance Fatigue et Sommeil, Hôtel Dieu Paris, APHP, Université Paris Descartes, Paris, France
| | - Stanislas Chambon
- Rythm SAS, Paris, France.,LTCI, Telecom ParisTech, Universitéaris-Saclay, Paris, France
| | | | | | | | - Damien Léger
- EA7330 Vigilance Fatigue et Sommeil, Hôtel Dieu Paris, APHP, Université Paris Descartes, Paris, France
| | - Mounir Chennaoui
- Unité Fatigue et Vigilance, Neurosciences et Contraintes Opérationnelles, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,EA7330 Vigilance Fatigue et Sommeil, Hôtel Dieu Paris, APHP, Université Paris Descartes, Paris, France
| | | | | |
Collapse
|
43
|
De Gennaro L, Gorgoni M, Reda F, Lauri G, Truglia I, Cordone S, Scarpelli S, Mangiaruga A, D’atri A, Lacidogna G, Ferrara M, Marra C, Rossini PM. The Fall of Sleep K-Complex in Alzheimer Disease. Sci Rep 2017; 7:39688. [PMID: 28045040 PMCID: PMC5206737 DOI: 10.1038/srep39688] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/25/2016] [Indexed: 02/08/2023] Open
Abstract
Although a slowing of electroencephalographic (EEG) activity during wakefulness and -to some extent- sleep of Alzheimer disease (AD) patients (i.e., increased slow-frequency activity) was documented, recent findings in healthy elderly show a decreased 0.6-1 Hz slow wave activity (SWA) during NREM, which was associated to β-amyloid deposition and impaired hippocampal memory consolidation. We hypothesize that the apparent contradiction may be explained by the partial overlap between 0.6-1 Hz EEG activity and K-Complex (KC). According to this view, we studied both frontal KCs and SWA in 20 AD patients and 20 healthy age-matched controls (HC) during nightly sleep, under the hypothesis that KCs better discriminate patients from healthy elderly than ≤1 Hz SWA. A drastic decrease of KC density during stage 2 NREM was found in AD compared to HC. Patients show more than 40% reduction of the KC density, allowing a correct classification of 80%. On the other hand, ≤1 Hz SWA of AD patients is slightly (not significantly) higher in most cortical areas compared to HC. Although no significant changes of ≤1 Hz SWA are detectable over frontal areas in AD, KC density decreases over the same location, and its decrease is related to the cognitive decline.
Collapse
Affiliation(s)
- Luigi De Gennaro
- Department of Psychology, “Sapienza” University of Rome, Rome, Italy
| | - Maurizio Gorgoni
- Department of Psychology, “Sapienza” University of Rome, Rome, Italy
| | - Flaminia Reda
- Department of Psychology, “Sapienza” University of Rome, Rome, Italy
| | - Giulia Lauri
- Department of Psychology, “Sapienza” University of Rome, Rome, Italy
| | - Ilaria Truglia
- Department of Psychology, “Sapienza” University of Rome, Rome, Italy
| | - Susanna Cordone
- Department of Psychology, “Sapienza” University of Rome, Rome, Italy
| | - Serena Scarpelli
- Department of Psychology, “Sapienza” University of Rome, Rome, Italy
| | | | - Aurora D’atri
- Department of Psychology, “Sapienza” University of Rome, Rome, Italy
| | - Giordano Lacidogna
- Institute of Neurology, Catholic University of The Sacred Heart, Rome, Italy
| | - Michele Ferrara
- Department of Biotechnological and Applied Clinical Science, University of L’Aquila, L’Aquila, Italy
| | - Camillo Marra
- Institute of Neurology, Catholic University of The Sacred Heart, Rome, Italy
| | - Paolo Maria Rossini
- Institute of Neurology, Catholic University of The Sacred Heart, Rome, Italy
- IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
44
|
Phase of Spontaneous Slow Oscillations during Sleep Influences Memory-Related Processing of Auditory Cues. J Neurosci 2016; 36:1401-9. [PMID: 26818525 DOI: 10.1523/jneurosci.3175-15.2016] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Slow oscillations during slow-wave sleep (SWS) may facilitate memory consolidation by regulating interactions between hippocampal and cortical networks. Slow oscillations appear as high-amplitude, synchronized EEG activity, corresponding to upstates of neuronal depolarization and downstates of hyperpolarization. Memory reactivations occur spontaneously during SWS, and can also be induced by presenting learning-related cues associated with a prior learning episode during sleep. This technique, targeted memory reactivation (TMR), selectively enhances memory consolidation. Given that memory reactivation is thought to occur preferentially during the slow-oscillation upstate, we hypothesized that TMR stimulation effects would depend on the phase of the slow oscillation. Participants learned arbitrary spatial locations for objects that were each paired with a characteristic sound (eg, cat-meow). Then, during SWS periods of an afternoon nap, one-half of the sounds were presented at low intensity. When object location memory was subsequently tested, recall accuracy was significantly better for those objects cued during sleep. We report here for the first time that this memory benefit was predicted by slow-wave phase at the time of stimulation. For cued objects, location memories were categorized according to amount of forgetting from pre- to post-nap. Conditions of high versus low forgetting corresponded to stimulation timing at different slow-oscillation phases, suggesting that learning-related stimuli were more likely to be processed and trigger memory reactivation when they occurred at the optimal phase of a slow oscillation. These findings provide insight into mechanisms of memory reactivation during sleep, supporting the idea that reactivation is most likely during cortical upstates. SIGNIFICANCE STATEMENT Slow-wave sleep (SWS) is characterized by synchronized neural activity alternating between active upstates and quiet downstates. The slow-oscillation upstates are thought to provide a window of opportunity for memory consolidation, particularly conducive to cortical plasticity. Recent evidence shows that sensory cues associated with previous learning can be delivered subtly during SWS to selectively enhance memory consolidation. Our results demonstrate that this behavioral benefit is predicted by slow-oscillation phase at stimulus presentation time. Cues associated with high versus low forgetting based on analysis of subsequent recall performance were delivered at opposite slow-oscillation phases. These results provide evidence of an optimal slow-oscillation phase for memory consolidation during sleep, supporting the idea that memory processing occurs preferentially during cortical upstates.
Collapse
|
45
|
Andrillon T, Kouider S. Implicit memory for words heard during sleep. Neurosci Conscious 2016; 2016:niw014. [PMID: 30356955 PMCID: PMC6192377 DOI: 10.1093/nc/niw014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/15/2016] [Accepted: 07/31/2016] [Indexed: 02/07/2023] Open
Abstract
When we fall asleep, our awareness of the surrounding world fades. Yet, the sleeping brain is far from being dormant and recent research unraveled the preservation of complex sensory processing during sleep. In wakefulness, such processes usually lead to the formation of long-term memory traces, being it implicit or explicit. We examined here the consequences upon awakening of the processing of sensory information at a high level of representation during sleep. Participants were instructed to classify auditory stimuli as words or pseudo-words, through left and right hand responses, while transitioning toward sleep. An analysis of the electroencephalographic (EEG) signal revealed the preservation of lateralized motor activations in response to sounds, suggesting that stimuli were correctly categorized during sleep. Upon awakening, participants did not explicitly remember words processed during sleep and failed to distinguish them from new words (old/new recognition test). However, both behavioral and EEG data indicate the presence of an implicit memory trace for words presented during sleep. In addition, the underlying neural signature of such implicit memories markedly differed from the explicit memories formed during wakefulness, in line with dual-process accounts arguing for two independent systems for explicit and implicit memory. Thus, our results reveal that implicit learning mechanisms can be triggered during sleep and provide a novel approach to explore the neural implementation of memory without awareness.
Collapse
Affiliation(s)
- Thomas Andrillon
- Département d’Études Cognitives, École Normale Supérieure—PSL Research University,
Brain and Consciousness Group (ENS, EHESS, CNRS), Paris, France
- École Doctorale Cerveau Cognition Comportement, Université Pierre et Marie Curie,
Paris, France
| | - Sid Kouider
- Département d’Études Cognitives, École Normale Supérieure—PSL Research University,
Brain and Consciousness Group (ENS, EHESS, CNRS), Paris, France
| |
Collapse
|
46
|
Santostasi G, Malkani R, Riedner B, Bellesi M, Tononi G, Paller KA, Zee PC. Phase-locked loop for precisely timed acoustic stimulation during sleep. J Neurosci Methods 2015; 259:101-114. [PMID: 26617321 DOI: 10.1016/j.jneumeth.2015.11.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND A brain-computer interface could potentially enhance the various benefits of sleep. NEW METHOD We describe a strategy for enhancing slow-wave sleep (SWS) by stimulating the sleeping brain with periodic acoustic stimuli that produce resonance in the form of enhanced slow-wave activity in the electroencephalogram (EEG). The system delivers each acoustic stimulus at a particular phase of an electrophysiological rhythm using a phase-locked loop (PLL). RESULTS The PLL is computationally economical and well suited to follow and predict the temporal behavior of the EEG during slow-wave sleep. COMPARISON WITH EXISTING METHODS Acoustic stimulation methods may be able to enhance SWS without the risks inherent in electrical stimulation or pharmacological methods. The PLL method differs from other acoustic stimulation methods that are based on detecting a single slow wave rather than modeling slow-wave activity over an extended period of time. CONCLUSIONS By providing real-time estimates of the phase of ongoing EEG oscillations, the PLL can rapidly adjust to physiological changes, thus opening up new possibilities to study brain dynamics during sleep. Future application of these methods hold promise for enhancing sleep quality and associated daytime behavior and improving physiologic function.
Collapse
Affiliation(s)
- Giovanni Santostasi
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 710 N Lake Shore Drive, 5th floor, Chicago, IL 60611, USA.
| | - Roneil Malkani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 710 N Lake Shore Drive, 5th floor, Chicago, IL 60611, USA
| | - Brady Riedner
- Department of Psychiatry, School of Medicine, University of Wisconsin, 6001 Research Park Blvd, Madison, WI 53719, USA
| | - Michele Bellesi
- Department of Psychiatry, School of Medicine, University of Wisconsin, 6001 Research Park Blvd, Madison, WI 53719, USA
| | - Giulio Tononi
- Department of Psychiatry, School of Medicine, University of Wisconsin, 6001 Research Park Blvd, Madison, WI 53719, USA
| | - Ken A Paller
- Department of Psychology, Northwestern University, 2029 Sheridan Rd, Evanston, IL 60208, USA
| | - Phyllis C Zee
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 710 N Lake Shore Drive, 5th floor, Chicago, IL 60611, USA
| |
Collapse
|
47
|
Ong JL, Lo JC, Chee NIYN, Santostasi G, Paller KA, Zee PC, Chee MWL. Effects of phase-locked acoustic stimulation during a nap on EEG spectra and declarative memory consolidation. Sleep Med 2015; 20:88-97. [PMID: 27318231 DOI: 10.1016/j.sleep.2015.10.016] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/26/2015] [Accepted: 10/01/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Acoustic stimulation synchronized to slow waves (SWs) can enhance these sleep features and facilitate memory consolidation during nocturnal sleep. Here, we investigated whether a similar benefit could be accrued following stimulation during an afternoon nap. We also evaluated the event-related dynamics of associated EEG spectral changes and their correlation with memory performance. METHODS Sixteen healthy young adults (mean age: 22 ± 1.4 years; nine males) were studied under two conditions: stimulation (STIM) and no stimulation (SHAM), in counter-balanced order. In the STIM condition, acoustic stimulation was delivered using blocks of five tones, each phase-locked to the SW up-state during a 90-min nap opportunity. In the SHAM condition, these time points were marked, but tones were not presented. Prior to the nap, participants learned 40 semantically related word pairs and immediate recall was tested. A delayed recall test was administered 45 min after awakening. RESULTS Compared to the SHAM condition, acoustic stimulation increased SW amplitude, theta, and fast spindle activity and attenuated the forgetting of word pairs (p values < 0.05). CONCLUSION Phase-locked acoustic stimulation can promote sleep-dependent declarative memory during a daytime nap. This can be achieved by stimulation in Stage 2 and SWS without a requirement for high-amplitude slow wave detection.
Collapse
Affiliation(s)
- Ju Lynn Ong
- Center for Cognitive Neuroscience, Neuroscience & Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - June C Lo
- Center for Cognitive Neuroscience, Neuroscience & Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Nicholas I Y N Chee
- Center for Cognitive Neuroscience, Neuroscience & Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Giovanni Santostasi
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ken A Paller
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Phyllis C Zee
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael W L Chee
- Center for Cognitive Neuroscience, Neuroscience & Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore.
| |
Collapse
|
48
|
Abstract
The <1 Hz EEG slow oscillation (SO) is a hallmark of slow-wave sleep (SWS) and is critically involved in sleep-associated memory formation. Previous studies showed that SOs and associated memory function can be effectively enhanced by closed-loop auditory stimulation, when clicks are presented in synchrony with upcoming SO up states. However, increasing SOs and synchronized excitability also bear the risk of emerging seizure activity, suggesting the presence of mechanisms in the healthy brain that counter developing hypersynchronicity during SOs. Here, we aimed to test the limits of driving SOs through closed-loop auditory stimulation in healthy humans. Study I tested a "Driving stimulation" protocol (vs "Sham") in which trains of clicks were presented in synchrony with SO up states basically as long as an ongoing SO train was identified on-line. Study II compared Driving stimulation with a "2-Click" protocol where the maximum of stimuli delivered in a train was limited to two clicks. Stimulation was applied during SWS in the first 210 min of nocturnal sleep. Before and after sleep declarative word-pair memories were tested. Compared with the Sham control, Driving stimulation prolonged SO trains and enhanced SO amplitudes, phase-locked spindle activity, and overnight retention of word pairs (all ps < 0.05). Importantly, effects of Driving stimulation did not exceed those of 2-Click stimulation (p > 0.180), indicating the presence of a mechanism preventing the development of hypersynchronicity during SO activity. Assessment of temporal dynamics revealed a rapidly fading phase-locked spindle activity during repetitive click stimulation, suggesting that spindle refractoriness contributes to this protective mechanism.
Collapse
|
49
|
Feld GB, Diekelmann S. Sleep smart-optimizing sleep for declarative learning and memory. Front Psychol 2015; 6:622. [PMID: 26029150 PMCID: PMC4428077 DOI: 10.3389/fpsyg.2015.00622] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 04/27/2015] [Indexed: 02/05/2023] Open
Abstract
The last decade has witnessed a spurt of new publications documenting sleep's essential contribution to the brains ability to form lasting memories. For the declarative memory domain, slow wave sleep (the deepest sleep stage) has the greatest beneficial effect on the consolidation of memories acquired during preceding wakefulness. The finding that newly encoded memories become reactivated during subsequent sleep fostered the idea that reactivation leads to the strengthening and transformation of the memory trace. According to the active system consolidation account, trace reactivation leads to the redistribution of the transient memory representations from the hippocampus to the long-lasting knowledge networks of the cortex. Apart from consolidating previously learned information, sleep also facilitates the encoding of new memories after sleep, which probably relies on the renormalization of synaptic weights during sleep as suggested by the synaptic homeostasis theory. During wakefulness overshooting potentiation causes an imbalance in synaptic weights that is countered by synaptic downscaling during subsequent sleep. This review briefly introduces the basic concepts and central findings of the research on sleep and memory, and discusses implications of this lab-based work for everyday applications to make the best possible use of sleep's beneficial effect on learning and memory.
Collapse
Affiliation(s)
- Gordon B Feld
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| | - Susanne Diekelmann
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| |
Collapse
|
50
|
Abstract
Large-amplitude sleep slow oscillations group faster neuronal oscillations and are of functional relevance for memory performance. However, relatively little is known about the impact of slow oscillations on functionally coupled networks. Here, we provide a comprehensive view on how human slow oscillatory dynamics influence various measures of brain processing. We demonstrate that slow oscillations coordinate interregional cortical communication, as assessed by phase synchrony in the sleep spindle frequency range and cross-frequency coupling between spindle and beta activity. Furthermore, we show that the organizing role of slow oscillations is restricted to circumscribed topographical areas. These findings add importantly to our basic understanding of the orchestrating role of slow oscillations. In addition, they are of considerable relevance for accounts of sleep-dependent memory reprocessing and consolidation.
Collapse
|