1
|
Allen JR, Skeath JB, Johnson SL. Maintenance of Melanocyte Stem Cell Quiescence by GABA-A Signaling in Larval Zebrafish. Genetics 2019; 213:555-566. [PMID: 31444245 PMCID: PMC6781893 DOI: 10.1534/genetics.119.302416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022] Open
Abstract
In larval zebrafish, melanocyte stem cells (MSCs) are quiescent, but can be recruited to regenerate the larval pigment pattern following melanocyte ablation. Through pharmacological experiments, we found that inhibition of γ-aminobutyric acid (GABA)-A receptor function, specifically the GABA-A ρ subtype, induces excessive melanocyte production in larval zebrafish. Conversely, pharmacological activation of GABA-A inhibited melanocyte regeneration. We used clustered regularly interspaced short palindromic repeats/Cas9 to generate two mutant alleles of gabrr1, a subtype of GABA-A receptors. Both alleles exhibited robust melanocyte overproduction, while conditional overexpression of gabrr1 inhibited larval melanocyte regeneration. Our data suggest that gabrr1 signaling is necessary to maintain MSC quiescence and sufficient to reduce, but not eliminate, melanocyte regeneration in larval zebrafish.
Collapse
Affiliation(s)
- James R Allen
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - James B Skeath
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Stephen L Johnson
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
2
|
Hosseini S, Ha NT, Simianer H, Falker-Gieske C, Brenig B, Franke A, Hörstgen-Schwark G, Tetens J, Herzog S, Sharifi AR. Genetic mechanism underlying sexual plasticity and its association with colour patterning in zebrafish (Danio rerio). BMC Genomics 2019; 20:341. [PMID: 31060508 PMCID: PMC6503382 DOI: 10.1186/s12864-019-5722-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/22/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Elevated water temperature, as is expected through climate change, leads to masculinization in fish species with sexual plasticity, resulting in changes in population dynamics. These changes are one important ecological consequence, contributing to the risk of extinction in small and inbred fish populations under natural conditions, due to male-biased sex ratio. Here we investigated the effect of elevated water temperature during embryogenesis on sex ratio and sex-biased gene expression profiles between two different tissues, namely gonad and caudal fin of adult zebrafish males and females, to gain new insights into the molecular mechanisms underlying sex determination (SD) and colour patterning related to sexual attractiveness. RESULTS Our study demonstrated sex ratio imbalances with 25.5% more males under high-temperature condition, resulting from gonadal masculinization. The result of transcriptome analysis showed a significantly upregulated expression of male SD genes (e.g. dmrt1, amh, cyp11c1 and sept8b) and downregulation of female SD genes (e.g. zp2.1, vtg1, cyp19a1a and bmp15) in male gonads compared to female gonads. Contrary to expectations, we found highly differential expression of colour pattern (CP) genes in the gonads, suggesting the 'neofunctionalisation' of those genes in the zebrafish reproduction system. However, in the caudal fin, no differential expression of CP genes was identified, suggesting the observed differences in colouration between males and females in adult fish may be due to post-transcriptional regulation of key enzymes involved in pigment synthesis and distribution. CONCLUSIONS Our study demonstrates male-biased sex ratio under high temperature condition and support a polygenic SD (PSD) system in laboratory zebrafish. We identify a subset of pathways (tight junction, gap junction and apoptosis), enriched for SD and CP genes, which appear to be co-regulated in the same pathway, providing evidence for involvement of those genes in the regulation of phenotypic sexual dimorphism in zebrafish.
Collapse
Affiliation(s)
- Shahrbanou Hosseini
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany. .,Center for Integrated Breeding Research, University of Goettingen, Goettingen, Germany.
| | - Ngoc-Thuy Ha
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Goettingen, Germany
| | - Henner Simianer
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Goettingen, Germany
| | - Clemens Falker-Gieske
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Goettingen, Germany
| | - Bertram Brenig
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Goettingen, Germany.,Institute of Veterinary Medicine, University of Goettingen, Goettingen, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | | | - Jens Tetens
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Goettingen, Germany
| | - Sebastian Herzog
- Max Planck Institute for Dynamics and Self-Organization, Goettingen, Germany.,Department for Computational Neuroscience, 3rd Physics Institute-Biophysics, University of Goettingen, Goettingen, Germany
| | - Ahmad Reza Sharifi
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Goettingen, Germany
| |
Collapse
|
3
|
Dardis G, Tryon R, Ton Q, Johnson SL, Iovine MK. Cx43 suppresses evx1 expression to regulate joint initiation in the regenerating fin. Dev Dyn 2017; 246:691-699. [PMID: 28577298 DOI: 10.1002/dvdy.24531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/08/2017] [Accepted: 05/30/2017] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND How joints are correctly positioned in the vertebrate skeleton remains poorly understood. From our studies on the regenerating fin, we have evidence that the gap junction protein Cx43 suppresses joint formation by suppressing the expression of the evx1 transcription factor. Joint morphogenesis proceeds through at least two discrete stages. First, cells that will produce the joint condense in a single row on the bone matrix ("initiation"). Second, these cells separate coincident with articulation of the bone matrix. We propose that Cx43 activity is transiently reduced prior to joint initiation. RESULTS We first define the timing of joint initiation with respect to regeneration. We next correlate reduced cx43 expression and increased evx1 expression with initiation. Through manipulation of cx43 expression, we demonstrate that Cx43 negatively influences evx1 expression and joint formation. We further demonstrate that Cx43 activity in the dermal fibroblasts is required to rescue joint formation in the cx43 mutant, short finb123 . CONCLUSIONS We conclude that Cx43 activity in the dermal fibroblasts influences the expression of evx1, and therefore the differentiation of the precursor cells that give rise to the joint-forming osteoblasts. Developmental Dynamics 246:691-699, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gabrielle Dardis
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | - Robert Tryon
- Genetics Department, Washington University School of Medicine, St. Louis, Missouri
| | - Quynh Ton
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | - Stephen L Johnson
- Genetics Department, Washington University School of Medicine, St. Louis, Missouri
| | - M Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| |
Collapse
|
4
|
Shibata E, Yokota Y, Horita N, Kudo A, Abe G, Kawakami K, Kawakami A. Fgf signalling controls diverse aspects of fin regeneration. Development 2016; 143:2920-9. [PMID: 27402707 DOI: 10.1242/dev.140699] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/05/2016] [Indexed: 12/18/2022]
Abstract
Studies have shown that fibroblast growth factor (Fgf) signalling is necessary for appendage regeneration, but its exact function and the ligands involved during regeneration have not yet been elucidated. Here, we performed comprehensive expression analyses and identified fgf20a and fgf3/10a as major Fgf ligands in the wound epidermis and blastema, respectively. To reveal the target cells and processes of Fgf signalling, we performed a transplantation experiment of mesenchymal cells that express the dominant-negative Fgf receptor 1 (dnfgfr1) under control of the heat-shock promoter. This mosaic knockdown analysis suggested that Fgf signalling is directly required for fin ray mesenchyme to form the blastema at the early pre-blastema stage and to activate the regenerative cell proliferation at a later post-blastema stage. These results raised the possibility that the early epidermal Fgf20a and the later blastemal Fgf3/10a could be responsible for these respective processes. We demonstrated by gain-of-function analyses that Fgf20a induces the expression of distal blastema marker junbl, and that Fgf3 promotes blastema cell proliferation. Our study highlights that Fgfs in the wound epidermis and blastema have distinct functions to regulate fin regeneration cooperatively.
Collapse
Affiliation(s)
- Eri Shibata
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Yuki Yokota
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Natsumi Horita
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Akira Kudo
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Gembu Abe
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima 411-8540, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima 411-8540, Japan Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan
| | - Atsushi Kawakami
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
5
|
GH indirectly enhances the regeneration of transgenic zebrafish fins through IGF2a and IGF2b. Transgenic Res 2016; 25:743-9. [PMID: 27126069 DOI: 10.1007/s11248-016-9957-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
The somatotropic axis, composed essentially of the growth hormone (GH) and insulin-like growth factors (IGFs), is the main regulator of somatic growth in vertebrates. However, these protein hormones are also involved in various other major physiological processes. Although the importance of IGFs in mechanisms involving tissue regeneration has already been established, little is known regarding the direct effects of GH in these processes. In this study, we used a transgenic zebrafish (Danio rerio) model, which overexpresses GH from the beta-actin constitutive promoter. The regenerative ability of the caudal fin was assessed after repeated amputations, as well as the expression of genes related to the GH/IGF axis. The results revealed that GH overexpression increased the regenerated area of the caudal fin in transgenic fish after the second amputation. Transgenic fish also presented a decrease in gene expression of the GH receptor (ghrb), in opposition to the increased expression of the IGF1 receptors (igf1ra and igf1rb). These results suggest that transgenic fish have a higher sensitivity to IGFs than to GH during fin regeneration. With respect to the different IGFs produced locally, a decrease in igf1a expression and a significant increase in both igf2a and igf2b expression was observed, suggesting that igf1a is not directly involved in fin regeneration. Overall, the results revealed that excess GH enhances fin regeneration in zebrafish through igf2a and igf2b expression, acting indirectly on this major physiological process.
Collapse
|
6
|
Anorve-Andress K, Arcand AL, Borg BR, Brown JL, Chartrand CA, Frank ML, Jansen JN, Joyce MJ, Joyce MT, Kinney JA, Kruggel SL, Lecy AD, Ma P, Malecha KM, Melgaard K, Miller PL, Nelson KK, Nieto Robles M, Perosino TR, Peterson JM, Rollins AD, Scherkenbach WL, Smith AL, Sodergren KA, Stiller JJ, Wehber KR, Liang JO. Variation in Spot and Stripe Patterns in Original and Regenerated Zebrafish Caudal Fins. Zebrafish 2016; 13:256-65. [PMID: 27096743 DOI: 10.1089/zeb.2015.1192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tissue regeneration requires not only the replacement of lost cells and tissues, but also the recreation of morphologies and patterns. Skin pigment pattern is a relatively simple system that can allow researchers to uncover the underlying mechanisms of pattern formation. To gain insight into how pigment patterns form, undergraduate students in the senior level course Developmental Biology designed an experiment that assayed pigment patterns in original and regenerated caudal fins of wild-type, striped, and mutant, spotted zebrafish. A majority of the WT fins regenerated with a similar striped pattern. In contrast, the pattern of spots even in the original fins of the mutants varied among individual fish. Similarly, the majority of the spots in the mutants did not regenerate with the same morphology, size, or spacing as the original fins. This was true even when only a small amount of fin was removed, leaving most of the fin to potentially reseed the pattern in the regenerating tissue. This suggests that the mechanism that creates the wild-type, striped pattern persists to recreate the pattern during regeneration. The mechanism that creates the spots in the mutants, however, must include an unknown element that introduces variability.
Collapse
Affiliation(s)
| | - Amy Lucille Arcand
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota
| | - Bethanie R Borg
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota
| | - Jayce Lee Brown
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota
| | | | - Marisohn L Frank
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota
| | - Jedediah N Jansen
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota
| | - Michael J Joyce
- 2 Integrated Biosciences Graduate Program, University of Minnesota , Duluth, Minnesota
| | - Michael T Joyce
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota
| | - Joseph A Kinney
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota
| | | | - Amanda D Lecy
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota
| | - Phyo Ma
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota
| | - Katchen M Malecha
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota
| | - Kelsey Melgaard
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota
| | - Paula L Miller
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota
| | - Kristina K Nelson
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota
| | | | | | | | | | | | - Andrea L Smith
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota
| | - Kelsey A Sodergren
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota
| | - Jacob Jo Stiller
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota
| | - Kevin R Wehber
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota
| | - Jennifer Ostrom Liang
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota.,2 Integrated Biosciences Graduate Program, University of Minnesota , Duluth, Minnesota
| |
Collapse
|
7
|
Wehner D, Jahn C, Weidinger G. Use of the TetON System to Study Molecular Mechanisms of Zebrafish Regeneration. J Vis Exp 2015:e52756. [PMID: 26168286 DOI: 10.3791/52756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The zebrafish has become a very important model organism for studying vertebrate development, physiology, disease, and tissue regeneration. A thorough understanding of the molecular and cellular mechanisms involved requires experimental tools that allow for inducible, tissue-specific manipulation of gene expression or signaling pathways. Therefore, we and others have recently adapted the TetON system for use in zebrafish. The TetON system facilitates temporally and spatially-controlled gene expression and we have recently used this tool to probe for tissue-specific functions of Wnt/beta-catenin signaling during zebrafish tail fin regeneration. Here we describe the workflow for using the TetON system to achieve inducible, tissue-specific gene expression in the adult regenerating zebrafish tail fin. This includes the generation of stable transgenic TetActivator and TetResponder lines, transgene induction and techniques for verification of tissue-specific gene expression in the fin regenerate. Thus, this protocol serves as blueprint for setting up a functional TetON system in zebrafish and its subsequent use, in particular for studying fin regeneration.
Collapse
Affiliation(s)
- Daniel Wehner
- Institute for Biochemistry and Molecular Biology, Ulm University
| | - Christopher Jahn
- Institute for Biochemistry and Molecular Biology, Ulm University
| | | |
Collapse
|
8
|
Wehner D, Weidinger G. Signaling networks organizing regenerative growth of the zebrafish fin. Trends Genet 2015; 31:336-43. [PMID: 25929514 DOI: 10.1016/j.tig.2015.03.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 02/07/2023]
Abstract
In contrast to mammals, adult salamanders and fish can completely regenerate their appendages after amputation. The cellular and molecular mechanisms underlying this fascinating phenomenon are beginning to emerge, including substantial progress in the identification of signals that control regenerative growth of the zebrafish caudal fin. Despite the fairly simple architecture of the fin, the regulation of its regeneration is complex. Many signals, including fibroblast growth factor (FGF), Wnt, Hedgehog (Hh), retinoic acid (RA), Notch, bone morphogenic protein (BMP), activin, and insulin-like growth factor (IGF), are required for regeneration. Much work needs to be done to dissect tissue-specific functions of these pathways and how they interact, but Wnt/β-catenin signaling is already emerging as a central player. Surprisingly, Wnt/β-catenin signaling appears to largely indirectly control epidermal patterning, progenitor cell proliferation, and osteoblast maturation via regulation of a multitude of secondary signals.
Collapse
Affiliation(s)
- Daniel Wehner
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Gilbert Weidinger
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|