1
|
Kolesnikova O, Radu L, Poterszman A. TFIIH: A multi-subunit complex at the cross-roads of transcription and DNA repair. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 115:21-67. [PMID: 30798933 DOI: 10.1016/bs.apcsb.2019.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transcription factor IIH (TFIIH) is a multiprotein complex involved in both eukaryotic transcription and DNA repair, revealing a tight connection between these two processes. Composed of 10 subunits, it can be resolved into a 7-subunits core complex with the XPB translocase and the XPD helicase, and the 3-subunits kinase complex CAK, which also exists as a free complex with a distinct function. Initially identified as basal transcription factor, TFIIH also participates in transcription regulation and plays a key role in nucleotide excision repair (NER) for opening DNA at damaged sites, lesion verification and recruitment of additional repair factors. Our understanding of TFIIH function in eukaryotic cells has greatly benefited from studies of the genetic rare diseases xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD), that are not only characterized by cancer and aging predispositions but also by neurological and developmental defects. Although much remains unknown about TFIIH function, significant progresses have been done regarding the structure of the complex, the functions of its catalytic subunits and the multiple roles of the regulatory core-TFIIH subunits. This review provides a non-exhaustive survey of key discoveries on the structure and function of this pivotal factor, which can be considered as a promising target for therapeutic strategies.
Collapse
Affiliation(s)
- Olga Kolesnikova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Laura Radu
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Arnaud Poterszman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
2
|
Schilbach S, Hantsche M, Tegunov D, Dienemann C, Wigge C, Urlaub H, Cramer P. Structures of transcription pre-initiation complex with TFIIH and Mediator. Nature 2017; 551:204-209. [PMID: 29088706 PMCID: PMC6078178 DOI: 10.1038/nature24282] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/14/2017] [Indexed: 12/18/2022]
Abstract
For the initiation of transcription, RNA polymerase II (Pol II) assembles with general transcription factors on promoter DNA to form the pre-initiation complex (PIC). Here we report cryo-electron microscopy structures of the Saccharomyces cerevisiae PIC and PIC-core Mediator complex at nominal resolutions of 4.7 Å and 5.8 Å, respectively. The structures reveal transcription factor IIH (TFIIH), and suggest how the core and kinase TFIIH modules function in the opening of promoter DNA and the phosphorylation of Pol II, respectively. The TFIIH core subunit Ssl2 (a homologue of human XPB) is positioned on downstream DNA by the 'E-bridge' helix in TFIIE, consistent with TFIIE-stimulated DNA opening. The TFIIH kinase module subunit Tfb3 (MAT1 in human) anchors the kinase Kin28 (CDK7), which is mobile in the PIC but preferentially located between the Mediator hook and shoulder in the PIC-core Mediator complex. Open spaces between the Mediator head and middle modules may allow access of the kinase to its substrate, the C-terminal domain of Pol II.
Collapse
Affiliation(s)
- S Schilbach
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - M Hantsche
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - D Tegunov
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - C Dienemann
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - C Wigge
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - H Urlaub
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics Group, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - P Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Radu L, Schoenwetter E, Braun C, Marcoux J, Koelmel W, Schmitt DR, Kuper J, Cianférani S, Egly JM, Poterszman A, Kisker C. The intricate network between the p34 and p44 subunits is central to the activity of the transcription/DNA repair factor TFIIH. Nucleic Acids Res 2017; 45:10872-10883. [PMID: 28977422 PMCID: PMC5737387 DOI: 10.1093/nar/gkx743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/10/2017] [Accepted: 08/23/2017] [Indexed: 01/29/2023] Open
Abstract
The general transcription factor IIH (TFIIH) is a multi-protein complex and its 10 subunits are engaged in an intricate protein-protein interaction network critical for the regulation of its transcription and DNA repair activities that are so far little understood on a molecular level. In this study, we focused on the p44 and the p34 subunits, which are central for the structural integrity of core-TFIIH. We solved crystal structures of a complex formed by the p34 N-terminal vWA and p44 C-terminal zinc binding domains from Chaetomium thermophilum and from Homo sapiens. Intriguingly, our functional analyses clearly revealed the presence of a second interface located in the C-terminal zinc binding region of p34, which can rescue a disrupted interaction between the p34 vWA and the p44 RING domain. In addition, we demonstrate that the C-terminal zinc binding domain of p34 assumes a central role with respect to the stability and function of TFIIH. Our data reveal a redundant interaction network within core-TFIIH, which may serve to minimize the susceptibility to mutational impairment. This provides first insights why so far no mutations in the p34 or p44 TFIIH-core subunits have been identified that would lead to the hallmark nucleotide excision repair syndromes xeroderma pigmentosum or trichothiodystrophy.
Collapse
Affiliation(s)
- Laura Radu
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS/Inserm/UdS, BP163, 67404 Illkirch Cedex, C.U. Strasbourg, France
| | - Elisabeth Schoenwetter
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Cathy Braun
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS/Inserm/UdS, BP163, 67404 Illkirch Cedex, C.U. Strasbourg, France
| | - Julien Marcoux
- Laboratoire de Spectrométrie de Masse Bio-Organique, Université de Strasbourg, CNRS, IPHC UMR 7178, 25 rue Becquerel, 67087 Strasbourg, France
| | - Wolfgang Koelmel
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Dominik R. Schmitt
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Jochen Kuper
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse Bio-Organique, Université de Strasbourg, CNRS, IPHC UMR 7178, 25 rue Becquerel, 67087 Strasbourg, France
| | - Jean M. Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS/Inserm/UdS, BP163, 67404 Illkirch Cedex, C.U. Strasbourg, France
| | - Arnaud Poterszman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS/Inserm/UdS, BP163, 67404 Illkirch Cedex, C.U. Strasbourg, France
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
4
|
The cryo-electron microscopy structure of human transcription factor IIH. Nature 2017; 549:414-417. [PMID: 28902838 DOI: 10.1038/nature23903] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/10/2017] [Indexed: 02/04/2023]
Abstract
Human transcription factor IIH (TFIIH) is part of the general transcriptional machinery required by RNA polymerase II for the initiation of eukaryotic gene transcription. Composed of ten subunits that add up to a molecular mass of about 500 kDa, TFIIH is also essential for nucleotide excision repair. The seven-subunit TFIIH core complex formed by XPB, XPD, p62, p52, p44, p34, and p8 is competent for DNA repair, while the CDK-activating kinase subcomplex, which includes the kinase activity of CDK7 as well as the cyclin H and MAT1 subunits, is additionally required for transcription initiation. Mutations in the TFIIH subunits XPB, XPD, and p8 lead to severe premature ageing and cancer propensity in the genetic diseases xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy, highlighting the importance of TFIIH for cellular physiology. Here we present the cryo-electron microscopy structure of human TFIIH at 4.4 Å resolution. The structure reveals the molecular architecture of the TFIIH core complex, the detailed structures of its constituent XPB and XPD ATPases, and how the core and kinase subcomplexes of TFIIH are connected. Additionally, our structure provides insight into the conformational dynamics of TFIIH and the regulation of its activity.
Collapse
|
5
|
Function of Conserved Topological Regions within the Saccharomyces cerevisiae Basal Transcription Factor TFIIH. Mol Cell Biol 2016; 36:2464-75. [PMID: 27381459 DOI: 10.1128/mcb.00182-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/30/2016] [Indexed: 11/20/2022] Open
Abstract
TFIIH is a 10-subunit RNA polymerase II basal transcription factor with a dual role in DNA repair. TFIIH contains three enzymatic functions and over 30 conserved subdomains and topological regions. We systematically tested the function of these regions in three TFIIH core module subunits, i.e., Ssl1, Tfb4, and Tfb2, in the DNA translocase subunit Ssl2, and in the kinase module subunit Tfb3. Our results are consistent with previously predicted roles for the Tfb2 Hub, Ssl2 Lock, and Tfb3 Latch regions, with mutations in these elements typically having severe defects in TFIIH subunit association. We also found unexpected roles for other domains whose function had not previously been defined. First, the Ssl1-Tfb4 Ring domains are important for TFIIH assembly. Second, the Tfb2 Hub and HEAT domains have an unexpected role in association with Tfb3. Third, the Tfb3 Ring domain is important for association with many other TFIIH subunits. Fourth, a partial deletion of the Ssl1 N-terminal extension (NTE) domain inhibits TFIIH function without affecting subunit association. Finally, we used site-specific cross-linking to localize the Tfb3-binding surface on the Rad3 Arch domain. Our cross-linking results suggest that Tfb3 and Rad3 have an unusual interface, with Tfb3 binding on two opposite faces of the Arch.
Collapse
|
6
|
Compe E, Egly JM. Nucleotide Excision Repair and Transcriptional Regulation: TFIIH and Beyond. Annu Rev Biochem 2016; 85:265-90. [DOI: 10.1146/annurev-biochem-060815-014857] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Emmanuel Compe
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université de Strasbourg, 67404 Illkirch Cedex, Commune Urbaine Strasbourg, France; ,
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université de Strasbourg, 67404 Illkirch Cedex, Commune Urbaine Strasbourg, France; ,
| |
Collapse
|
7
|
He Y, Yan C, Fang J, Inouye C, Tjian R, Ivanov I, Nogales E. Near-atomic resolution visualization of human transcription promoter opening. Nature 2016; 533:359-65. [PMID: 27193682 PMCID: PMC4940141 DOI: 10.1038/nature17970] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/05/2016] [Indexed: 12/11/2022]
Abstract
In eukaryotic transcription initiation, a large multi-subunit pre-initiation complex (PIC) that assembles at the core promoter is required for the opening of the duplex DNA and identification of the start site for transcription by RNA polymerase II. Here we use cryo-electron microscropy (cryo-EM) to determine near-atomic resolution structures of the human PIC in a closed state (engaged with duplex DNA), an open state (engaged with a transcription bubble), and an initially transcribing complex (containing six base pairs of DNA-RNA hybrid). Our studies provide structures for previously uncharacterized components of the PIC, such as TFIIE and TFIIH, and segments of TFIIA, TFIIB and TFIIF. Comparison of the different structures reveals the sequential conformational changes that accompany the transition from each state to the next throughout the transcription initiation process. This analysis illustrates the key role of TFIIB in transcription bubble stabilization and provides strong structural support for a translocase activity of XPB.
Collapse
Affiliation(s)
- Yuan He
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Chunli Yan
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302, USA
| | - Jie Fang
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| | - Carla Inouye
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, California 94720, USA
| | - Robert Tjian
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA.,Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, California 94720, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Ivaylo Ivanov
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302, USA
| | - Eva Nogales
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
8
|
Luo J, Cimermancic P, Viswanath S, Ebmeier CC, Kim B, Dehecq M, Raman V, Greenberg CH, Pellarin R, Sali A, Taatjes DJ, Hahn S, Ranish J. Architecture of the Human and Yeast General Transcription and DNA Repair Factor TFIIH. Mol Cell 2015; 59:794-806. [PMID: 26340423 DOI: 10.1016/j.molcel.2015.07.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/10/2015] [Accepted: 07/17/2015] [Indexed: 10/23/2022]
Abstract
TFIIH is essential for both RNA polymerase II transcription and DNA repair, and mutations in TFIIH can result in human disease. Here, we determine the molecular architecture of human and yeast TFIIH by an integrative approach using chemical crosslinking/mass spectrometry (CXMS) data, biochemical analyses, and previously published electron microscopy maps. We identified four new conserved "topological regions" that function as hubs for TFIIH assembly and more than 35 conserved topological features within TFIIH, illuminating a network of interactions involved in TFIIH assembly and regulation of its activities. We show that one of these conserved regions, the p62/Tfb1 Anchor region, directly interacts with the DNA helicase subunit XPD/Rad3 in native TFIIH and is required for the integrity and function of TFIIH. We also reveal the structural basis for defects in patients with xeroderma pigmentosum and trichothiodystrophy, with mutations found at the interface between the p62 Anchor region and the XPD subunit.
Collapse
Affiliation(s)
- Jie Luo
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA 98109, USA
| | - Peter Cimermancic
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shruthi Viswanath
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christopher C Ebmeier
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Bong Kim
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA 98109, USA
| | - Marine Dehecq
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, PO Box 19024, Mailstop A1-162, Seattle, WA 98109, USA; Génétique des Interactions Macromoléculaires, Institut Pasteur, CNRS UMR3525, 25-28 rue du docteur Roux, 75015 Paris, France
| | - Vishnu Raman
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Charles H Greenberg
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Riccardo Pellarin
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dylan J Taatjes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Steven Hahn
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, PO Box 19024, Mailstop A1-162, Seattle, WA 98109, USA
| | - Jeff Ranish
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA 98109, USA.
| |
Collapse
|
9
|
Tajedin L, Anwar M, Gupta D, Tuteja R. Comparative insight into nucleotide excision repair components of Plasmodium falciparum. DNA Repair (Amst) 2015; 28:60-72. [PMID: 25757193 DOI: 10.1016/j.dnarep.2015.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 01/27/2015] [Accepted: 02/10/2015] [Indexed: 12/19/2022]
Abstract
Nucleotide excision repair (NER) is one of the DNA repair pathways crucial for maintenance of genome integrity and deals with repair of DNA damages arising due to exogenous and endogenous factors. The multi-protein transcription initiation factor TFIIH plays a critical role in NER and transcription and is highly conserved throughout evolution. The malaria parasite Plasmodium falciparum has been a challenge for the researchers for a long time because of emergence of drug resistance. The availability of its genome sequence has opened new avenues for research. Antimalarial drugs like chloroquine and mefloquine have been reported to inhibit NER pathway mediated repair reactions and thus promote mutagenesis. Previous studies have validated existence and implied possible association of defective or altered DNA repair pathways with development of drug resistant phenotype in certain P. falciparum strains. We conjecture that a compromised NER pathway in combination with other DNA repair pathways might be conducive for the emergence and sustenance of drug resistance in P. falciparum. Therefore we decided to unravel the components of NER pathway in P. falciparum and using bioinformatics based approaches here we report a genome wide in silico analysis of NER components from P. falciparum and their comparison with the human host. Our results reveal that P. falciparum genome contains almost all the components of NER but we were unable to find clear homologue for p62 and XPC in its genome. The structure modeling of all the components further suggests that their structures are significantly conserved. Furthermore this study lays a foundation to perform similar comparative studies between drug resistant and drug sensitive strains of parasite in order to understand DNA repair-related mechanisms of drug resistance.
Collapse
Affiliation(s)
- Leila Tajedin
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Masroor Anwar
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Dinesh Gupta
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Renu Tuteja
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
10
|
Kim JS, Saint-André C, Lim HS, Hwang CS, Egly JM, Cho Y. Crystal structure of the Rad3/XPD regulatory domain of Ssl1/p44. J Biol Chem 2015; 290:8321-30. [PMID: 25681444 DOI: 10.1074/jbc.m115.636514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Ssl1/p44 subunit is a core component of the yeast/mammalian general transcription factor TFIIH, which is involved in transcription and DNA repair. Ssl1/p44 binds to and stimulates the Rad3/XPD helicase activity of TFIIH. To understand the helicase stimulatory mechanism of Ssl1/p44, we determined the crystal structure of the N-terminal regulatory domain of Ssl1 from Saccharomyces cerevisiae. Ssl1 forms a von Willebrand factor A fold in which a central six-stranded β-sheet is sandwiched between three α helices on both sides. Structural and biochemical analyses of Ssl1/p44 revealed that the β4-α5 loop, which is frequently found at the interface between von Willebrand factor A family proteins and cellular counterparts, is critical for the stimulation of Rad3/XPD. Yeast genetics analyses showed that double mutation of Leu-239 and Ser-240 in the β4-α5 loop of Ssl1 leads to lethality of a yeast strain, demonstrating the importance of the Rad3-Ssl1 interactions to cell viability. Here, we provide a structural model for the Rad3/XPD-Ssl1/p44 complex and insights into how the binding of Ssl1/p44 contributes to the helicase activity of Rad3/XPD and cell viability.
Collapse
Affiliation(s)
- Jin Seok Kim
- From the Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, South Korea and
| | - Charlotte Saint-André
- the Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UdS, BP163, 67404 Illkirch Cedex, C.U. Strasbourg, France
| | - Hye Seong Lim
- From the Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, South Korea and
| | - Cheol-Sang Hwang
- From the Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, South Korea and
| | - Jean Marc Egly
- the Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UdS, BP163, 67404 Illkirch Cedex, C.U. Strasbourg, France
| | - Yunje Cho
- From the Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, South Korea and
| |
Collapse
|