1
|
Journou M, Devaux M, Jaulin N, Pichard V, Segovia M, Moreau A, Le Duff J, Cuturi MC, Guilbaud M, Adjali O. Immune-driven gene expression loss following intramuscular AAV delivery to non-human primates is only transient. Mol Ther Methods Clin Dev 2025; 33:101409. [PMID: 40104151 PMCID: PMC11914520 DOI: 10.1016/j.omtm.2025.101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/14/2025] [Indexed: 03/20/2025]
Abstract
Recombinant adeno-associated virus (rAAV) vectors stand out as highly promising for in vivo gene transfer, particularly in targeting the skeletal muscle for treating muscular genetic diseases or secreting therapeutic factors. Despite the simplicity and efficacy of the established intramuscular (IM) route, it has been often associated with an immune-induced rapid loss of transgene expression, in particular in large animal models, and generally considered irreversible as a consequence of a cytotoxic elimination of transduced cells. Here, we report in a non-human primate model that transgene expression loss after IM delivery of an rAAV1 expressing an immunogenic protein is only transient, with the re-expression of the transgene lasting up to 5 years post-injection. We show that the recovery of transgene expression is due to persisting viral genomes in the injected muscles despite the detection of peripheral anti-transgene cellular immunity. Persisting genomes were observed in the presence of infiltrated mononuclear CD8 and CD4 T lymphocytes, among which we were able to detect FoxP3+ regulatory cells. This is to our knowledge the first report of a transient immune-mediated loss of gene expression in a large animal model after rAAV delivery that should shed new light on the issue of rAAV vector immunogenicity.
Collapse
Affiliation(s)
- Malo Journou
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, CHU de Nantes, 44200 Nantes, France
| | - Marie Devaux
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, CHU de Nantes, 44200 Nantes, France
| | - Nicolas Jaulin
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, CHU de Nantes, 44200 Nantes, France
| | - Virginie Pichard
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, CHU de Nantes, 44200 Nantes, France
| | - Mercedes Segovia
- INSERM UMR 1064, ITUN - Institut de Transplantation Urologie Nephrologie, CHU de Nantes, Center of Research in Transplantation and Immunology, Université de Nantes, 44200 Nantes, France
| | - Aurélie Moreau
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, CHU de Nantes, 44200 Nantes, France
- INSERM UMR 1064, ITUN - Institut de Transplantation Urologie Nephrologie, CHU de Nantes, Center of Research in Transplantation and Immunology, Université de Nantes, 44200 Nantes, France
| | - Johanne Le Duff
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, CHU de Nantes, 44200 Nantes, France
| | - Maria Cristina Cuturi
- INSERM UMR 1064, ITUN - Institut de Transplantation Urologie Nephrologie, CHU de Nantes, Center of Research in Transplantation and Immunology, Université de Nantes, 44200 Nantes, France
| | - Mickaël Guilbaud
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, CHU de Nantes, 44200 Nantes, France
| | - Oumeya Adjali
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, CHU de Nantes, 44200 Nantes, France
| |
Collapse
|
2
|
Artemyev V, Gubaeva A, Paremskaia AI, Dzhioeva AA, Deviatkin A, Feoktistova SG, Mityaeva O, Volchkov PY. Synthetic Promoters in Gene Therapy: Design Approaches, Features and Applications. Cells 2024; 13:1963. [PMID: 39682712 PMCID: PMC11640742 DOI: 10.3390/cells13231963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Gene therapy is a promising approach to the treatment of various inherited diseases, but its development is complicated by a number of limitations of the natural promoters used. The currently used strong ubiquitous natural promoters do not allow for the specificity of expression, while natural tissue-specific promoters have lowactivity. These limitations of natural promoters can be addressed by creating new synthetic promoters that achieve high levels of tissue-specific target gene expression. This review discusses recent advances in the development of synthetic promoters that provide a more precise regulation of gene expression. Approaches to the design of synthetic promoters are reviewed, including manual design and bioinformatic methods using machine learning. Examples of successful applications of synthetic promoters in the therapy of hereditary diseases and cancer are presented, as well as prospects for their clinical use.
Collapse
Affiliation(s)
- Valentin Artemyev
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia; (A.G.); (A.D.); (O.M.); (P.Y.V.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia;
| | - Anna Gubaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia; (A.G.); (A.D.); (O.M.); (P.Y.V.)
| | - Anastasiia Iu. Paremskaia
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia; (A.G.); (A.D.); (O.M.); (P.Y.V.)
| | - Amina A. Dzhioeva
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia;
| | - Andrei Deviatkin
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia; (A.G.); (A.D.); (O.M.); (P.Y.V.)
| | - Sofya G. Feoktistova
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia; (A.G.); (A.D.); (O.M.); (P.Y.V.)
| | - Olga Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia; (A.G.); (A.D.); (O.M.); (P.Y.V.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia;
- Faculty of Fundamental Medicine, Moscow State University, Lomonosovsky Pr., 27, 119991 Moscow, Russia
| | - Pavel Yu. Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia; (A.G.); (A.D.); (O.M.); (P.Y.V.)
- Faculty of Fundamental Medicine, Moscow State University, Lomonosovsky Pr., 27, 119991 Moscow, Russia
- Moscow Clinical Scientific Center N.A. A.S. Loginov, 111123 Moscow, Russia
| |
Collapse
|
3
|
Wang X, Feng L, Lu Y, Zhang H. miR-122/PPARβ axis is involved in hypoxic exercise and modulates fatty acid metabolism in skeletal muscle of obese rats. Heliyon 2024; 10:e26572. [PMID: 38434053 PMCID: PMC10906430 DOI: 10.1016/j.heliyon.2024.e26572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
Hypoxic exercise is an effective intervention for obesity, because it promotes weight loss by regulating fatty acid (FA) metabolism. The regulation of peroxisome proliferator-activated receptor β (PPARβ) by miR-122 may be involved in this process, but the detailed mechanisms are unknown. In order to address this issue, we probed how miR-122 affected the expression of factors associated with FA metabolism in skeletal muscle of obese rats undergoing hypoxic training. By injecting adeno-associated virus 9 containing miR-122 overexpression vector or miR-122 inhibitor into skeletal muscles of rats with a 4-week hypoxic exercise regimen, the miR-122 expression level can be regulated. Body composition and blood lipid levels were analyzed, and PPARβ, carnitine palmitoyltransferase 1b (CPT1b), acetylCoA carboxylase 2 (ACC2), and FA synthase (FAS) mRNA and protein levels were evaluated using quantitative reverse transcription quantitative PCR(RT-qPCR) and Western blot analysis. We found that miR-122 overexpression increased low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) levels and decreased PPARβ, ACC2, and FAS expression. Conversely, miR-122 inhibition decreased TG level, increased high-density lipoprotein cholesterol (HDL-C) level, and upregulated PPARβ, ACC2, FAS, and CPT1b. These data indicated that the negative regulation of PPARβ by miR-122 promotes FA metabolism by altering the levels of the factors related to FA metabolism in skeletal muscle of obese rat under hypoxic training, thus providing molecular-level insight into the beneficial effects of this intervention.
Collapse
Affiliation(s)
- Xuebing Wang
- College of Physical Education, Guangxi University, Nanning, China
| | - Lianshi Feng
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| | - Yingli Lu
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| | - Haibo Zhang
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
4
|
Meinzinger A, Zsigmond Á, Horváth P, Kellenberger A, Paréj K, Tallone T, Flachner B, Cserhalmi M, Lőrincz Z, Cseh S, Shmerling D. RuX: A Novel, Flexible, and Sensitive Mifepristone-Induced Transcriptional Regulation System. Int J Cell Biol 2023; 2023:7121512. [PMID: 37941807 PMCID: PMC10630016 DOI: 10.1155/2023/7121512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Inducible gene regulation methods are indispensable in diverse biological applications, yet many of them have severe limitations in their applicability. These include inducer toxicity, a limited variety of organisms the given system can be used in, and side effects of the induction method. In this study, a novel inducible system, the RuX system, was created using a mutant ligand-binding domain of the glucocorticoid receptor (CS1/CD), used together with various genetic elements such as the Gal4 DNA-binding domain or Cre recombinase. The RuX system is shown to be capable of over 1000-fold inducibility, has flexible applications, and is offered for use in cell cultures.
Collapse
Affiliation(s)
| | | | | | | | | | - Tiziano Tallone
- Department of Endocrinology, Metabolism and Cardiovascular Research, University of Fribourg, Fribourg, Switzerland
| | | | | | | | - Sándor Cseh
- TargetEx Biosciences Ltd., Dunakeszi, Hungary
| | | |
Collapse
|
5
|
Kavita U, Sun K, Braun M, Lembke W, Mody H, Kamerud J, Yang TY, Braun IV, Fang X, Gao W, Gupta S, Hofer M, Liao MZ, Loo L, McBlane F, Menochet K, Stubenrauch KG, Upreti VV, Vigil A, Wiethoff CM, Xia CQ, Zhu X, Jawa V, Chemuturi N. PK/PD and Bioanalytical Considerations of AAV-Based Gene Therapies: an IQ Consortium Industry Position Paper. AAPS J 2023; 25:78. [PMID: 37523051 DOI: 10.1208/s12248-023-00842-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Interest and efforts to use recombinant adeno-associated viruses (AAV) as gene therapy delivery tools to treat disease have grown exponentially. However, gaps in understanding of the pharmacokinetics/pharmacodynamics (PK/PD) and disposition of this modality exist. This position paper comes from the Novel Modalities Working Group (WG), part of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ). The pan-industry WG effort focuses on the nonclinical PK and clinical pharmacology aspects of AAV gene therapy and related bioanalytical considerations.Traditional PK concepts are generally not applicable to AAV-based therapies due to the inherent complexity of a transgene-carrying viral vector, and the multiple steps and analytes involved in cell transduction and transgene-derived protein expression. Therefore, we explain PK concepts of biodistribution of AAV-based therapies and place key terminologies related to drug exposure and PD in the proper context. Factors affecting biodistribution are presented in detail, and guidelines are provided to design nonclinical studies to enable a stage-gated progression to Phase 1 testing. The nonclinical and clinical utility of transgene DNA, mRNA, and protein analytes are discussed with bioanalytical strategies to measure these analytes. The pros and cons of qPCR vs. ddPCR technologies for DNA/RNA measurement and qualitative vs. quantitative methods for transgene-derived protein are also presented. Last, best practices and recommendations for use of clinical and nonclinical data to project human dose and response are discussed. Together, the manuscript provides a holistic framework to discuss evolving concepts of PK/PD modeling, bioanalytical technologies, and clinical dose selection in gene therapy.
Collapse
Affiliation(s)
- Uma Kavita
- Spark Therapeutics, Inc., Philadelphia, Pennsylvania, 19104, USA.
| | - Kefeng Sun
- Takeda Development Center Americas Inc., 125 Binney St, Cambridge, Massachusetts, 02142, USA.
| | - Manuela Braun
- Bayer AG, Pharmaceuticals R&D, 13342, Berlin, Germany
| | - Wibke Lembke
- Integrated Biologix GmbH, 4051, Basel, Switzerland
| | - Hardik Mody
- Genentech Inc., South San Francisco, California, USA
| | | | - Tong-Yuan Yang
- Janssen R&D LLC., Spring House, Pennsylvania, 19477, USA
| | | | - Xiaodong Fang
- Asklepios BioPharmaceutical, Inc., Research Triangle, North Carolina, 27709, USA
| | - Wei Gao
- EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts, 01821, USA
| | - Swati Gupta
- AbbVie, 2525 Dupont Drive, Irvine, California, 92612, USA
| | - Magdalena Hofer
- Spark Therapeutics, Inc., Philadelphia, Pennsylvania, 19104, USA
| | | | - LiNa Loo
- Vertex Pharmaceuticals Boston, Boston, Massachusetts, 02210, USA
| | | | | | | | | | - Adam Vigil
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, 06877, USA
| | | | - Cindy Q Xia
- ReNAgade Therapeutics, Cambridge, Massachusetts, 02142, USA
| | - Xu Zhu
- AstraZeneca, Waltham, Massachusetts, 02451, USA
| | - Vibha Jawa
- Bristol Myers Squibb, Lawrence Township, New Jersey, 08648, USA
| | - Nagendra Chemuturi
- Takeda Development Center Americas Inc., 125 Binney St, Cambridge, Massachusetts, 02142, USA
| |
Collapse
|
6
|
Hosseinkhani H, Domb AJ, Sharifzadeh G, Nahum V. Gene Therapy for Regenerative Medicine. Pharmaceutics 2023; 15:856. [PMID: 36986717 PMCID: PMC10057434 DOI: 10.3390/pharmaceutics15030856] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The development of biological methods over the past decade has stimulated great interest in the possibility to regenerate human tissues. Advances in stem cell research, gene therapy, and tissue engineering have accelerated the technology in tissue and organ regeneration. However, despite significant progress in this area, there are still several technical issues that must be addressed, especially in the clinical use of gene therapy. The aims of gene therapy include utilising cells to produce a suitable protein, silencing over-producing proteins, and genetically modifying and repairing cell functions that may affect disease conditions. While most current gene therapy clinical trials are based on cell- and viral-mediated approaches, non-viral gene transfection agents are emerging as potentially safe and effective in the treatment of a wide variety of genetic and acquired diseases. Gene therapy based on viral vectors may induce pathogenicity and immunogenicity. Therefore, significant efforts are being invested in non-viral vectors to enhance their efficiency to a level comparable to the viral vector. Non-viral technologies consist of plasmid-based expression systems containing a gene encoding, a therapeutic protein, and synthetic gene delivery systems. One possible approach to enhance non-viral vector ability or to be an alternative to viral vectors would be to use tissue engineering technology for regenerative medicine therapy. This review provides a critical view of gene therapy with a major focus on the development of regenerative medicine technologies to control the in vivo location and function of administered genes.
Collapse
Affiliation(s)
- Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10019, USA
| | - Abraham J. Domb
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Victoria Nahum
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
7
|
Li S, Tang H, Li C, Ma J, Ali M, Dong Q, Wu J, Hui Y, Sun C. Synthetic Biology Technologies And Genetically Engineering Strategies For Enhanced Cell Therapeutics. Stem Cell Rev Rep 2023; 19:309-321. [PMID: 36166137 PMCID: PMC9514184 DOI: 10.1007/s12015-022-10454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 02/07/2023]
Abstract
Stem cell therapy mainly uses natural stem cells for transplantation, and the use of genetic engineering to optimize stem cell products is a very important process. This article reviews successful gene modification methods in the field of immune cell therapy and summarizes some attempts at stem cell gene editing in current research. Cell bridging is an innovative cutting-edge strategy that includes the specific recognition and signal transduction of artificial receptors. The "off-the-shelf" cell strategies mainly introduce the advantages of allogeneic cell therapy and how to overcome issues such as immunogenicity. Gene regulatory systems allow us to manipulate cells with small molecules to control cellular phenotypes. In addition, we also summarize some important genes that can provide a reference for cell genetic engineering. In conclusion, we summarize a variety of technical strategies for gene editing cells to provide useful ideas and experiences for future stem cell therapy research.
Collapse
Affiliation(s)
- Siyu Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, 157 BaoJian Road Nangang Dist, Harbin, 150086, People's Republic of China
| | - Hao Tang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Cheng Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, 157 BaoJian Road Nangang Dist, Harbin, 150086, People's Republic of China
| | - Jiajia Ma
- Department of Biochemistry and Molecular Biology, Harbin Medical University, 157 BaoJian Road Nangang Dist, Harbin, 150086, People's Republic of China
| | - Maqsood Ali
- Department of Biochemistry and Molecular Biology, Harbin Medical University, 157 BaoJian Road Nangang Dist, Harbin, 150086, People's Republic of China
| | - Qi Dong
- Department of Biochemistry and Molecular Biology, Harbin Medical University, 157 BaoJian Road Nangang Dist, Harbin, 150086, People's Republic of China
| | - Jiajia Wu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, 157 BaoJian Road Nangang Dist, Harbin, 150086, People's Republic of China
| | - Yang Hui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, 157 BaoJian Road Nangang Dist, Harbin, 150086, People's Republic of China.
- Basic Medical Institute of Heilongjiang Medical Science Academy, Harbin, China.
| | - Chongran Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou City, Xihu District, 310058, People's Republic of China.
| |
Collapse
|
8
|
Ross M, Obolensky A, Averbukh E, Desrosiers M, Ezra-Elia R, Honig H, Yamin E, Rosov A, Dvir H, Gootwine E, Banin E, Dalkara D, Ofri R. Outer retinal transduction by AAV2-7m8 following intravitreal injection in a sheep model of CNGA3 achromatopsia. Gene Ther 2022; 29:624-635. [PMID: 34853444 DOI: 10.1038/s41434-021-00306-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023]
Abstract
Sheep carrying a mutated CNGA3 gene exhibit diminished cone function and provide a naturally occurring large animal model of achromatopsia. Subretinal injection of a vector carrying the CNGA3 transgene resulted in long-term recovery of cone function and photopic vision in these sheep. Research is underway to develop efficacious vectors that would enable safer transgene delivery, while avoiding potential drawbacks of subretinal injections. The current study evaluated two modified vectors, adeno-associated virus 2-7m8 (AAV2-7m8) and AAV9-7m8. Intravitreal injection of AAV2-7m8 carrying enhanced green fluorescent protein under a cone-specific promoter resulted in moderate photoreceptor transduction in wild-type sheep, whereas peripheral subretinal delivery of AAV9-7m8 resulted in the radial spread of the vector beyond the point of deposition. Intravitreal injection of AAV2-7m8 carrying human CNGA3 in mutant sheep resulted in mild photoreceptor transduction, but did not lead to the clinical rescue of photopic vision, while day-blind sheep treated with a subretinal injection exhibited functional recovery of photopic vision. Transgene messenger RNA levels in retinas of intravitreally treated eyes amounted to 4-23% of the endogenous CNGA3 levels, indicating that expression levels >23% are needed to achieve clinical rescue. Overall, our results indicate intravitreal injections of AAV2.7m8 transduce ovine photoreceptors, but not with sufficient efficacy to achieve clinical rescue in CNGA3 mutant sheep.
Collapse
Affiliation(s)
- M Ross
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - A Obolensky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - E Averbukh
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - M Desrosiers
- Department of Therapeutics, Institut de la Vision, Paris, France
| | - R Ezra-Elia
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - H Honig
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - E Yamin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A Rosov
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - H Dvir
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - E Gootwine
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - E Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - D Dalkara
- Department of Therapeutics, Institut de la Vision, Paris, France
| | - R Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
9
|
Eriksson RAE, Nieminen T, Galibert L, Peltola SK, Tikkanen P, Käyhty P, Lesch HP, Ylä-Herttuala S, Airenne KJ. Optimized riboswitch-regulated AAV vector for VEGF-B gene therapy. Front Med (Lausanne) 2022; 9:1052318. [PMID: 36582287 PMCID: PMC9792491 DOI: 10.3389/fmed.2022.1052318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Gene therapy would greatly benefit from a method to regulate therapeutic gene expression temporally. Riboswitches are small RNA elements that have been studied for their potential use in turning transgene expression on or off by ligand binding. We compared several tetracycline and toyocamycin-inducible ON-riboswitches for a drug responsive transgene expression. The tetracycline-dependent K19 riboswitch showed the best control and we successfully applied it to different transgenes. The induction of gene expression was 6- to 10-fold, dose-dependent, reversible, and occurred within hours after the addition of a clinically relevant tetracycline dose, using either plasmid or adeno-associated virus (AAV) vectors. To enhance the switching capacity, we further optimized the gene cassette to control the expression of a potential therapeutic gene for cardiovascular diseases, VEGF-B. Using two or three riboswitches simultaneously reduced leakiness and improved the dynamic range, and a linker sequence between the riboswitches improved their functionality. The riboswitch function was promoter-independent, but a post-transcriptional WPRE element in the expression cassette reduced its functionality. The optimized construct was a dual riboswitch at the 3' end of the transgene with a 100 bp linker sequence. Our study reveals significant differences in the function of riboswitches and provides important aspects on optimizing expression cassette designs. The findings will benefit further research and development of riboswitches.
Collapse
Affiliation(s)
- Reetta A E Eriksson
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tiina Nieminen
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | | | | | - Petra Tikkanen
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Piia Käyhty
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hanna P Lesch
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Gene Therapy Unit and Research Center, Kuopio University Hospital, Kuopio, Finland
| | - Kari J Airenne
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| |
Collapse
|
10
|
Tan TE, Fenner BJ, Barathi VA, Tun SBB, Wey YS, Tsai ASH, Su X, Lee SY, Cheung CMG, Wong TY, Mehta JS, Teo KYC. Gene-Based Therapeutics for Acquired Retinal Disease: Opportunities and Progress. Front Genet 2021; 12:795010. [PMID: 34950193 PMCID: PMC8688942 DOI: 10.3389/fgene.2021.795010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Acquired retinal diseases such as age-related macular degeneration and diabetic retinopathy rank among the leading causes of blindness and visual loss worldwide. Effective treatments for these conditions are available, but often have a high treatment burden, and poor compliance can lead to disappointing real-world outcomes. Development of new treatment strategies that provide more durable treatment effects could help to address some of these unmet needs. Gene-based therapeutics, pioneered for the treatment of monogenic inherited retinal disease, are being actively investigated as new treatments for acquired retinal disease. There are significant advantages to the application of gene-based therapeutics in acquired retinal disease, including the presence of established therapeutic targets and common pathophysiologic pathways between diseases, the lack of genotype-specificity required, and the larger potential treatment population per therapy. Different gene-based therapeutic strategies have been attempted, including gene augmentation therapy to induce in vivo expression of therapeutic molecules, and gene editing to knock down genes encoding specific mediators in disease pathways. We highlight the opportunities and unmet clinical needs in acquired retinal disease, review the progress made thus far with current therapeutic strategies and surgical delivery techniques, and discuss limitations and future directions in the field.
Collapse
Affiliation(s)
- Tien-En Tan
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Beau James Fenner
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Veluchamy Amutha Barathi
- Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sai Bo Bo Tun
- Singapore Eye Research Institute, Singapore, Singapore
| | - Yeo Sia Wey
- Singapore Eye Research Institute, Singapore, Singapore
| | - Andrew Shih Hsiang Tsai
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Xinyi Su
- Singapore Eye Research Institute, Singapore, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Ophthalmology, National University Hospital, Singapore, Singapore
| | - Shu Yen Lee
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Chui Ming Gemmy Cheung
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Tien Yin Wong
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Jodhbir Singh Mehta
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Kelvin Yi Chong Teo
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| |
Collapse
|
11
|
Cheng S, van Gaalen MM, Bähr M, Garea-Rodriguez E, Kügler S. Optimized pharmacological control over the AAV-Gene-Switch vector for regulable gene therapy. Mol Ther Methods Clin Dev 2021; 23:1-10. [PMID: 34552998 PMCID: PMC8426472 DOI: 10.1016/j.omtm.2021.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/30/2021] [Indexed: 11/27/2022]
Abstract
Gene therapy in its current design is an irreversible process. It cannot be stopped in case of unwanted side effects, nor can expression levels of therapeutics be adjusted to individual patient’s needs. Thus, the Gene-Switch (GS) system for pharmacologically regulable neurotrophic factor expression was established for treatment of parkinsonian patients. Mifepristone, the synthetic steroid used to control transgene expression of the GS vector, is an approved clinical drug. However, pharmacokinetics and -dynamics of mifepristone vary considerably between different experimental animal species and depend on age and gender. In humans, but not in any other species, mifepristone binds to a high-affinity plasma carrier protein. We now demonstrate that the formulation of mifepristone can have robust impact on its ability to activate the GS system. Furthermore, we show that a pharmacological booster, ritonavir (Rtv), robustly enhances the pharmacological effect of mifepristone, and allows it to overcome gender- and species-specific pharmacokinetic and -dynamic issues. Most importantly, we demonstrate that the GS vector can be efficiently controlled by mifepristone in the presence of its human plasma carrier protein, α1-acid glycoprotein, in a “humanized” rat model. Thus, we have substantially improved the applicability of the GS vector toward therapeutic use in patients.
Collapse
|
12
|
Wagner HJ, Weber W, Fussenegger M. Synthetic Biology: Emerging Concepts to Design and Advance Adeno-Associated Viral Vectors for Gene Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004018. [PMID: 33977059 PMCID: PMC8097373 DOI: 10.1002/advs.202004018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/18/2020] [Indexed: 05/28/2023]
Abstract
Three recent approvals and over 100 ongoing clinical trials make adeno-associated virus (AAV)-based vectors the leading gene delivery vehicles in gene therapy. Pharmaceutical companies are investing in this small and nonpathogenic gene shuttle to increase the therapeutic portfolios within the coming years. This prospect of marking a new era in gene therapy has fostered both investigations of the fundamental AAV biology as well as engineering studies to enhance delivery vehicles. Driven by the high clinical potential, a new generation of synthetic-biologically engineered AAV vectors is on the rise. Concepts from synthetic biology enable the control and fine-tuning of vector function at different stages of cellular transduction and gene expression. It is anticipated that the emerging field of synthetic-biologically engineered AAV vectors can shape future gene therapeutic approaches and thus the design of tomorrow's gene delivery vectors. This review describes and discusses the recent trends in capsid and vector genome engineering, with particular emphasis on synthetic-biological approaches.
Collapse
Affiliation(s)
- Hanna J. Wagner
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26Basel4058Switzerland
- Faculty of BiologyUniversity of FreiburgSchänzlestraße 1Freiburg79104Germany
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 18Freiburg79104Germany
| | - Wilfried Weber
- Faculty of BiologyUniversity of FreiburgSchänzlestraße 1Freiburg79104Germany
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 18Freiburg79104Germany
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26Basel4058Switzerland
- Faculty of ScienceUniversity of BaselKlingelbergstrasse 50Basel4056Switzerland
| |
Collapse
|
13
|
Hass DT, Barnstable CJ. Uncoupling proteins in the mitochondrial defense against oxidative stress. Prog Retin Eye Res 2021; 83:100941. [PMID: 33422637 DOI: 10.1016/j.preteyeres.2021.100941] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
Oxidative stress is a major component of most major retinal diseases. Many extrinsic anti-oxidative strategies have been insufficient at counteracting one of the predominant intrinsic sources of reactive oxygen species (ROS), mitochondria. The proton gradient across the inner mitochondrial membrane is a key driving force for mitochondrial ROS production, and this gradient can be modulated by members of the mitochondrial uncoupling protein (UCP) family. Of the UCPs, UCP2 shows a widespread distribution and has been shown to uncouple oxidative phosphorylation, with concomitant decreases in ROS production. Genetic studies using transgenic and knockout mice have documented the ability of increased UCP2 activity to provide neuroprotection in models of a number of diseases, including retinal diseases, indicating that it is a strong candidate for a therapeutic target. Molecular studies have identified the structural mechanism of action of UCP2 and have detailed the ways in which its expression and activity can be controlled at the transcriptional, translational and posttranslational levels. These studies suggest a number of ways in control of UCP2 expression and activity can be used therapeutically for both acute and chronic conditions. The development of such therapeutic approaches will greatly increase the tools available to combat a broad range of serious retinal diseases.
Collapse
Affiliation(s)
- Daniel T Hass
- Department of Biochemistry, The University of Washington, Seattle, WA, 98109, USA
| | - Colin J Barnstable
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA.
| |
Collapse
|
14
|
Adipose Tissue: An Emerging Target for Adeno-associated Viral Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:236-249. [PMID: 33102616 PMCID: PMC7566077 DOI: 10.1016/j.omtm.2020.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adipose tissue is one of the largest organs, playing important roles in physiology and pathologies of multiple diseases. However, research related to adeno-associated virus (AAV) targeting adipose tissue has been left far behind studies carried out in the liver, brain, heart, and muscle. Despite initial reports indicating poor performance, AAV-mediated gene delivery to adipose tissue has continued to rise during the past two decades. AAV8 and a novel engineered hybrid serotype, Rec2, have been shown to transduce adipose tissue more efficiently than other serotypes so far tested and have been applied in most of the in vivo studies. The Rec2 serotype displays high efficacy of gene transfer to both brown and white fat via local and systemic administration. This review summarizes the advances in developing AAV vectors with enhanced adipose tropism and restricting off-target transgene expression. We discuss the challenges and strategies to search for and generate novel serotypes with tropism tailoring for adipose tissue and develop AAV vector systems to improve adipose transgene expression for basic research and translational studies.
Collapse
|
15
|
Eggers R, de Winter F, Tannemaat MR, Malessy MJA, Verhaagen J. GDNF Gene Therapy to Repair the Injured Peripheral Nerve. Front Bioeng Biotechnol 2020; 8:583184. [PMID: 33251197 PMCID: PMC7673415 DOI: 10.3389/fbioe.2020.583184] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
A spinal root avulsion is the most severe proximal peripheral nerve lesion possible. Avulsion of ventral root filaments disconnects spinal motoneurons from their target muscles, resulting in complete paralysis. In patients that undergo brachial plexus nerve repair, axonal regeneration is a slow process. It takes months or even years to bridge the distance from the lesion site to the distal targets located in the forearm. Following ventral root avulsion, without additional pharmacological or surgical treatments, progressive death of motoneurons occurs within 2 weeks (Koliatsos et al., 1994). Reimplantation of the avulsed ventral root or peripheral nerve graft can act as a conduit for regenerating axons and increases motoneuron survival (Chai et al., 2000). However, this beneficial effect is transient. Combined with protracted and poor long-distance axonal regeneration, this results in permanent function loss. To overcome motoneuron death and improve functional recovery, several promising intervention strategies are being developed. Here, we focus on GDNF gene-therapy. We first introduce the experimental ventral root avulsion model and discuss its value as a proxy to study clinical neurotmetic nerve lesions. Second, we discuss our recent studies showing that GDNF gene-therapy is a powerful strategy to promote long-term motoneuron survival and improve function when target muscle reinnervation occurs within a critical post-lesion period. Based upon these observations, we discuss the influence of timing of the intervention, and of the duration, concentration and location of GDNF delivery on functional outcome. Finally, we provide a perspective on future research directions to realize functional recovery using gene therapy.
Collapse
Affiliation(s)
- Ruben Eggers
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Fred de Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Martijn R Tannemaat
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Martijn J A Malessy
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Neurosurgery, Leiden University Medical Center, Leiden, Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognition Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
16
|
Han IC, Cheng JL, Burnight ER, Ralston CL, Fick JL, Thomsen GJ, Tovar EF, Russell SR, Sohn EH, Mullins RF, Stone EM, Tucker BA, Wiley LA. Retinal Tropism and Transduction of Adeno-Associated Virus Varies by Serotype and Route of Delivery (Intravitreal, Subretinal, or Suprachoroidal) in Rats. Hum Gene Ther 2020; 31:1288-1299. [PMID: 32948113 DOI: 10.1089/hum.2020.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Viral-mediated gene augmentation offers tremendous promise for the treatment of inherited retinal diseases. The development of effective gene therapy requires an understanding of the vector's tissue-specific behavior, which may vary depending on serotype, route of delivery, or target species. Using an ex vivo organotypic explant system, we previously demonstrated that retinal tropism and transduction of adeno-associated virus type 2 (AAV2) vary significantly depending on serotype in human eyes. However, the ex vivo system has limited ability to assess route of ocular delivery, and relatively little literature exists on tropic differences between serotypes and routes of delivery in vivo. In this study, we demonstrate that retinal tropism and transduction efficiency of five different AAV2 serotypes (AAV2/1, AAV2/2, AAV2/6, AAV2/8, and AAV2/9) expressing enhanced green fluorescent protein driven by a cytomegalovirus promoter vary greatly depending on serotype and route of delivery (intravitreal, subretinal, or suprachoroidal) in rats. With subretinal delivery, all serotypes successfully transduced the retinal pigmented epithelium and outer nuclear layer (ONL), with AAV2/1 displaying the highest transduction efficiency and AAV2/2 and AAV2/6 showing lower ONL transduction. There was minimal transduction of the inner retina through subretinal delivery for any serotype. Tropism by suprachoroidal delivery mirrored that of subretinal delivery for all AAV serotypes but resulted in a wider distribution and greater ONL transduction. With intravitreal delivery, retinal transduction was seen primarily in the inner retina (retinal nerve fiber, ganglion cell, and inner nuclear layers) for AAV2/1 and AAV2/6, with AAV2/6 showing the highest transduction. When compared with data from human explant models, there are substantial differences in tropism and transduction that are important to consider when using rats as preclinical models for the development of ocular gene therapies for humans.
Collapse
Affiliation(s)
- Ian C Han
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Justine L Cheng
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Erin R Burnight
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Christy L Ralston
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jessica L Fick
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Gabriella J Thomsen
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Emilio F Tovar
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Stephen R Russell
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Elliott H Sohn
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Robert F Mullins
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Edwin M Stone
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Budd A Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Luke A Wiley
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
17
|
Tristán-Manzano M, Justicia-Lirio P, Maldonado-Pérez N, Cortijo-Gutiérrez M, Benabdellah K, Martin F. Externally-Controlled Systems for Immunotherapy: From Bench to Bedside. Front Immunol 2020; 11:2044. [PMID: 33013864 PMCID: PMC7498544 DOI: 10.3389/fimmu.2020.02044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022] Open
Abstract
Immunotherapy is a very promising therapeutic approach against cancer that is particularly effective when combined with gene therapy. Immuno-gene therapy approaches have led to the approval of four advanced therapy medicinal products (ATMPs) for the treatment of p53-deficient tumors (Gendicine and Imlygic), refractory acute lymphoblastic leukemia (Kymriah) and large B-cell lymphomas (Yescarta). In spite of these remarkable successes, immunotherapy is still associated with severe side effects for CD19+ malignancies and is inefficient for solid tumors. Controlling transgene expression through an externally administered inductor is envisioned as a potent strategy to improve safety and efficacy of immunotherapy. The aim is to develop smart immunogene therapy-based-ATMPs, which can be controlled by the addition of innocuous drugs or agents, allowing the clinicians to manage the intensity and durability of the therapy. In the present manuscript, we will review the different inducible, versatile and externally controlled gene delivery systems that have been developed and their applications to the field of immunotherapy. We will highlight the advantages and disadvantages of each system and their potential applications in clinics.
Collapse
Affiliation(s)
- María Tristán-Manzano
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Pedro Justicia-Lirio
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain.,LentiStem Biotech, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Noelia Maldonado-Pérez
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Marina Cortijo-Gutiérrez
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Karim Benabdellah
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Francisco Martin
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| |
Collapse
|
18
|
Uchida N, Hsieh MM, Raines L, Haro-Mora JJ, Demirci S, Bonifacino AC, Krouse AE, Metzger ME, Donahue RE, Tisdale JF. Development of a forward-oriented therapeutic lentiviral vector for hemoglobin disorders. Nat Commun 2019; 10:4479. [PMID: 31578323 PMCID: PMC6775231 DOI: 10.1038/s41467-019-12456-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
Hematopoietic stem cell (HSC) gene therapy is being evaluated for hemoglobin disorders including sickle cell disease (SCD). Therapeutic globin vectors have demanding requirements including high-efficiency transduction at the HSC level and high-level, erythroid-specific expression with long-term persistence. The requirement of intron 2 for high-level β-globin expression dictates a reverse-oriented globin-expression cassette to prevent its loss from RNA splicing. Current reverse-oriented globin vectors can drive phenotypic correction, but they are limited by low vector titers and low transduction efficiencies. Here we report a clinically relevant forward-oriented β-globin-expressing vector, which has sixfold higher vector titers and four to tenfold higher transduction efficiency for long-term hematopoietic repopulating cells in humanized mice and rhesus macaques. Insertion of Rev response element (RRE) allows intron 2 to be retained, and β-globin production is observed in transplanted macaques and human SCD CD34+ cells. These findings bring us closer to a widely applicable gene therapy for hemoglobin disorders.
Collapse
Affiliation(s)
- Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA.
- Cellular and Molecular Therapeutics Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA.
| | - Matthew M Hsieh
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Cellular and Molecular Therapeutics Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Lydia Raines
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Cellular and Molecular Therapeutics Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Juan J Haro-Mora
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Cellular and Molecular Therapeutics Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Cellular and Molecular Therapeutics Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Aylin C Bonifacino
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, Maryland, USA
| | - Allen E Krouse
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, Maryland, USA
| | - Mark E Metzger
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, Maryland, USA
| | - Robert E Donahue
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Cellular and Molecular Therapeutics Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - John F Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Cellular and Molecular Therapeutics Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Ma RSY, Kayani K, Whyte-Oshodi D, Whyte-Oshodi A, Nachiappan N, Gnanarajah S, Mohammed R. Voltage gated sodium channels as therapeutic targets for chronic pain. J Pain Res 2019; 12:2709-2722. [PMID: 31564962 PMCID: PMC6743634 DOI: 10.2147/jpr.s207610] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/02/2019] [Indexed: 01/23/2023] Open
Abstract
Being maladaptive and frequently unresponsive to pharmacotherapy, chronic pain presents a major unmet clinical need. While an intact central nervous system is required for conscious pain perception, nociceptor hyperexcitability induced by nerve injury in the peripheral nervous system (PNS) is sufficient and necessary to initiate and maintain neuropathic pain. The genesis and propagation of action potentials is dependent on voltage-gated sodium channels, in particular, Nav1.7, Nav1.8 and Nav1.9. However, nerve injury triggers changes in their distribution, expression and/or biophysical properties, leading to aberrant excitability. Most existing treatment for pain relief acts through non-selective, state-dependent sodium channel blockage and have narrow therapeutic windows. Natural toxins and developing subtype-specific and molecular-specific sodium channel blockers show promise for treatment of neuropathic pain with minimal side effects. New approaches to analgesia include combination therapy and gene therapy. Here, we review how individual sodium channel subtypes contribute to pain, and the attempts made to develop more effective analgesics for the treatment of chronic pain.
Collapse
Affiliation(s)
- Renee Siu Yu Ma
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kayani Kayani
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | | | - Raihan Mohammed
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Burnside ER, De Winter F, Didangelos A, James ND, Andreica EC, Layard-Horsfall H, Muir EM, Verhaagen J, Bradbury EJ. Immune-evasive gene switch enables regulated delivery of chondroitinase after spinal cord injury. Brain 2019; 141:2362-2381. [PMID: 29912283 PMCID: PMC6061881 DOI: 10.1093/brain/awy158] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/22/2018] [Indexed: 12/12/2022] Open
Abstract
Chondroitinase ABC is a promising preclinical therapy that promotes functional neuroplasticity after CNS injury by degrading extracellular matrix inhibitors. Efficient delivery of chondroitinase ABC to the injured mammalian spinal cord can be achieved by viral vector transgene delivery. This approach dramatically modulates injury pathology and restores sensorimotor functions. However, clinical development of this therapy is limited by a lack of ability to exert control over chondroitinase gene expression. Prior experimental gene regulation platforms are likely to be incompatible with the non-resolving adaptive immune response known to occur following spinal cord injury. Therefore, here we apply a novel immune-evasive dual vector system, in which the chondroitinase gene is under a doxycycline inducible regulatory switch, utilizing a chimeric transactivator designed to evade T cell recognition. Using this novel vector system, we demonstrate tight temporal control of chondroitinase ABC gene expression, effectively removing treatment upon removal of doxycycline. This enables a comparison of short and long-term gene therapy paradigms in the treatment of clinically-relevant cervical level contusion injuries in adult rats. We reveal that transient treatment (2.5 weeks) is sufficient to promote improvement in sensory axon conduction and ladder walking performance. However, in tasks requiring skilled reaching and grasping, only long term treatment (8 weeks) leads to significantly improved function, with rats able to accurately grasp and retrieve sugar pellets. The late emergence of skilled hand function indicates enhanced neuroplasticity and connectivity and correlates with increased density of vGlut1+ innervation in spinal cord grey matter, particularly in lamina III–IV above and below the injury. Thus, our novel gene therapy system provides an experimental tool to study temporal effects of extracellular matrix digestion as well as an encouraging step towards generating a safer chondroitinase gene therapy strategy, longer term administration of which increases neuroplasticity and recovery of descending motor control. This preclinical study could have a significant impact for tetraplegic individuals, for whom recovery of hand function is an important determinant of independence, and supports the ongoing development of chondroitinase gene therapy towards clinical application for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Emily R Burnside
- King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), Guy's Campus, London Bridge, London, SE1 1UL, UK
| | - Fred De Winter
- Netherlands Institute for Neuroscience, Laboratory for Neuroregeneration, 1105 BA Amsterdam, The Netherlands
| | - Athanasios Didangelos
- King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), Guy's Campus, London Bridge, London, SE1 1UL, UK
| | - Nicholas D James
- King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), Guy's Campus, London Bridge, London, SE1 1UL, UK
| | - Elena-Cristina Andreica
- King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), Guy's Campus, London Bridge, London, SE1 1UL, UK
| | - Hugo Layard-Horsfall
- King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), Guy's Campus, London Bridge, London, SE1 1UL, UK
| | - Elizabeth M Muir
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3EG, UK
| | - Joost Verhaagen
- Netherlands Institute for Neuroscience, Laboratory for Neuroregeneration, 1105 BA Amsterdam, The Netherlands
| | - Elizabeth J Bradbury
- King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), Guy's Campus, London Bridge, London, SE1 1UL, UK
| |
Collapse
|
21
|
Domenger C, Grimm D. Next-generation AAV vectors—do not judge a virus (only) by its cover. Hum Mol Genet 2019; 28:R3-R14. [DOI: 10.1093/hmg/ddz148] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 05/30/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
AbstractRecombinant adeno-associated viruses (AAV) are under intensive investigation in numerous clinical trials after they have emerged as a highly promising vector for human gene therapy. Best exemplifying their power and potential is the authorization of three gene therapy products based on wild-type AAV serotypes, comprising Glybera (AAV1), Luxturna (AAV2) and, most recently, Zolgensma (AAV9). Nonetheless, it has also become evident that the current AAV vector generation will require improvements in transduction potency, antibody evasion and cell/tissue specificity to allow the use of lower and safer vector doses. To this end, others and we devoted substantial previous research to the implementation and application of key technologies for engineering of next-generation viral capsids in a high-throughput ‘top-down’ or (semi-)rational ‘bottom-up’ approach. Here, we describe a set of recent complementary strategies to enhance features of AAV vectors that act on the level of the recombinant cargo. As examples that illustrate the innovative and synergistic concepts that have been reported lately, we highlight (i) novel synthetic enhancers/promoters that provide an unprecedented degree of AAV tissue specificity, (ii) pioneering genetic circuit designs that harness biological (microRNAs) or physical (light) triggers as regulators of AAV gene expression and (iii) new insights into the role of AAV DNA structures on vector genome stability, integrity and functionality. Combined with ongoing capsid engineering and selection efforts, these and other state-of-the-art innovations and investigations promise to accelerate the arrival of the next generation of AAV vectors and to solidify the unique role of this exciting virus in human gene therapy.
Collapse
Affiliation(s)
- Claire Domenger
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, BioQuant Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, BioQuant Center, Im Neuenheimer Feld, Heidelberg, Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
| |
Collapse
|
22
|
Ingusci S, Verlengia G, Soukupova M, Zucchini S, Simonato M. Gene Therapy Tools for Brain Diseases. Front Pharmacol 2019; 10:724. [PMID: 31312139 PMCID: PMC6613496 DOI: 10.3389/fphar.2019.00724] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/05/2019] [Indexed: 01/20/2023] Open
Abstract
Neurological disorders affecting the central nervous system (CNS) are still incompletely understood. Many of these disorders lack a cure and are seeking more specific and effective treatments. In fact, in spite of advancements in knowledge of the CNS function, the treatment of neurological disorders with modern medical and surgical approaches remains difficult for many reasons, such as the complexity of the CNS, the limited regenerative capacity of the tissue, and the difficulty in conveying conventional drugs to the organ due to the blood-brain barrier. Gene therapy, allowing the delivery of genetic materials that encodes potential therapeutic molecules, represents an attractive option. Gene therapy can result in a stable or inducible expression of transgene(s), and can allow a nearly specific expression in target cells. In this review, we will discuss the most commonly used tools for the delivery of genetic material in the CNS, including viral and non-viral vectors; their main applications; their advantages and disadvantages. We will discuss mechanisms of genetic regulation through cell-specific and inducible promoters, which allow to express gene products only in specific cells and to control their transcriptional activation. In addition, we will describe the applications to CNS diseases of post-transcriptional regulation systems (RNA interference); of systems allowing spatial or temporal control of expression [optogenetics and Designer Receptors Exclusively Activated by Designer Drugs (DREADDs)]; and of gene editing technologies (CRISPR/Cas9, Zinc finger proteins). Particular attention will be reserved to viral vectors derived from herpes simplex type 1, a potential tool for the delivery and expression of multiple transgene cassettes simultaneously.
Collapse
Affiliation(s)
- Selene Ingusci
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Gianluca Verlengia
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Marie Soukupova
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Silvia Zucchini
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara, Italy
| | - Michele Simonato
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
23
|
Gan SU, Fu Z, Sia KC, Kon OL, Calne R, Lee KO. Development of a liver-specific Tet-off AAV8 vector for improved safety of insulin gene therapy for diabetes. J Gene Med 2019; 21:e3067. [PMID: 30592790 PMCID: PMC6590178 DOI: 10.1002/jgm.3067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/17/2022] Open
Abstract
Background Diabetes mellitus is caused by a partial or complete lack of insulin production in the body. We have previously shown that a single injection of an adeno‐associated virus serotype 8 (AAV8) vector carrying a modified and codon optimized human insulin gene induced hepatic production of insulin and corrected streptozotocin (STZ)‐induced diabetes in mice for more than 1 year. Insulin production was constitutive, analogous to long‐acting insulin therapy. Methods We have developed a single AAV8 vector with a Tet‐Off regulatable system as a safety mechanism to turn off insulin secretion should hypoglycaemia develop in vector‐treated diabetic mice. We first transfected HepG2 cells or freshly isolated rat hepatocytes in vitro with the Tet‐Off system (pAAV‐Tetoffbidir‐Alb‐luc) regulating a luciferase reporter gene. We subsequently incorporated a furin‐cleavable codon‐optimised human proinsulin cDNA into pAAV‐Tetoffbidir backbone to form the doxycycline inducible pAAV‐Tetoffbidir‐Alb‐hINSco. Results Using STZ‐induced diabetic mice, we were able to switch off insulin secretion repeatedly with doxycycline administration, and showed full restoration of insulin secretion on withdrawing doxycycline. Conclusions The present study provides proof of concept that, under circumstances when inappropriate basal insulin secretion is a safety concern, insulin secretion from AAV8 gene therapy can be turned off reversibly with doxycycline.
Collapse
Affiliation(s)
- Shu Uin Gan
- Department of Surgery, National University of Singapore, Singapore
| | - Zhenying Fu
- Department of Surgery, National University of Singapore, Singapore
| | - Kian Chuan Sia
- Department of Surgery, National University of Singapore, Singapore
| | - Oi Lian Kon
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore
| | - Roy Calne
- Department of Surgery, National University of Singapore, Singapore.,Department of Surgery, University of Cambridge, Cambridge, UK
| | - Kok Onn Lee
- Department of Medicine, National University of Singapore, Singapore
| |
Collapse
|
24
|
A Comparison of Inducible Gene Expression Platforms: Implications for Recombinant Adeno-Associated Virus (rAAV) Vector-Mediated Ocular Gene Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:79-83. [PMID: 31884592 DOI: 10.1007/978-3-030-27378-1_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The ability to temporally control levels of a therapeutic protein in vivo is vital for the development of safe and efficacious gene therapy treatments for autosomal dominant or complex retinal diseases, where uncontrolled transgene overexpression may lead to deleterious off-target effects and accelerated disease progression. While numerous platforms exist that allow for modulation of gene expression levels - ranging from inducible promoters to destabilizing domains - many have drawbacks that make them less than ideal for use in recombinant adeno-associated virus (rAAV) vectors, which over the past two decades have become the mainstay technology for mediating gene delivery to the retina. Herein, we discuss the advantages and disadvantages of three major gene expression platforms with regard to their suitability for ocular gene therapy applications.
Collapse
|
25
|
Cheng S, Tereshchenko J, Zimmer V, Vachey G, Pythoud C, Rey M, Liefhebber J, Raina A, Streit F, Mazur A, Bähr M, Konstantinova P, Déglon N, Kügler S. Therapeutic efficacy of regulable GDNF expression for Huntington's and Parkinson's disease by a high-induction, background-free “GeneSwitch” vector. Exp Neurol 2018; 309:79-90. [DOI: 10.1016/j.expneurol.2018.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/22/2018] [Accepted: 07/31/2018] [Indexed: 02/02/2023]
|
26
|
Santiago CP, Keuthan CJ, Boye SL, Boye SE, Imam AA, Ash JD. A Drug-Tunable Gene Therapy for Broad-Spectrum Protection against Retinal Degeneration. Mol Ther 2018; 26:2407-2417. [PMID: 30078764 PMCID: PMC6171322 DOI: 10.1016/j.ymthe.2018.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/27/2022] Open
Abstract
Retinal degenerations are a large cluster of diseases characterized by the irreversible loss of light-sensitive photoreceptors that impairs the vision of 9.1 million people in the US. An attractive treatment option is to use gene therapy to deliver broad-spectrum neuroprotective factors. However, this approach has had limited clinical translation because of the inability to control transgene expression. To address this problem, we generated an adeno-associated virus vector named RPF2 that was engineered to express domains of leukemia inhibitory factor fused to the destabilization domain of bacterial dihydrofolate reductase. Fusion proteins containing the destabilization domain are degraded in mammalian cells but can be stabilized with the binding of the drug trimethoprim. Our data show that expression levels of RPF2 are tightly regulated by the dose of trimethoprim and can be reversed by trimethoprim withdrawal. We further show that stabilized RPF2 can protect photoreceptors and prevent blindness in treated mice.
Collapse
Affiliation(s)
- Clayton P Santiago
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Casey J Keuthan
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Sanford L Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Shannon E Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Aisha A Imam
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - John D Ash
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
27
|
Chew WL. Immunity to CRISPR Cas9 and Cas12a therapeutics. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10. [PMID: 29083112 DOI: 10.1002/wsbm.1408] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 12/27/2022]
Abstract
Genome-editing therapeutics are poised to treat human diseases. As we enter clinical trials with the most promising CRISPR-Cas9 and CRISPR-Cas12a (Cpf1) modalities, the risks associated with administering these foreign biomolecules into human patients become increasingly salient. Preclinical discovery with CRISPR-Cas9 and CRISPR-Cas12a systems and foundational gene therapy studies indicate that the host immune system can mount undesired responses against the administered proteins and nucleic acids, the gene-edited cells, and the host itself. These host defenses include inflammation via activation of innate immunity, antibody induction in humoral immunity, and cell death by T-cell-mediated cytotoxicity. If left unchecked, these immunological reactions can curtail therapeutic benefits and potentially lead to mortality. Ways to assay and reduce the immunogenicity of Cas9 and Cas12a proteins are therefore critical for ensuring patient safety and treatment efficacy, and for bringing us closer to realizing the vision of permanent genetic cures. WIREs Syst Biol Med 2018, 10:e1408. doi: 10.1002/wsbm.1408 This article is categorized under: Laboratory Methods and Technologies > Genetic/Genomic Methods Translational, Genomic, and Systems Medicine > Translational Medicine Translational, Genomic, and Systems Medicine > Therapeutic Methods.
Collapse
Affiliation(s)
- Wei Leong Chew
- Synthetic Biology, Genome Institute of Singapore, Singapore, Singapore
| |
Collapse
|
28
|
Single vector non-leaky gene expression system for Drosophila melanogaster. Sci Rep 2017; 7:6899. [PMID: 28761084 PMCID: PMC5537222 DOI: 10.1038/s41598-017-07282-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/23/2017] [Indexed: 12/28/2022] Open
Abstract
An ideal transgenic gene expression system is inducible, non-leaky, and well tolerated by the target organism. While the former has been satisfactorily realized, leakiness and heavy physiological burden imposed by the existing systems are still prominent hurdles in their successful implementation. Here we describe a new system for non-leaky expression of transgenes in Drosophila. PRExpress is based on a single transgenic construct built from endogenous components, the inducible hsp70 promoter and a multimerized copy of a Polycomb response element (PRE) controlled by epigenetic chromatin regulators of the Polycomb group. We show that this system is non-leaky, rapidly and strongly inducible, and reversible. To make the application of PRExpress user-friendly, we deliver the construct via site-specific integration.
Collapse
|
29
|
Moore NA, Bracha P, Hussain RM, Morral N, Ciulla TA. Gene therapy for age-related macular degeneration. Expert Opin Biol Ther 2017; 17:1235-1244. [PMID: 28726562 DOI: 10.1080/14712598.2017.1356817] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION In neovascular age related macular degeneration (nAMD), gene therapy to chronically express anti-vascular endothelial growth factor (VEGF) proteins could ameliorate the treatment burden of chronic intravitreal therapy and improve limited visual outcomes associated with 'real world' undertreatment. Areas covered: In this review, the authors assess the evolution of gene therapy for AMD. Adeno-associated virus (AAV) vectors can transduce retinal pigment epithelium; one such early application was a phase I trial of AAV2-delivered pigment epithelium derived factor gene in advanced nAMD. Subsequently, gene therapy for AMD shifted to the investigation of soluble fms-like tyrosine kinase-1 (sFLT-1), an endogenously expressed VEGF inhibitor, binding and neutralizing VEGF-A. After some disappointing results, research has centered on novel vectors, including optimized AAV2, AAV8 and lentivirus, as well as genes encoding other anti-angiogenic proteins, including ranibizumab, aflibercept, angiostatin and endostatin. Also, gene therapy targeting the complement system is being investigated for geographic atrophy due to non-neovascular AMD. Expert opinion: The success of gene therapy for AMD will depend on the selection of the most appropriate therapeutic protein and its level of chronic expression. Future investigations will center on optimizing vector, promoter and delivery methods, and evaluating the risks of the chronic expression of anti-angiogenic or anti-complement proteins.
Collapse
Affiliation(s)
- Nicholas A Moore
- a Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Peter Bracha
- a Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Rehan M Hussain
- a Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Nuria Morral
- c Department of Medical and Molecular Genetics , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Thomas A Ciulla
- a Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA.,b Retina Service , Midwest Eye Institute , Indianapolis , IN , USA
| |
Collapse
|
30
|
Simion V, Sobilo J, Clemoncon R, Natkunarajah S, Ezzine S, Abdallah F, Lerondel S, Pichon C, Baril P. Positive radionuclide imaging of miRNA expression using RILES and the human sodium iodide symporter as reporter gene is feasible and supports a protective role of miRNA-23a in response to muscular atrophy. PLoS One 2017; 12:e0177492. [PMID: 28493972 PMCID: PMC5426778 DOI: 10.1371/journal.pone.0177492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/27/2017] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are key players in many biological processes and are considered as an emerging class of pharmacology drugs for diagnosis and therapy. However to fully exploit the therapeutic potential of miRNAs, it is becoming crucial to monitor their expression pattern using medical imaging modalities. Recently, we developed a method called RILES, for RNAi-Inducible Luciferase Expression System that relies on an engineered regulatable expression system to switch-ON the expression of the luciferase gene when a miRNA of interest is expressed in cells. Here we investigated whether replacing the luciferase reporter gene with the human sodium iodide symporter (hNIS) reporter gene will be also suited to monitor the expression of miRNAs in a clinical setting context. We provide evidence that radionuclide imaging of miRNA expression using hNIS is feasible although it is not as robust as when the luciferase reporter gene is used. However, under appropriate conditions, we monitored the expression of several miRNAs in cells, in the liver and in the tibialis anterior muscle of mice undergoing muscular atrophy. We demonstrated that radiotracer accumulation in transfected cells correlated with the induction of hNIS and with the expression of miRNAs detected by real time PCR. We established the kinetic of miRNA-23a expression in mice and demonstrated that this miRNA follows a biphasic expression pattern characterized by a loss of expression at a late time point of muscular atrophy. At autopsy, we found an opposite expression pattern between miRNA-23a and one of the main transcriptional target of this miRNA, APAF-1, and as downstream target, Caspase 9. Our results report the first positive monitoring of endogenously expressed miRNAs in a nuclear medicine imaging context and support the development of additional work to establish the potential therapeutic value of miRNA-23 to prevent the damaging effects of muscular atrophy.
Collapse
Affiliation(s)
- Viorel Simion
- Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France
| | - Julien Sobilo
- PHENOMIN-TAAM-UPS44, CIPA (Centre d'Imagerie du Petit Animal), CNRS Orléans, France
| | - Rudy Clemoncon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France
| | - Sharuja Natkunarajah
- PHENOMIN-TAAM-UPS44, CIPA (Centre d'Imagerie du Petit Animal), CNRS Orléans, France
| | - Safia Ezzine
- Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France
| | | | - Stephanie Lerondel
- PHENOMIN-TAAM-UPS44, CIPA (Centre d'Imagerie du Petit Animal), CNRS Orléans, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France.,Université d'Orléans, Collégium Sciences et Techniques, Orléans, France
| | - Patrick Baril
- Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France.,Université d'Orléans, Collégium Sciences et Techniques, Orléans, France
| |
Collapse
|
31
|
|
32
|
Emery EC, Luiz AP, Wood JN. Nav1.7 and other voltage-gated sodium channels as drug targets for pain relief. Expert Opin Ther Targets 2016; 20:975-83. [PMID: 26941184 PMCID: PMC4950419 DOI: 10.1517/14728222.2016.1162295] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Introduction: Chronic pain is a massive clinical problem. We discuss the potential of subtype selective sodium channel blockers that may provide analgesia with limited side effects. Areas covered: Sodium channel subtypes have been linked to human pain syndromes through genetic studies. Gain of function mutations in Nav1.7, 1.8 and 1.9 can cause pain, whilst loss of function Nav1.7 mutations lead to loss of pain in otherwise normal people. Intriguingly, both human and mouse Nav1.7 null mutants have increased opioid drive, because naloxone, an opioid antagonist, can reverse the analgesia associated with the loss of Nav1.7 expression. Expert Opinion: We believe there is a great future for sodium channel antagonists, particularly Nav1.7 antagonists in treating most pain syndromes. This review deals with recent attempts to develop specific sodium channel blockers, the mechanisms that underpin the Nav1.7 null pain-free phenotype and new routes to analgesia using, for example, gene therapy or combination therapy with subtype specific sodium channel blockers and opioids. The use of selective Nav1.7 antagonists together with either enkephalinase inhibitors or low dose opioids has the potential for side effect-free analgesia, as well as an important opioid sparing function that may be clinically very significant.
Collapse
Affiliation(s)
- Edward C Emery
- a Molecular Nociception Group, Department of Medicine , WIBR, University College London , London WC1E 6BT , UK
| | - Ana Paula Luiz
- a Molecular Nociception Group, Department of Medicine , WIBR, University College London , London WC1E 6BT , UK
| | - John N Wood
- a Molecular Nociception Group, Department of Medicine , WIBR, University College London , London WC1E 6BT , UK
| |
Collapse
|
33
|
A regulatable AAV vector mediating GDNF biological effects at clinically-approved sub-antimicrobial doxycycline doses. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 5:16027. [PMID: 27069954 PMCID: PMC4813607 DOI: 10.1038/mtm.2016.27] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/26/2016] [Accepted: 02/26/2016] [Indexed: 12/19/2022]
Abstract
Preclinical and clinical data stress the importance of pharmacologically-controlling glial cell line-derived neurotrophic factor (GDNF) intracerebral administration to treat PD. The main challenge is finding a combination of a genetic switch and a drug which, when administered at a clinically-approved dose, reaches the brain in sufficient amounts to induce a therapeutic effect. We describe a highly-sensitive doxycycline-inducible adeno-associated virus (AAV) vector. This vector allowed for the first time a longitudinal analysis of inducible transgene expression in the brain using bioluminescence imaging. To evaluate the dose range of GDNF biological activity, the inducible AAV vector (8.0 × 10(9) viral genomes) was injected in the rat striatum at four delivery sites and increasing doxycycline doses administered orally. ERK/Akt signaling activation as well as tyrosine hydroxylase downregulation, a consequence of long-term GDNF treatment, were induced at plasmatic doxycycline concentrations of 140 and 320 ng/ml respectively, which are known not to increase antibiotic-resistant microorganisms in patients. In these conditions, GDNF covered the majority of the striatum. No behavioral abnormalities or weight loss were observed. Motor asymmetry resulting from unilateral GDNF treatment only appeared with a 2.5-fold higher vector and a 13-fold higher inducer doses. Our data suggest that using the herein-described inducible AAV vector, biological effects of GDNF can be obtained in response to sub-antimicrobial doxycycline doses.
Collapse
|
34
|
Penrod RD, Wells AM, Carlezon WA, Cowan CW. Use of Adeno-Associated and Herpes Simplex Viral Vectors for In Vivo Neuronal Expression in Mice. CURRENT PROTOCOLS IN NEUROSCIENCE 2015; 73:4.37.1-4.37.31. [PMID: 26426386 PMCID: PMC4678623 DOI: 10.1002/0471142301.ns0437s73] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Adeno-associated viruses and the herpes simplex virus are the two most widely used vectors for the in vivo expression of exogenous genes. Advances in the development of these vectors have enabled remarkable temporal and spatial control of gene expression. This unit provides methods for storing, delivering, and verifying expression of adeno-associated and herpes simplex viruses in the adult mouse brain. It also describes important considerations for experiments using in vivo expression of these viral vectors, including serotype and promoter selection, as well as timing of expression. Additional protocols are provided that describe methods for preliminary experiments to determine the appropriate conditions for in vivo delivery.
Collapse
Affiliation(s)
- Rachel D Penrod
- McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Audrey M Wells
- McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | | | | |
Collapse
|
35
|
Baril P, Ezzine S, Pichon C. Monitoring the spatiotemporal activities of miRNAs in small animal models using molecular imaging modalities. Int J Mol Sci 2015; 16:4947-72. [PMID: 25749473 PMCID: PMC4394458 DOI: 10.3390/ijms16034947] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression by binding mRNA targets via sequence complementary inducing translational repression and/or mRNA degradation. A current challenge in the field of miRNA biology is to understand the functionality of miRNAs under physiopathological conditions. Recent evidence indicates that miRNA expression is more complex than simple regulation at the transcriptional level. MiRNAs undergo complex post-transcriptional regulations such miRNA processing, editing, accumulation and re-cycling within P-bodies. They are dynamically regulated and have a well-orchestrated spatiotemporal localization pattern. Real-time and spatio-temporal analyses of miRNA expression are difficult to evaluate and often underestimated. Therefore, important information connecting miRNA expression and function can be lost. Conventional miRNA profiling methods such as Northern blot, real-time PCR, microarray, in situ hybridization and deep sequencing continue to contribute to our knowledge of miRNA biology. However, these methods can seldom shed light on the spatiotemporal organization and function of miRNAs in real-time. Non-invasive molecular imaging methods have the potential to address these issues and are thus attracting increasing attention. This paper reviews the state-of-the-art of methods used to detect miRNAs and discusses their contribution in the emerging field of miRNA biology and therapy.
Collapse
Affiliation(s)
- Patrick Baril
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, 45071 Orléans, France.
| | - Safia Ezzine
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, 45071 Orléans, France.
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, 45071 Orléans, France.
| |
Collapse
|