1
|
Gómez-Suaga P, Pérez-Nievas BG, Glennon EB, Lau DHW, Paillusson S, Mórotz GM, Calì T, Pizzo P, Noble W, Miller CCJ. The VAPB-PTPIP51 endoplasmic reticulum-mitochondria tethering proteins are present in neuronal synapses and regulate synaptic activity. Acta Neuropathol Commun 2019; 7:35. [PMID: 30841933 PMCID: PMC6402140 DOI: 10.1186/s40478-019-0688-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/24/2019] [Indexed: 11/12/2022] Open
Abstract
Signaling between the endoplasmic reticulum (ER) and mitochondria regulates a number of key neuronal functions. This signaling involves close physical contacts between the two organelles that are mediated by "tethering proteins" that function to recruit regions of ER to the mitochondrial surface. The ER protein, vesicle-associated membrane protein-associated protein B (VAPB) and the mitochondrial membrane protein, protein tyrosine phosphatase interacting protein-51 (PTPIP51), interact to form one such tether. Recently, damage to ER-mitochondria signaling involving disruption of the VAPB-PTPIP51 tethers has been linked to the pathogenic process in Parkinson's disease, fronto-temporal dementia (FTD) and related amyotrophic lateral sclerosis (ALS). Loss of neuronal synaptic function is a key feature of Parkinson's disease and FTD/ALS but the roles that ER-mitochondria signaling and the VAPB-PTPIP51 tethers play in synaptic function are not known. Here, we demonstrate that the VAPB-PTPIP51 tethers regulate synaptic activity. VAPB and PTPIP51 localise and form contacts at synapses, and stimulating neuronal activity increases ER-mitochondria contacts and the VAPB-PTPIP51 interaction. Moreover, siRNA loss of VAPB or PTPIP51 perturbs synaptic function and dendritic spine morphology. Our results reveal a new role for the VAPB-PTPIP51 tethers in neurons and suggest that damage to ER-mitochondria signaling contributes to synaptic dysfunction in Parkinson's disease and FTD/ALS.
Collapse
Affiliation(s)
- Patricia Gómez-Suaga
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RX, UK
| | - Beatriz G Pérez-Nievas
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RX, UK
| | - Elizabeth B Glennon
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RX, UK
| | - Dawn H W Lau
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RX, UK
| | - Sebastien Paillusson
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RX, UK
| | - Gábor M Mórotz
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RX, UK
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RX, UK
| | - Christopher C J Miller
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RX, UK.
| |
Collapse
|
2
|
Abstract
Neurons and their function of conveying information across a chemical synapse are highly regulated systems. Impacts on their functional viability can occur independently from changes in morphology. Here we describe a method to assess the size of synaptic vesicle pools using live cell fluorescence imaging and a genetically encoded probe (pHluorin). Assessing functional parameters such as the size of synaptic vesicle pools can be a valuable addition to common assays of neuronal cell viability as they demonstrate that key cellular functions are intact.
Collapse
|
3
|
Dahlmanns M, Yakubov E, Chen D, Sehm T, Rauh M, Savaskan N, Wrosch JK. Chemotherapeutic xCT inhibitors sorafenib and erastin unraveled with the synaptic optogenetic function analysis tool. Cell Death Discov 2017; 3:17030. [PMID: 28835855 PMCID: PMC5541984 DOI: 10.1038/cddiscovery.2017.30] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/23/2017] [Indexed: 01/19/2023] Open
Abstract
In the search for new potential chemotherapeutics, the compounds’ toxicity to healthy cells is an important factor. The brain with its functional units, the neurons, is especially endangered during the radio- and chemotherapeutic treatment of brain tumors. The effect of the potential compounds not only on neuronal survival but also neuronal function needs to be taken into account. Therefore, in this study we aimed to comprehend the biological effects of chemotherapeutic xCT inhibition on healthy neuronal cells with our synaptic optogenetic function analysis tool (SOFA). We combined common approaches, such as investigation of morphological markers, neuronal function and cell metabolism. The glutamate-cystine exchanger xCT (SLC7A11, system Xc−) is the main glutamate exporter in malignant brain tumors and as such a relevant drug target for treating deadly glioblastomas (WHO grades III and IV). Recently, two small molecules termed sorafenib (Nexavar) and erastin have been found to efficiently block xCT function. We investigated neuronal morphology, metabolic secretome profiles, synaptic function and cell metabolism of primary hippocampal cultures (containing neurons and glial cells) treated with sorafenib and erastin in clinically relevant concentrations. We found that sorafenib severely damaged neurons already after 24 h of treatment. Noteworthy, also at a lower concentration, where no morphological damage or metabolic disturbance was monitored, sorafenib still interfered with synaptic and metabolic homeostasis. In contrast, erastin-treated neurons displayed mostly inconspicuous morphology and metabolic rates. Key parameters of proper neuronal function, such as synaptic vesicle pool sizes, were however disrupted following erastin application. In conclusion, our data revealed that while sorafenib and erastin effectively inhibited xCT function they also interfered with essential neuronal (synaptic) function. These findings highlight the particular importance of investigating the effects of potential neurooncological and general cancer chemotherapeutics also on healthy neuronal cells and their function as revealed by the SOFA tool.
Collapse
Affiliation(s)
- Marc Dahlmanns
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Eduard Yakubov
- Translational Neurooncology Laboratory, Department of Neurosurgery, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany.,Paracelsus Medical University, Nuremberg, Germany
| | - Daishi Chen
- Translational Neurooncology Laboratory, Department of Neurosurgery, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tina Sehm
- Translational Neurooncology Laboratory, Department of Neurosurgery, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Nicolai Savaskan
- Translational Neurooncology Laboratory, Department of Neurosurgery, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany.,BiMECON Ent., Berlin, Germany
| | - Jana Katharina Wrosch
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|