1
|
Dehghan H, Mosa-Kazemi SH, Yakhchali B, Maleki-Ravasan N, Vatandoost H, Oshaghi MA. Evaluation of anti-malaria potency of wild and genetically modified Enterobacter cloacae expressing effector proteins in Anopheles stephensi. Parasit Vectors 2022; 15:63. [PMID: 35183231 PMCID: PMC8858508 DOI: 10.1186/s13071-022-05183-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Malaria is one of the most lethal infectious diseases in tropical and subtropical areas of the world. Paratransgenesis using symbiotic bacteria offers a sustainable and environmentally friendly strategy to combat this disease. In the study reported here, we evaluated the disruption of malaria transmission in the Anopheles stephensi-Plasmodium berghei assemblage using the wild-type (WT) and three modified strains of the insect gut bacterium, Enterobacter cloacae. METHODS The assay was carried out using the E. cloacae dissolvens WT and three engineered strains (expressing green fluorescent protein-defensin (GFP-D), scorpine-HasA (S-HasA) and HasA only, respectively). Cotton wool soaked in a solution of 5% (wt/vol) fructose + red dye (1/50 ml) laced with one of the bacterial strains (1 × 109cells/ml) was placed overnight in cages containing female An. stephensi mosquitoes (age: 3-5 days). Each group of sugar-fed mosquitoes was then starved for 4-6 h, following which time they were allowed to blood-feed on P. berghei-infected mice for 20 min in the dark at 17-20 °C. The blood-fed mosquitoes were kept at 19 ± 1 °C and 80 ± 5% relative humidity, and parasite infection was measured by midgut dissection and oocyst counting 10 days post-infection (dpi). RESULTS Exposure to both WT and genetically modified E. cloacae dissolvens strains significantly (P < 0.0001) disrupted P. berghei development in the midgut of An. stephensi, in comparison with the control group. The mean parasite inhibition of E. cloacaeWT, E. cloacaeHasA, E. cloacaeS-HasA and E. cloacaeGFP-D was measured as 72, 86, 92.5 and 92.8 respectively. CONCLUSIONS The WT and modified strains of E. cloacae have the potential to abolish oocyst development by providing a physical barrier or through the excretion of intrinsic effector molecules. These findings reinforce the case for the use of either WT or genetically modified strains of E. cloacae bacteria as a powerful tool to combat malaria.
Collapse
Affiliation(s)
- Hossein Dehghan
- Department of Public Health, School of Public Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Seyed Hassan Mosa-Kazemi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Yakhchali
- Department Industrial and of Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Naseh Maleki-Ravasan
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Recombinant C-Terminal Domains from Scorpine-like Peptides Inhibit the Plasmodium berghei Ookinete Development In Vitro. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10130-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Molugu TR, Oita RC, Chawla U, Camp SM, Brown MF, Garcia JGN. Nicotinamide phosphoribosyltransferase purification using SUMO expression system. Anal Biochem 2020; 598:113597. [PMID: 31982408 DOI: 10.1016/j.ab.2020.113597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the salvage pathway required for nicotinamide adenine dinucleotide synthesis. The secreted NAMPT protein serves as a master regulatory cytokine involved in activation of evolutionarily conserved inflammatory networks. Appreciation of the role of NAMPT as a damage-associated molecular pattern protein (DAMP) has linked its activities to several disorders via Toll-like receptor 4 (TLR4) binding and inflammatory cascade activation. Information is currently lacking concerning the precise mode of the NAMPT protein functionality due to limited availability of purified protein for use in in vitro and in vivo studies. Here we report successful NAMPT expression using the pET-SUMO expression vector in E. coli strain SHuffle containing a hexa-His tag for purification. The Ulp1 protease was used to cleave the SUMO and hexa-His tags, and the protein was purified by immobilized-metal affinity chromatography. The protein yield was ~4 mg/L and initial biophysical characterization of the protein using circular dichroism revealed the secondary structural elements, while dynamic light scattering demonstrated the presence of oligomeric units. The NAMPT-SUMO showed a predominantly dimeric protein with functional enzymatic activity. Finally, we report NAMPT solubilization in n-dodecyl-β-d-maltopyranoside (DDM) detergent in monomeric form, thus enhancing the opportunity for further structural and functional investigations.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Radu C Oita
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Udeep Chawla
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Sara M Camp
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA; Department of Physics, University of Arizona, Tucson, AZ, 85721, USA.
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
4
|
Arbulu S, Jiménez JJ, Gútiez L, Feito J, Cintas LM, Herranz C, Hernández PE. Cloning and expression of synthetic genes encoding native, hybrid- and bacteriocin-derived chimeras from mature class IIa bacteriocins, by Pichia pastoris (syn. Komagataella spp.). Food Res Int 2019; 121:888-899. [DOI: 10.1016/j.foodres.2019.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 12/19/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
|
5
|
Wibowo D, Zhao CX. Recent achievements and perspectives for large-scale recombinant production of antimicrobial peptides. Appl Microbiol Biotechnol 2018; 103:659-671. [DOI: 10.1007/s00253-018-9524-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023]
|
6
|
Seyfi R, Babaeipour V, Mofid MR, Kahaki FA. Expression and production of recombinant scorpine as a potassium channel blocker protein in Escherichia coli. Biotechnol Appl Biochem 2018; 66:119-129. [DOI: 10.1002/bab.1704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/04/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Roghayyeh Seyfi
- Department of Bioscience and Biotechnology; Malek Ashtar University of Technology; Tehran Iran
| | - Valiollah Babaeipour
- Department of Bioscience and Biotechnology; Malek Ashtar University of Technology; Tehran Iran
| | - Mohammad Reza Mofid
- Department of Biochemistry; Bioinformatics Research Center; School of Pharmacy and Pharmaceutical Sciences; Isfahan University of Medical Sciences; Isfahan Iran
| | - Fatemeh Abarghooi Kahaki
- Department of Biotechnology; School of Advanced Technologies in Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
7
|
Ghosh A, Roy R, Nandi M, Mukhopadhyay A. Scorpion Venom-Toxins that Aid in Drug Development: A Review. Int J Pept Res Ther 2018; 25:27-37. [PMID: 32214927 PMCID: PMC7088386 DOI: 10.1007/s10989-018-9721-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2018] [Indexed: 12/01/2022]
Abstract
Scorpion venom components have multifaceted orientation against bacterial, viral, fungal infections and other neuronal disorders. They can modulate the ion channels (K+, Na+, Cl−, Ca2+) of our body and this concept has been hypothesized in formulating pharmaceuticals. The triumphant achievement of these venom components as formulated anticancer agent in Phase I and Phase II clinical trials allure researchers to excavate beneficial venom components prohibiting DNA replication in malignant tumor cells. This review brings forth the achievements of Science and Technology in classifying the venom components as therapeutics and further application in drug product development.
Collapse
Affiliation(s)
- Arijit Ghosh
- 1Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 16 A Park Lane, Kolkata, 700016 India
| | - Rini Roy
- 1Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 16 A Park Lane, Kolkata, 700016 India
| | - Monoswini Nandi
- 2Department of Molecular Biology and Biotechnology, Kalyani University, University Road, Near Kalyani Ghoshpara Railway Station, District Nadia, Kalyani, West Bengal 741235 India
| | - Ashis Mukhopadhyay
- 3Department of Hemato-Oncology, Netaji Subhas Chandra Bose Cancer Research Institute, 16 A Park Lane, Kolkata, 700016 India.,4Netaji Subhas Chandra Bose Cancer Research Institute, Park Street, Kolkata, West Bengal 700016 India
| |
Collapse
|
8
|
Zhang C, Gu Y, Tang J, Lu F, Cao Y, Zhou H, Zhu G, Cao J, Gao Q. Production of Plasmodium vivax enolase in Escherichia coli and its protective properties. Hum Vaccin Immunother 2016; 12:2855-2861. [PMID: 27487171 DOI: 10.1080/21645515.2016.1208328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plasmodium vivax predominates in South-East Asia and the American continent, causes significant morbidity and inflicts a huge socioeconomic burden. Sequencing completion of the Plasmodium vivax genome and transcriptome provides the chance to identify antigens. Enolase is the eighth enzyme in the glycolytic pathway, which, apart from its glycolytic function, also possess antigenic properties and is present on the cell wall of many invasive organisms, such as Candida albicans. In order to assess whether enolase of Plasmodium vivax is also antigenic, in this study, we first reported the expression and purification of recombinant Plasmodium vivax enolase (r-Pven) in Escherichia coli, using prokaryotic expression vector. The r-Pven was expressed in soluble form in E. coli, and the expression was verified by SDS-PAGE and western blotting analysis. The r-Pven was purified to 90% purity by nickel-nitrilotriacetic acid (Ni2+-NTA) resin chromatography. For reactivity with r-Pven, compared with the average values of the reactivity of control serum samples, the average values of the reactivity of 99 individual serums from vivax malaria patients appeared higher, and there was significant difference between them (p=0.0117<0.05). Mice anti-r-Pven antibodies inhibited the growth of in vitro cultures of P. falciparum. Mice immunized with r-Pven showed protection against a challenge with the mouse malarial parasite Plasmodium berghei. The antibodies raised against r-Pven were specific for Plasmodium and did not react to the host tissues. These observations established Plasmodium vivax enolase to be a potential protective antigen.
Collapse
Affiliation(s)
- Chao Zhang
- a Key Laboratory on Technology for Disease Prevention and Control (Ministry of Health) , Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases , Wuxi , Jiangsu , China.,b Public Health Research Center , Jiangnan University , Wuxi , China
| | - Yaping Gu
- a Key Laboratory on Technology for Disease Prevention and Control (Ministry of Health) , Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases , Wuxi , Jiangsu , China
| | - Jianxia Tang
- a Key Laboratory on Technology for Disease Prevention and Control (Ministry of Health) , Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases , Wuxi , Jiangsu , China
| | - Feng Lu
- a Key Laboratory on Technology for Disease Prevention and Control (Ministry of Health) , Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases , Wuxi , Jiangsu , China
| | - Yuanyuan Cao
- a Key Laboratory on Technology for Disease Prevention and Control (Ministry of Health) , Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases , Wuxi , Jiangsu , China
| | - Huayun Zhou
- a Key Laboratory on Technology for Disease Prevention and Control (Ministry of Health) , Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases , Wuxi , Jiangsu , China
| | - Guoding Zhu
- a Key Laboratory on Technology for Disease Prevention and Control (Ministry of Health) , Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases , Wuxi , Jiangsu , China
| | - Jun Cao
- a Key Laboratory on Technology for Disease Prevention and Control (Ministry of Health) , Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases , Wuxi , Jiangsu , China.,b Public Health Research Center , Jiangnan University , Wuxi , China
| | - Qi Gao
- a Key Laboratory on Technology for Disease Prevention and Control (Ministry of Health) , Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases , Wuxi , Jiangsu , China
| |
Collapse
|
9
|
Flores-Solis D, Toledano Y, Rodríguez-Lima O, Cano-Sánchez P, Ramírez-Cordero BE, Landa A, Rodríguez de la Vega RC, del Rio-Portilla F. Solution structure and antiparasitic activity of scorpine-like peptides fromHoffmannihadrurus gertschi. FEBS Lett 2016; 590:2286-96. [DOI: 10.1002/1873-3468.12255] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 11/06/2022]
Affiliation(s)
- David Flores-Solis
- Departamento de Química de Biomacromoléculas; Instituto de Química; Universidad Nacional Autónoma de México, CU; Ciudad de México México
| | - Yanis Toledano
- Departamento de Química de Biomacromoléculas; Instituto de Química; Universidad Nacional Autónoma de México, CU; Ciudad de México México
- Departamento de Química Inorgánica y Nuclear; Facultad de Química; Universidad Nacional Autónoma de México, CU; Ciudad de México México
| | - Oscar Rodríguez-Lima
- Departamento de Microbiología y Parasitología; Facultad de Medicina; Universidad Nacional Autónoma de México, CU; Ciudad de México México
| | - Patricia Cano-Sánchez
- Departamento de Química de Biomacromoléculas; Instituto de Química; Universidad Nacional Autónoma de México, CU; Ciudad de México México
| | - Belen Ernestina Ramírez-Cordero
- División de Neurociencias; Departamento de Neuropatología Molecular; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México, CU; Ciudad de México México
| | - Abraham Landa
- Departamento de Microbiología y Parasitología; Facultad de Medicina; Universidad Nacional Autónoma de México, CU; Ciudad de México México
| | | | - Federico del Rio-Portilla
- Departamento de Química de Biomacromoléculas; Instituto de Química; Universidad Nacional Autónoma de México, CU; Ciudad de México México
| |
Collapse
|
10
|
Ishida Y, Inouye M. Suppression of the toxicity of Bac7 (1-35), a bovine peptide antibiotic, and its production in E. coli. AMB Express 2016; 6:19. [PMID: 26936849 PMCID: PMC4775720 DOI: 10.1186/s13568-016-0190-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/23/2016] [Indexed: 11/10/2022] Open
Abstract
Bac7 (1-35) is an Arg- and Pro-rich peptide antibiotic, produced in bovine cells to protect them from microbial infection. It has been demonstrated to inhibit the protein synthesis in E. coli, leading to cell death. Because of its toxicity, no cost effective methods have been developed for Bac7 production in Escherichia coli for its potential clinical use. Here, we found a method to suppress Bac7 (1-35) toxicity in E. coli to establish its high expression system, in which Bac7 (1-35) was fused to the C-terminal end of protein S, a major spore-coat protein from Myxococcus xanthus, using a linker containing a Factor Xa cleavage site. The resulting His6-PrS2-Bac7 (1-35) (PrS2 is consisted of two N-terminal half domains of protein S connected in tandem) was well expressed using the Single-Protein Production (SPP) system at low temperature and subsequently purified in a single step by using a Ni column. The combination of protein S fusion and its expression in the SPP system at low temperature appeared to suppress Bac7 (1-35) toxicity. Both the purified His6-PrS2-Bac7 (1-35) and His6-PrS2-Bac7 (1-35) treated by Factor Xa were proven to be a potent inhibitor for cell-free protein synthesis.
Collapse
|
11
|
Pane K, Durante L, Pizzo E, Varcamonti M, Zanfardino A, Sgambati V, Di Maro A, Carpentieri A, Izzo V, Di Donato A, Cafaro V, Notomista E. Rational Design of a Carrier Protein for the Production of Recombinant Toxic Peptides in Escherichia coli. PLoS One 2016; 11:e0146552. [PMID: 26808536 PMCID: PMC4726619 DOI: 10.1371/journal.pone.0146552] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/19/2015] [Indexed: 11/18/2022] Open
Abstract
Commercial uses of bioactive peptides require low cost, effective methods for their production. We developed a new carrier protein for high yield production of recombinant peptides in Escherichia coli very well suited for the production of toxic peptides like antimicrobial peptides. GKY20, a short antimicrobial peptide derived from the C-terminus of human thrombin, was fused to the C-terminus of Onconase, a small ribonuclease (104 amino acids), which efficiently drove the peptide into inclusion bodies with very high expression levels (about 200-250 mg/L). After purification of the fusion protein by immobilized metal ion affinity chromatography, peptide was obtained by chemical cleavage in diluted acetic acid of an acid labile Asp-Pro sequence with more than 95% efficiency. To improve peptide purification, Onconase was mutated to eliminate all acid labile sequences thus reducing the release of unwanted peptides during the acid cleavage. Mutations were chosen to preserve the differential solubility of Onconase as function of pH, which allows its selective precipitation at neutral pH after the cleavage. The improved carrier allowed the production of 15-18 mg of recombinant peptide per liter of culture with 96-98% purity without the need of further chromatographic steps after the acid cleavage. The antimicrobial activity of the recombinant peptide, with an additional proline at the N-terminus, was tested on Gram-negative and Gram-positive strains and was found to be identical to that measured for synthetic GKY20. This finding suggests that N-terminal proline residue does not change the antimicrobial properties of recombinant (P)GKY20. The improved carrier, which does not contain cysteine and methionine residues, Asp-Pro and Asn-Gly sequences, is well suited for the production of peptides using any of the most popular chemical cleavage methods.
Collapse
Affiliation(s)
- Katia Pane
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Lorenzo Durante
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Elio Pizzo
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Mario Varcamonti
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Anna Zanfardino
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Valeria Sgambati
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Seconda Università di Napoli, Caserta, Italy
| | - Andrea Carpentieri
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Viviana Izzo
- Department of Medicine and Surgery, Università degli Studi di Salerno, Baronissi, Italy
| | - Alberto Di Donato
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Valeria Cafaro
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Eugenio Notomista
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| |
Collapse
|